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Abstract

Object detection is a crucial task of autonomous driving. This paper addresses an effective algorithm for pedestrian detection of 

the panoramic depth map transformed from the 3D-LiDAR data. Firstly, the 3D point clouds are transformed into panoramic depth 

maps, and then the panoramic depth maps are enhanced. Secondly, the grounds of the 3D point clouds are removed. The remaining 

point clouds are clustered, filtered and projected onto the previously generated panoramic depth maps, and new panoramic depth 

maps are obtained. Finally, the new panoramic depth maps are jointed to generate depth maps with different sizes, which are used 

as input of the improved PVANET for pedestrian detection. The 2D image of the panoramic depth map applied to the proposed algorithm 

is transformed from 3D point cloud, effectively containing the panorama of the sensor, and is more suitable for the environment 

perception of autonomous driving. Compared with the detection algorithm based on RGB images, the proposed algorithm cannot be 

affected by light, and can maintain the normal average precision of pedestrian detection at night. In order to increase the robustness 

of detecting small objects like pedestrians, the network structure based on the original PVANET is modified in this paper. A new dataset 

is built by processing the 3D-LiDAR data and the model trained on the new dataset perform well. The experimental results show 

that the proposed algorithm achieves high accuracy and robustness in pedestrian detection under different illumination conditions. 

Furthermore, when trained on the new dataset, the model exhibits average precision improvements of 2.8–5.1 % over the original 

PVANET, making it more suitable for autonomous driving applications.
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1 Introduction
Autonomous driving technology and advanced driver 
assistance system rely on accurate, real-time and robust 
perception of the environment, so it is increasingly 
important to detect and identify road objects accurately, 
real-time and robustly. Currently, the 3D-LiDAR scanner 
and the high-resolution camera are the main sensors that 
autonomous vehicles rely on for object detection. Generally 
speaking, the 3D-LiDAR scanner can detect vehicles, 
pedestrians, bicycles and other objects, while the high-res-
olution camera can detect a wide range of objects, such as 
traffic signs and license plates. The data acquired by the 
3D-LiDAR scanner is informative and not easily affected 
by light, so the panoramic depth map transformed from it 
can still correctly represent the environment.

It is very popular to use Convolutional Neural Networks 
(CNNs) to perform object detection on RGB images. 

However, the object detection pipeline for autonomous 
driving based on RGB images is limited by illumination, 
and these pipelines cannot achieve ideal detection accu-
racy at night. Moreover, most image-based or LiDAR-
based 3D object detection pipelines are limited to the 
front view of the sensor [1–4] and cannot detect moving 
objects behind. Therefore, this paper proposes an efficient 
and robust detection algorithm that can detect pedestri-
ans around the sensor and is unaffected by illumination. 
The classic single-stage detection pipelines like YOLO [5], 
SSD [6] and the two-stage detection pipelines like Faster-
RCNN [7] all detect large objects in RGB images, so these 
detection pipelines are not ideal for small object detec-
tion in RGB images. The proposed algorithm builds a new 
dataset for objects detection based on the 3D point cloud of 
KITTI [8]. Pedestrians, bicycles and even vehicles in the 
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dataset become small objects due to the limitation of input 
tensor height. This paper adopts several improvements 
to PVANET [9], including optimizing Region Proposal 
Network (RPN) and learning rate.

The proposed algorithm is mainly divided into the 
following steps:

1. transforming 3D point clouds acquired by 3D-LiDAR 
into panoramic depth maps and enhancing the pan-
oramic depth maps;

2. removing the ground, clustering and filtering from 
3D point clouds, then projecting the remaining point 
clouds onto the panoramic depth maps to generate the 
Double Projection Panoramic Depth Map (DPPDM);

3. jointing several random, continuous, or identi-
cal DPPDMs to generate the Large-scale Double 
Projection Panoramic Depth Map (LDPPDM); and

4. using these LDPPDMs to build a new dataset, then 
training the new dataset by the CNN proposed in this 
paper to detect pedestrians.

The contributions of this paper are threefold:
1. This paper proposes a Clustering and Double 

Projection method to highlight the detection objects, 
and then builds a dataset composed of LDPPDMs.

2. This paper improves the model structure of PVANET 
with RPN and learning rate to increase its robustness 
to small objects, which leads to significant accuracy 
improvements of 2.8 % to 5.1 % for pedestrians.

3. This paper proposes an algorithm that can accu-
rately detect pedestrians affected by illumination 
variations, and detect pedestrians outside the cam-
era view but located around the LiDAR scanner.

2 Related work
2.1 Main object detection methods
At present, the modalities of object detection for autonomous 
driving are mainly classified into three types, which are 
based on cameras, 3D-LiDARS, and the fusion of the two.

The object detection method based on images obtained 
by the camera is relatively common. CNNs are mainly 
applied to 2D object detection [1, 7] and obstacle segmen-
tation [2] in RGB images. The rapid progress on stereo and 
monocular depth estimation suggests that images could be 
used to 3D object detection. Wang et al. [10] got corre-
sponding depth maps from monocular or stereo images, 
and then combined original images with the depth infor-
mation to obtain the pseudo-LiDAR, which replaced 
the 3D-LiDAR for object detection. Ma et al. [11] used 

monocular depth estimation models and camera param-
eters to transform images into 3D point clouds, and then 
got the 3D box through 2D detection and RGB informa-
tion. Szemenyei et al. [12] used the original shape image 
to arrange virtual objects in real-world scenes, which 
improved the quality of the arrangement.

Because the 3D point clouds obtained by 3D-LiDAR 
have precise 3D coordinates, CNNs based on LiDAR data 
for 3D object detection have been proposed. VoxelNet [13], 
LMNet [14], RT3D [15] overcame the shortcomings of tra-
ditional 3D CNNs [16, 17] in learning local features of 
different sizes. BirdNet [18] and PIXOR [19] projected 3D 
point clouds onto 3-channel BEV maps or 2-channel BEV 
maps, and maintained the spatial structure of the object 
through simplifying the network structure and improving 
the real-time performance of object detection. In addition, 
SqueezeSeg [3] and SqueezeSegV2 [4] segmented road 
objects based on 3D point clouds.

RGB-D data obtained by cameras and LiDARs have 
rich spatial information, and it is very popular to use 
CNNs for object detection of RGB-D data at present. 
Frustum PointNet [20] first used RGB images to find 2D 
region proposal of detection objects, and then located 3D 
bounding boxes of objects with the depth map generated 
by 3D LiDAR data in corresponding region. AVOD [21] 
achieved object detection in 3D space by integrating fea-
tures extracted from RGB images and theirs correspond-
ing bird's eye view maps in 3D space. PointFusion [22] 
extracted the feature of input RGB images and corre-
sponding 3D point clouds with PointNet++ [23] and 
PointNet [24], and then obtained the 3D bounding boxes 
of objects in 2D images through the feature.

2.2 Small object detection methods
YOLO [5], SSD [6] and Faster-RCNN [7] are mainly used 
for object detection in general datasets similar to PASCAL 
VOC [25], whose object sizes occupy a large proportion 
in images. Most datasets contain images of different sizes, 
and the size of landscape images is about 500 × 375 while 
the size of portrait images is about 375 × 500. However, 
in some cases, the object is not easily detected because of 
its small size and proportion in the image. Consequently, 
some detection methods for small objects have emerged. 
With SSD [6] as the main framework and ResNet-50 as the 
basic network, ALFNet [26] generated multi-scale feature 
maps to detect pedestrians. DetNet [27] was generated 
by improving the basic framework of ResNet50, which 
increased the size of the feature map and has an obvious 
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effect on small object detection. The low-level and high-
level features were simultaneously used for multi-scale 
object detection by improving Faster-RCNN [7], which 
improved the accuracy of small object detection in [28]. 
Pedestrian detection pipeline based on candidate regions 
and the Parallel Convolutional Neural Network (PCNN) 
was proposed in [29]. When Xu et al. [29] used CNN 
for feature extraction, the shallow network is added 
to form PCNN and extract feature output, which improved 
the detection accuracy of small objects.

3 Method description
The architecture of the proposed algorithm is presented 
in Fig. 1. The pipeline comprises two main stages:

1. transforming the 3D LiDAR data into a 2D dataset; and
2. using the proposed Convolutional Neural Network 

to detect pedestrians in the dataset.

3.1 Point cloud transformation
In the algorithm, the first step of making a new dataset is 
to transform the 3D-LiDAR data into panoramic depth 
maps. The number of points in each point cloud in the KITTI 
dataset is about 120,000. In order to improve the efficiency 
of transformation, the distance values of multiple similar 
point clouds in the horizontal direction are replaced by one 
pixel. As show in Fig. 2, a 3D point can be turned into a 
range value in a pixel using the image geometry.

According to the spherical coordinate system projec-
tion model, the coordinate value of pixels in the generated 
panoramic depth maps are determined by Eq. (1):
∆
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where (x, y, z)T denotes a 3D point, as shown by pi in Fig. 2; 
nc and nr denote the number of columns and rows in the 
panoramic depth map, respectively; 26.8° is the vertical 
view of Velodyne HDL-64E; Δϕ and Δθ are the average 
horizontal and vertical angle resolution between consecu-
tive beam emitters, respectively; d is the distance between 
the point and 3D-LiDAR, as show in Fig. 2; θ and ϕ denote 
the azimuth and elevation angle of the point, as show 
in Fig. 2; c and r represent the position of the 3D point 

projected onto the panoramic depth map. Algorithm 1 
summarizes the procedure of obtaining a panoramic depth 
map from a 3D point cloud.

In the approach outlined in Fig. 2, the Euclidean dis-
tance between the point and 3D-LiDAR is stored as the 
pixel value of panoramic depth maps. In the process of 3D 
point cloud transformation, some coordinate values may be 

Fig. 1 Pedestrian detection algorithm based on 3D-LiDAR

Fig. 2 Image geometric relationship between a 3D point and a range 
value in a pixel

Algorithm 1 Point cloud transformation to panoramic depth map

Result: I - depth image
1 Initialization
2 P - input point cloud
3 Main loop:
4 delta_horizon = 2 * pi / I.cols;
5 delta_vertical = 26.8 / 180 * pi / I.rows;
6 N = P.size;
7 for i = 0 : (N-1) do
8 angle_cols = atan2 ( P[i].y, P[i].x);
9 c = round (angle_cols / delta_horizon);
10 distance = sqrt (P[i].x * P[i].x + P[i].y * P[i].y);
11 angle_rows = atan2 (P[i].z, distance);
12 r = round (angle_rows / delta_vertical);
13 I[r][c] = sqrt (P[i].x * P[i].x + P[i].y * P[i].y + P[i].z * P[i].z);
14 end
15 return I;
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lost, but the acquisition of main objects (vehicles, pedestri-
ans, etc.) is not affected in the dataset made up of panoramic 
depth maps. Neighbors in the panoramic depth map implic-
itly define neighborhood relations between the 3D points. 
As show in Fig. 2, pi1 , pi2 , pi3 , and pi4 are the neighborhood 
of pi ; di,i1 , di,i2 , di,i3 and di,i4 represents the distance between 
pi1 , pi2 , pi3 , pi4 and pi , respectively; and their neighborhood 
relations are also shown in the panoramic depth map.

The panoramic depth map transformed from the 
3D-LiDAR data can be represented by 2D tensors 
with size 64 × 870, where 64 and 870 are the image height 
and width, respectively. Fig. 3 (a) is the visualization of 
a 3D point cloud acquired by 3D-LiDAR, and Fig. 3 (b) 
is the camera view of the frame corresponding to the 
point cloud. The original panoramic depth map trans-
formed from the 3D point cloud is shown in Fig. 3 (c), and 
Fig. 3 (d) is the HSV visualization.

3.2 Image enhancement
According to Fig. 3 (d), there are many gaps in the original 
panoramic depth map, which indicates that the pixel value 
here is abnormal. The measured distance is easily affected 
by noise, which may lead the pixel value of the panoramic 
depth map to be abnormal. In addition, when the point 
cloud is far away from 3D-LiDAR, the pixel may not con-
tain valid measurement at all. From the above, the pan-
oramic depth map should be enhanced.

As shown in Algorithm 2, firstly, the missing pixels 
in the panoramic depth map should be interpolated. It can 
be seen from Fig. 3 (d) the original panoramic depth map 
is poor in visualization due to the lack of pixels. The miss-
ing pixels at gaps will affect the feature extraction and 
object detection of the panoramic depth map, so it is nec-
essary to interpolate gaps. Interpolation fills gaps first hor-
izontally then vertically in a linear manner, which calcu-
lates the pixel value p1 and p2 , respectively. The average 
value of p1 and p2 is taken as the final pixel value.

Secondly, the original panoramic depth map is inter-
fered by noise, so the bilateral filter is used to smooth 
the distance value, which will reduce noise and improve 
image quality. Combined with the spatial weight and sim-
ilar weight, the bilateral filter, which is based on the over-
all consideration of spatial distance and similarity degree, 
can be described as follows in Eq. (2):
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where k(x) is the weight of bilateral filter h(x); s( f(ξ), f(x)) 
and c(ξ, x) are spatial weight and similar weight, respec-
tively; σ(ξ, x) and d(ξ, x) are radiation distance and 
Euclidean distance, respectively.

After the image is enhanced, as shown in Fig. 3 (f), 
the gaps are filled, and the objects are more obvious. 
The enhancement of the initial panoramic depth map 
not only can optimize its visualization, but also improve 
the accuracy of object detection in the later stage.

Fig. 3 Transformation of a 3D point cloud. (a) Visualization of the 
3D point cloud. (b) Camera view of the frame corresponding to the 
point cloud. (c) Original panoramic depth map transformed from the 
3D point cloud. (d) HSV visualization of the original panoramic depth 
map. (e) Enlarged part of the area corresponds to the view shown in (b). 

(f) Result of image enhancement.
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3.3 Ground removal
This study uses the improved Ground Plane Fitting (GPF) 
algorithm [30] for fast ground removal. The advantage of 
this algorithm is that it is suitable for a variety of auton-
omous driving scenarios. According to Algorithm 3, 
the initial points are sorted in ascending order of height 
values. A set of lowest points is used to estimate the initial 
plane model of the ground. The ground model parameters 
are calculated by Eq. (3):
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where n is the normal of the ground, p represents 3D point, 
and k is the distance from the point to its orthogonal pro-
jection. The parameters ∑ and μ represent the covariance 
matrix and mean of the initial ground points, respectively. 
The covariance matrix ∑ captures n by its Singular Value 
Decomposition (SVD). The threshold Thpoint of the ground 
height is obtained by n and μ, and the point whose height 
value is lower than Thpoint is considered as ground point. 
The distance value k is calculated by the ground model 
formula after the acquisition of n. If the distance value is 
lower than Thpoint , it is the ground point, otherwise it is 
the non-ground point.

The ground removal of point clouds is mainly to prepare 
for point clouds clustering in the later stage. The visual 
comparison of a point cloud before and after ground 
removal is shown in Fig. 4.

3.4 DPPDM generation
The panoramic depth map transformed from the 3D point 
cloud is less visual than the RGB image, which is not con-
ducive to object detection. By clustering, the same cluster 
is represented by one color, which highlights the detection 
object. However, the clustering based on depth map is not 
perfect. Therefore, this study runs clustering based on the 
3D point cloud after ground removal.

Algorithm 2 Image enhancement of panoramic depth map

Result: I_out - depth image after interpretation
1 Initialization:
2 I_in - original depth image
3 sigma - parameter for bilateral filter
4 filter_size - size for neighbour consideration
5 Main loop:
6 I_out = I_in;
7 for r = 0 : I_in.rows do:
8 for c = 0 : I_in.cols do:
9  if (I_in[r][c] == 0) do:
10 p1 = linear_interpolation (I_in[r][c], I_in.row(r));
11 p2 = linear_interpolation (I_in[r][c], I_in.col(c));
12 I_out.[r][c] = ( p1 + p2 ) / 2;
13 end
14 end
15 end
16 I_out = bilateral_filter (I_out, sigma, filter_size);
17 return I_out

(a)

(b) (c)

Fig. 4 Ground removal of a 3D point cloud. (a) Camera view of the 
frame corresponding to the point cloud. (b) Visualization of the point 
cloud with ground marked blue. (c) Visualization of the point cloud 

after ground removal

Algorithm 3 Ground removal of point cloud

Result: P_ground - point cloud with ground points
              P_noground - point cloud without ground points
1 Initialization:
2 P_in - original point cloud
3 N_ground - initial number of ground points
4 Thpoint - threshold for ground removal
5 Main loop:
6 sort (P, with_z_value);
7 P_ground = getLastPoints (P, N_ground);
8 [∑, μ] = computeMeanAndCovarianceMatrix (P_ground);
9 n = svd.matrixU (∑).col (2);
10 k = -n.transpose * μ.head <3> (0,0);
11 Thpoint = 0.5 - k;
12 point_matrix = Matrix (P_in.size, 3);
13 point_matrix << P_in;
14 d = point_matrix * n;
15 for r = 0 : d.rows do:
16  if d[r] < Thpoint do:
17 P_ground.push(P_in[r]);
18 else
19 P_noground.push(P_in[r]);
20 end
21 end
22 return P_ground, P_noground
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As shown in Algorithm 4, the original point cloud is clas-
sified according to the position of the 3D-LiDAR scan line 
where the point is located. The first point of each scan line 
is a new cluster and is assigned to a new label. When the 
distance between the latter point and the previous point is 
less than the set threshold Thcluster , the two points are con-
sidered to be the same cluster; otherwise, the latter point 
represents a new cluster and is assigned a different label. 
In particular, the scanning range of a scan line is a circle. 
If the distance between the last point and the first point 
in the scan line is less than the threshold Thcluster , the two 
clusters are considered to be the same one and assigned 
to the same label by updating. After the above clustering 
is completed with the point cloud of 64 scan lines, all clus-
ters shall be updated. The distance between points on the 
same position on two adjacent scan lines should be calcu-
lated. Therefore, if the distance is less than the threshold 
Thcluster , the two clusters are updated to the same one.

In order to improve the visualization of the detection 
object, the clustered point cloud should be filtered. By cal-
culating the center position and scale of the cluster, the fil-
tering conditions are set to remove objects that are farther 
away from the 3D-LiDAR and that have a large difference 
in geometry from the pedestrian. Two kinds of clusters are 
filtered in two corresponding steps:

1. the clusters too far away from the sensor, for exam-
ple more than 50 m, have no detection significance 
in the actual and are filtered; and

2. the clusters significantly different from the size of 
the pedestrian are filtered.

For example, the clusters with a vertical center greater 
than 1.5 m or less than 0.5 m, and the clusters with an 
arbitrary size greater than 3 m or less than 0.3 m in the 
horizontal direction, are regarded as significantly different 
from the size of the pedestrian. In fact, the specific param-
eters are debugged according to the testing environment 
and requirements.

The filtered point cloud is projected onto the enhanced 
panoramic depth map to obtain the Double Projected 
Panoramic Depth Map (DPPDM), which is shown in Fig. 5.

3.5 Image join
The initial 3D point cloud data is from the open source 
dataset KITTI, which is collected by Velodyne HDL-64E 
LiDAR. The DPPDM can be represented by 3-dimentional 
tensors of size H × W × 3. The first two dimensions encode 
spatial position, where H and W are the image height and 
width, respectively. Because the Velodyne HDL-64E 

Algorithm 4 Object clustering of point cloud without ground points

Result: clusters - all clusters
1 Initialization:
2 P_noground - point cloud without ground points
3 N - total scans of the Lidar sensor
4 Thcluster - threshold for two points become a cluster in same scan
5 Thscan - threshold for two points become

a cluster between two neighbour scans
6 Main loop:
7 scans = sort_pointcloud_with_scans(P_noground);
8 k = 0;
9 for s = 0 : N do:
10 clusters = label_clusters (s, k);
11 clusters = update_labels (s);
12 end
13 clusters = filter_clusters (clusters);
14 return clusters
15 function sort_pointcloud_with_scans (P_noground):
16 for p in P_noground do:
17 scans[p.ring].push (p);
18 end
19 return scans
20 function label_clusters (s, k):
21 scans[s][0].label = k;
22 clusters[k].push (scans[s][0]);
23 for i = 0 : (sacans.size – 2) do:
24 pi = scans[s][i];
25 pj = scans[s][i+1];
26  if distance ( pi , pj ) < Thcluster do:
27 scans[s][i+1].label = scans[s][i].label;
28 else do:
29 k = k + 1;
30 scans[s][i+1].label = k;
31 end
32 clusters[k].push (scans[s][i+1]);
33 end
34 n = sacans[s].size;
35 if distance (scans[s][0], scans[s][n-1]) < Thcluster do:

36 merge_labels(scans[s][0].label, scans[s][n-1].label, 
clusters);

37 end
38 return clusters
39 function merge_clusters (l1 , l2 , clusters):
40 for c in clusters[ l2 ] do:
41 c.label = l1 ;
42 clusters[ l1 ].push (c);
43 end
44 clusters[ l2 ].clear ();
45 return clusters
46 function update_labels (s, clusters):
47 for i = 0 : (scans[s].size-1) do:
48 pi = scans[s][i];
49 for j = (s – 1) : 0 do:
50 pj = scans[j][i];
51  if distance ( pi , pj ) < Thscan do:
52 merge_labels (pi .label, pj .label, clusters);
53 pi = pj ;
54 end
55 end
56 end
57 return clusters



280|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

LiDAR has 64 channels in the vertical direction, H = 64. 
In this paper, the panoramic depth map is divided into 
870 grids, so W = 870. As shown in Algorithm 5, five iden-
tical, consecutive, or random DPPDMs are joined into one 
image to generate a LDPPDM with a size of 320 ×870 × 3. 
The reasons for image join are as follows:

1. more training data can be obtained;
2. the input image is not only applicable to the pro-

posed CNN, but also applicable to Faster-RCNN [7] 
and PVANET [9], so as to facilitate the comparison 
of accuracy between different algorithms; and

3. the trained model can directly test DPPDM. 
The LDPPDM is shown in Fig. 6.

3.6 Dataset establishment
The LDPPDM with a size of 320 × 870 × 3 is input of 
the improved PVANET. After transforming 3420 3D point 
clouds in KITTI dataset, the corresponding DPPDMs are 
obtained. Five pieces of identical, consecutive, or random 
DPPDMs are jointed together, which enhance the data. 
This jointed method can ensure the dataset is expanded 
or reduced in various forms as required. A new dataset is 
built and is split into a training set with 1644 frames and 
a validation set with 408 frames.

3.7 Network structure
PVANET has 25 anchors. The size of the anchor is deter-
mined by the basic size 16, 5 different scales (3, 6, 9, 16, 
32) and 5 different ratios (0.5, 0.667, 1.0, 1.5, 2.0). In order 
to improve the detection accuracy, this study sets the scale, 
ratio and anchor number more suitable for the object in the 
new dataset by analyzing the size of the object boxes. 
The boxes of 25714 pedestrians in 2052 maps of the new 
dataset are analyzed. As can be seen from Fig. 7, the boxes 
range in size from 200 to 700, and the aspect ratio of 
the boxes is mainly distributed between 2:1 and 4:1. 
Further analysis of the height and width of object boxes 

(a)

(b)

(c)

Fig. 5 DPPDM in different scenarios

Algorithm 5 Image joint

Result: I_ joint - jointed depth images
1 Initialization
2 I_dp - depth images
3 mode - joint mode for SAME / CONTINUE / RANDOM
4 Main loop:
5  if mode == SAME do:
6 n = I_dp.size;
7 for i = 0 : n do:
8 for k = 1 : 5 do:
9 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[i] (0, rows);
10 end
11 end
12 else if mode == CONTINUE do:
13 n = I_dp.size / 5;
14 for I = 0 : n do:
15 for k = 1 : 5 do:
16 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[5*i+k] (0, rows);
17 end
18 end
19 else if mode == RANDOM do:
20 n = I_dp.size;
21 for I = 0 : n do:
22 for k = 1 : 5 do:
23 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[random (n)] (0, rows);
24 end
25 end
26 end
27 return I_ joint;

(a)

(b)

(c)

Fig. 6 LDPPDM with different jointed methods. 
(a) Jointed by 5 identical DPPDMs. (b) Jointed by 5 
consecutive DPPDMs. (c) Jointed by 5 random DPPDMs.
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shows that the height is mainly distributed between 20 and 
50, while the width is mainly distributed between 10 and 
20. Therefore, in Fig. 7, the size of object boxes in the data-
set changes little, and the average size of objects is small, 
which provides the basis for changing the scale and ratio 
to reduce the size and number of the anchor. Through anal-
ysis, the scale is set as (1, 2, 3, 5), and the ratio is set 
as (0.333, 0.5, 1, 2, 3, 4).

Learning rate is an important parameter in deep learn-
ing, which determines whether the objective function can 
converge to a local minimum and when it converges to a 
minimum. Since the learning rate is the weight of the nega-
tive gradient, the accuracy of the small object detection can 
also be increased by adjusting the learning rate. PVANET 
applies the learning rate strategy Plateau [31], which adjusts 
the learning rate by monitoring the change of loss value. 
However, the proportion of pedestrians in the LDPPDM is 
too small, which results in a large negative sample space 
and a slow convergence rate when training the model. 
When PVANET uses the  strategy Plateau [31] to train 
the model, the learning rate remains unchanged at the ini-
tial learning rate of 0.001. Therefore, the original learn-
ing rate strategy is not applicable to the new dataset, and 
the learning rate strategy needs to be changed. According 
to [32], to find the adaptive batch size and initial learning 
rate, the batch size is set to 32, 64, 128, 256, 512 and the 
initial learning rate to 0.001 and 0.01 × batch_size / 256, 
respectively. Fig. 8 shows the change of AP with different 
batch size and initial learning rate. It can be seen that when 
the batch size is 128, the initial learning rate of 0.005 can 
achieve the best detection result.

The CNN proposed in this paper is improved 
from PVANET, and the network structure of the proposed 
CNN is shown in Fig. 9. The proposed CNN is a lightweight 
feature extraction network structure for object detection, 
so it achieves real-time object detection performance without 
losing accuracy. The upper part of Fig. 9 shows the feature 
extraction network, from which feature maps are generated 
through C.ReLU [33], Inception [34], and HyperNet [35]. 
Meanwhile, batch normalization [36] and residual connec-
tions [37] optimize the performance of the model. By opti-
mizing the output node, C.ReLU [33] reduces the number 
of output channels, and achieves the weight reduction of 
network structure, which leads to speed-up of the training 
without losing accuracy. Due to the convolution combi-
nation of multiple receptive fields, Inception [34] can cap-
ture both small objects and large objects in the input image. 
In order to detect small objects in the new dataset, 1 × 1 

Fig. 7 Box information of pedestrians in new dataset

Fig. 8 AP changes with different batch size and initial learning rate
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convolution achieves the purpose of improving the detection 
accuracy of small objects by slowing down the growth of 
perception fields of some output features. HyperNet [35] col-
lects 1/8, 1/16 and 1/32 of the feature maps in conv3 for fea-
ture association, which increases multi-scale information 
in the final feature map and realizes effective detection of 
multi-scale objects. The structure of the final RPN network 
is shown in the lower part of Fig. 9.

4 Experiment
4.1 Evaluation metrics
Average Precision (AP) and Recall are used as the 
main evaluation indexes to measure the performance of 
the model. AP and Recall are defined as follows:

Precision
TP

TP FP
=

+
 

Recall
TP

TP FN
=

+
 

AP P R dR= ( )∫
0

1
 

where TP (True Positive) refers to the correct classifica-
tion of positive cases as positive cases, FN (False Negative) 
refers to the correct classification of positive cases as nega-
tive cases, TN (True Negative) refers to the correct classifi-
cation of negative cases as negative cases, FP (False Positive) 
refers to the correct classification of negative cases as posi-
tive cases, and P(R) refers to the corresponding relationship 
between the two represented by the Precision-Recall curves.

4.2 Experimental setup
The new dataset is transformed from KITTI dataset [8], 
which consists of a training set with 1644 frames and 
a validation set with 408 frames. Since the LDPPDM is 
jointed by 5 identical, consecutive, or random DPPDMs, 
there is no temporal correlation between them.

This study mainly compares the proposed CNN 
with Faster-RCNN and PVANET for pedestrian detec-
tion on the new dataset, and the AP, Recall (R), Frames 
Per Second (FPS) are used to evaluate the comprehen-
sive performance of these models. It should be noted 
that the VGG16 [38] network is used for Faster-RCNN. 
In order to highlight the innovation of the proposed data-
set obtained by Clustering and Double Projection (CDP) 
based on 3D point cloud in object detection, the study 
compares our model with the model trained without CDP.

4.3 Experimental results
Performance comparison of several algorithms is summarized 
in Table 1, which shows our AP is higher than PVANET and 
Faster-RCNN, both on the dataset with CDP and the dataset 

Intput Image
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Fig. 9 Network structure of proposed CNN

Table 1 Detection performance of various algorithms

Method AP/% R/% FPS

Ours(w/ CDP) 0.7844 0.4785 3.33

Ours(w/o CDP) 0.7608 0.5276 3.45

PVANET(w/ CDP) 0.7563 0.5219 3.21

PVANET(w/o CDP) 0.7382 0.4747 3.17

Faster-RCNN(w/ CDP) 0.3856 0.3261 3.80

Faster-RCNN(w/o CDP) 0.3142 0.3074 3.88
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without CDP. The RPN feature of Faster-RCNN [7] is only 
obtained from the last convolutional layer. From [39], the RPN 
feature of Faster-RCNN [7] is not conducive to the detection of 
small objects, which results in the AP of Faster-RCNN [7] being 
significantly smaller than PVANET. As mentioned above, the 
proposed algorithm setting reasonable anchors and initial learn-
ing rate, and these improvements together boosted the accuracy 
by 2.2 % and 2.8 % in pedestrian detection both on the dataset 
with CDP and the dataset without CDP. In addition, the objects 
of the dataset with CDP are more obvious. Therefore, as shown 
in Table 1, models trained on the dataset with CDP perform bet-
ter than that trained on the dataset without CDP.

On a ZOTAC GTX 1070 GPU, our model can process 
3.33 pictures per second. Because the LDPPDM in the val-
idation set is composed of 5 DPPDMs, the actual process-
ing speed of a frame of DPPDM is faster, which is condu-
cive to the actual operation of automatic driving.

Fig. 10 (a) illustrates the proposed algorithm can detect 
the pedestrians within the camera view that are not easily 
detected due to the influence of illumination. Fig. 10 (b) 
illustrates that the proposed algorithm can detect pedes-
trians outside the camera view, which is highly desirable 
for autonomous driving applications. Figs. 10 (c) and (d) 
illustrate the model trained on the dataset with CDP can 
detect the objects that cannot be detected by the model 
trained on the dataset without CDP.

5 Conclusions
An effective object detection algorithm is proposed in this 
paper for pedestrian detection based on 3D LiDAR data. 
The pipeline of the algorithm:

1. transforms 3D LiDAR data to 2D image to ensure 
detection accuracy is not affected by illumination 
variations;

2. builds a new dataset so that pedestrians outside 
the camera's field of view can be accurately detected, 
which improves the safety of autonomous driving;

3. uses clustering and filtering to make pedestrians 
in the dataset more prominent, so that the detection 
object is separated from the background; and

4. proposes a Convolutional Neural Network based 
on PVANET, which increases the accuracy in pedes-
trian detection.

The proposed algorithm has been successfully tested 
in our dataset and its performance has been verified. 
The proposed algorithm achieves high accuracy and 
robustness of pedestrian detection, which has been sup-
ported by the experimental evaluation and is more suitable 

for autonomous driving. In the future, the proposed algo-
rithm can be improved to apply to the detection of multiple 
objects in more scenarios.
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Fig. 10 Detection advantages of the proposed algorithm. 
(a) Not affected by light. (b) Not limited to the camera view. 

(c) and (d) Higher detection accuracy.
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