
274|https://doi.org/10.3311/PPee.14960
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 64(3), pp. 274–285, 2020

Cite this article as: Chen, G., Mao, Z., Yi, H., Li, X., Bai, B., Liu, M., Zhou, H. "Pedestrian Detection Based on Panoramic Depth Map Transformed from
3D-LiDAR Data", Periodica Polytechnica Electrical Engineering and Computer Science, 64(3), pp. 274–285, 2020. https://doi.org/10.3311/PPee.14960

Pedestrian Detection Based on Panoramic Depth Map
Transformed from 3D-LiDAR Data

Guoqiang Chen1*, Zhuangzhuang Mao1, Huailong Yi1, Xiaofeng Li1, Bingxin Bai1, Mengchao Liu1,
Hongpeng Zhou1

1 School of Mechanical and Power Engineering, Henan Polytechnic University, 454003 Jiaozuo, Henan, China
* Corresponding author, e-mail: chengq@hpu.edu.cn

Received: 11 September 2019, Accepted: 17 December 2019, Published online: 23 April 2020

Abstract

Object detection is a crucial task of autonomous driving. This paper addresses an effective algorithm for pedestrian detection of

the panoramic depth map transformed from the 3D-LiDAR data. Firstly, the 3D point clouds are transformed into panoramic depth

maps, and then the panoramic depth maps are enhanced. Secondly, the grounds of the 3D point clouds are removed. The remaining

point clouds are clustered, filtered and projected onto the previously generated panoramic depth maps, and new panoramic depth

maps are obtained. Finally, the new panoramic depth maps are jointed to generate depth maps with different sizes, which are used

as input of the improved PVANET for pedestrian detection. The 2D image of the panoramic depth map applied to the proposed algorithm

is transformed from 3D point cloud, effectively containing the panorama of the sensor, and is more suitable for the environment

perception of autonomous driving. Compared with the detection algorithm based on RGB images, the proposed algorithm cannot be

affected by light, and can maintain the normal average precision of pedestrian detection at night. In order to increase the robustness

of detecting small objects like pedestrians, the network structure based on the original PVANET is modified in this paper. A new dataset

is built by processing the 3D-LiDAR data and the model trained on the new dataset perform well. The experimental results show

that the proposed algorithm achieves high accuracy and robustness in pedestrian detection under different illumination conditions.

Furthermore, when trained on the new dataset, the model exhibits average precision improvements of 2.8–5.1 % over the original

PVANET, making it more suitable for autonomous driving applications.

Keywords

3D-LiDAR data, panoramic depth map, small object detection, improved PVANET

1 Introduction
Autonomous driving technology and advanced driver
assistance system rely on accurate, real-time and robust
perception of the environment, so it is increasingly
important to detect and identify road objects accurately,
real-time and robustly. Currently, the 3D-LiDAR scanner
and the high-resolution camera are the main sensors that
autonomous vehicles rely on for object detection. Generally
speaking, the 3D-LiDAR scanner can detect vehicles,
pedestrians, bicycles and other objects, while the high-res-
olution camera can detect a wide range of objects, such as
traffic signs and license plates. The data acquired by the
3D-LiDAR scanner is informative and not easily affected
by light, so the panoramic depth map transformed from it
can still correctly represent the environment.

It is very popular to use Convolutional Neural Networks
(CNNs) to perform object detection on RGB images.

However, the object detection pipeline for autonomous
driving based on RGB images is limited by illumination,
and these pipelines cannot achieve ideal detection accu-
racy at night. Moreover, most image-based or LiDAR-
based 3D object detection pipelines are limited to the
front view of the sensor [1–4] and cannot detect moving
objects behind. Therefore, this paper proposes an efficient
and robust detection algorithm that can detect pedestri-
ans around the sensor and is unaffected by illumination.
The classic single-stage detection pipelines like YOLO [5],
SSD [6] and the two-stage detection pipelines like Faster-
RCNN [7] all detect large objects in RGB images, so these
detection pipelines are not ideal for small object detec-
tion in RGB images. The proposed algorithm builds a new
dataset for objects detection based on the 3D point cloud of
KITTI [8]. Pedestrians, bicycles and even vehicles in the

https://doi.org/10.3311/PPee.14960
https://doi.org/10.3311/PPee.14960
mailto:chengq%40hpu.edu.cn?subject=

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |275

dataset become small objects due to the limitation of input
tensor height. This paper adopts several improvements
to PVANET [9], including optimizing Region Proposal
Network (RPN) and learning rate.

The proposed algorithm is mainly divided into the
following steps:

1. transforming 3D point clouds acquired by 3D-LiDAR
into panoramic depth maps and enhancing the pan-
oramic depth maps;

2. removing the ground, clustering and filtering from
3D point clouds, then projecting the remaining point
clouds onto the panoramic depth maps to generate the
Double Projection Panoramic Depth Map (DPPDM);

3. jointing several random, continuous, or identi-
cal DPPDMs to generate the Large-scale Double
Projection Panoramic Depth Map (LDPPDM); and

4. using these LDPPDMs to build a new dataset, then
training the new dataset by the CNN proposed in this
paper to detect pedestrians.

The contributions of this paper are threefold:
1. This paper proposes a Clustering and Double

Projection method to highlight the detection objects,
and then builds a dataset composed of LDPPDMs.

2. This paper improves the model structure of PVANET
with RPN and learning rate to increase its robustness
to small objects, which leads to significant accuracy
improvements of 2.8 % to 5.1 % for pedestrians.

3. This paper proposes an algorithm that can accu-
rately detect pedestrians affected by illumination
variations, and detect pedestrians outside the cam-
era view but located around the LiDAR scanner.

2 Related work
2.1 Main object detection methods
At present, the modalities of object detection for autonomous
driving are mainly classified into three types, which are
based on cameras, 3D-LiDARS, and the fusion of the two.

The object detection method based on images obtained
by the camera is relatively common. CNNs are mainly
applied to 2D object detection [1, 7] and obstacle segmen-
tation [2] in RGB images. The rapid progress on stereo and
monocular depth estimation suggests that images could be
used to 3D object detection. Wang et al. [10] got corre-
sponding depth maps from monocular or stereo images,
and then combined original images with the depth infor-
mation to obtain the pseudo-LiDAR, which replaced
the 3D-LiDAR for object detection. Ma et al. [11] used

monocular depth estimation models and camera param-
eters to transform images into 3D point clouds, and then
got the 3D box through 2D detection and RGB informa-
tion. Szemenyei et al. [12] used the original shape image
to arrange virtual objects in real-world scenes, which
improved the quality of the arrangement.

Because the 3D point clouds obtained by 3D-LiDAR
have precise 3D coordinates, CNNs based on LiDAR data
for 3D object detection have been proposed. VoxelNet [13],
LMNet [14], RT3D [15] overcame the shortcomings of tra-
ditional 3D CNNs [16, 17] in learning local features of
different sizes. BirdNet [18] and PIXOR [19] projected 3D
point clouds onto 3-channel BEV maps or 2-channel BEV
maps, and maintained the spatial structure of the object
through simplifying the network structure and improving
the real-time performance of object detection. In addition,
SqueezeSeg [3] and SqueezeSegV2 [4] segmented road
objects based on 3D point clouds.

RGB-D data obtained by cameras and LiDARs have
rich spatial information, and it is very popular to use
CNNs for object detection of RGB-D data at present.
Frustum PointNet [20] first used RGB images to find 2D
region proposal of detection objects, and then located 3D
bounding boxes of objects with the depth map generated
by 3D LiDAR data in corresponding region. AVOD [21]
achieved object detection in 3D space by integrating fea-
tures extracted from RGB images and theirs correspond-
ing bird's eye view maps in 3D space. PointFusion [22]
extracted the feature of input RGB images and corre-
sponding 3D point clouds with PointNet++ [23] and
PointNet [24], and then obtained the 3D bounding boxes
of objects in 2D images through the feature.

2.2 Small object detection methods
YOLO [5], SSD [6] and Faster-RCNN [7] are mainly used
for object detection in general datasets similar to PASCAL
VOC [25], whose object sizes occupy a large proportion
in images. Most datasets contain images of different sizes,
and the size of landscape images is about 500 × 375 while
the size of portrait images is about 375 × 500. However,
in some cases, the object is not easily detected because of
its small size and proportion in the image. Consequently,
some detection methods for small objects have emerged.
With SSD [6] as the main framework and ResNet-50 as the
basic network, ALFNet [26] generated multi-scale feature
maps to detect pedestrians. DetNet [27] was generated
by improving the basic framework of ResNet50, which
increased the size of the feature map and has an obvious

276|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

effect on small object detection. The low-level and high-
level features were simultaneously used for multi-scale
object detection by improving Faster-RCNN [7], which
improved the accuracy of small object detection in [28].
Pedestrian detection pipeline based on candidate regions
and the Parallel Convolutional Neural Network (PCNN)
was proposed in [29]. When Xu et al. [29] used CNN
for feature extraction, the shallow network is added
to form PCNN and extract feature output, which improved
the detection accuracy of small objects.

3 Method description
The architecture of the proposed algorithm is presented
in Fig. 1. The pipeline comprises two main stages:

1. transforming the 3D LiDAR data into a 2D dataset; and
2. using the proposed Convolutional Neural Network

to detect pedestrians in the dataset.

3.1 Point cloud transformation
In the algorithm, the first step of making a new dataset is
to transform the 3D-LiDAR data into panoramic depth
maps. The number of points in each point cloud in the KITTI
dataset is about 120,000. In order to improve the efficiency
of transformation, the distance values of multiple similar
point clouds in the horizontal direction are replaced by one
pixel. As show in Fig. 2, a 3D point can be turned into a
range value in a pixel using the image geometry.

According to the spherical coordinate system projec-
tion model, the coordinate value of pixels in the generated
panoramic depth maps are determined by Eq. (1):
∆

∆

φ π

θ π

θ

φ

=

= ° °()
= ()
= + +

= (

2

26 8 180

2 2 2

n
n

y x

d x y z
z d

c

r. /

arctan

arcsin))
= []
= []

c

r

φ φ

θ θ

∆

∆

 (1)

where (x, y, z)T denotes a 3D point, as shown by pi in Fig. 2;
nc and nr denote the number of columns and rows in the
panoramic depth map, respectively; 26.8° is the vertical
view of Velodyne HDL-64E; Δϕ and Δθ are the average
horizontal and vertical angle resolution between consecu-
tive beam emitters, respectively; d is the distance between
the point and 3D-LiDAR, as show in Fig. 2; θ and ϕ denote
the azimuth and elevation angle of the point, as show
in Fig. 2; c and r represent the position of the 3D point

projected onto the panoramic depth map. Algorithm 1
summarizes the procedure of obtaining a panoramic depth
map from a 3D point cloud.

In the approach outlined in Fig. 2, the Euclidean dis-
tance between the point and 3D-LiDAR is stored as the
pixel value of panoramic depth maps. In the process of 3D
point cloud transformation, some coordinate values may be

Fig. 1 Pedestrian detection algorithm based on 3D-LiDAR

Fig. 2 Image geometric relationship between a 3D point and a range
value in a pixel

Algorithm 1 Point cloud transformation to panoramic depth map

Result: I - depth image
1 Initialization
2 P - input point cloud
3 Main loop:
4 delta_horizon = 2 * pi / I.cols;
5 delta_vertical = 26.8 / 180 * pi / I.rows;
6 N = P.size;
7 for i = 0 : (N-1) do
8 angle_cols = atan2 (P[i].y, P[i].x);
9 c = round (angle_cols / delta_horizon);
10 distance = sqrt (P[i].x * P[i].x + P[i].y * P[i].y);
11 angle_rows = atan2 (P[i].z, distance);
12 r = round (angle_rows / delta_vertical);
13 I[r][c] = sqrt (P[i].x * P[i].x + P[i].y * P[i].y + P[i].z * P[i].z);
14 end
15 return I;

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |277

lost, but the acquisition of main objects (vehicles, pedestri-
ans, etc.) is not affected in the dataset made up of panoramic
depth maps. Neighbors in the panoramic depth map implic-
itly define neighborhood relations between the 3D points.
As show in Fig. 2, pi1 , pi2 , pi3 , and pi4 are the neighborhood
of pi ; di,i1 , di,i2 , di,i3 and di,i4 represents the distance between
pi1 , pi2 , pi3 , pi4 and pi , respectively; and their neighborhood
relations are also shown in the panoramic depth map.

The panoramic depth map transformed from the
3D-LiDAR data can be represented by 2D tensors
with size 64 × 870, where 64 and 870 are the image height
and width, respectively. Fig. 3 (a) is the visualization of
a 3D point cloud acquired by 3D-LiDAR, and Fig. 3 (b)
is the camera view of the frame corresponding to the
point cloud. The original panoramic depth map trans-
formed from the 3D point cloud is shown in Fig. 3 (c), and
Fig. 3 (d) is the HSV visualization.

3.2 Image enhancement
According to Fig. 3 (d), there are many gaps in the original
panoramic depth map, which indicates that the pixel value
here is abnormal. The measured distance is easily affected
by noise, which may lead the pixel value of the panoramic
depth map to be abnormal. In addition, when the point
cloud is far away from 3D-LiDAR, the pixel may not con-
tain valid measurement at all. From the above, the pan-
oramic depth map should be enhanced.

As shown in Algorithm 2, firstly, the missing pixels
in the panoramic depth map should be interpolated. It can
be seen from Fig. 3 (d) the original panoramic depth map
is poor in visualization due to the lack of pixels. The miss-
ing pixels at gaps will affect the feature extraction and
object detection of the panoramic depth map, so it is nec-
essary to interpolate gaps. Interpolation fills gaps first hor-
izontally then vertically in a linear manner, which calcu-
lates the pixel value p1 and p2 , respectively. The average
value of p1 and p2 is taken as the final pixel value.

Secondly, the original panoramic depth map is inter-
fered by noise, so the bilateral filter is used to smooth
the distance value, which will reduce noise and improve
image quality. Combined with the spatial weight and sim-
ilar weight, the bilateral filter, which is based on the over-
all consideration of spatial distance and similarity degree,
can be described as follows in Eq. (2):

h x k x f c x s f f x

k x c x s f

() = () () () () ()()

() = () (

−

−∞

∞

−∞

∞

∫∫1 ξ ξ ξ ξ

ξ ξ

, ,

,

d

)) ()()

() ()() =

−∞

∞

−∞

∞

−
() ()()

∫∫ ,

,

,

f x

s f f x
f f x

d

e

ξ

ξ
σ ξ

στ

1

2

22

1

2

σ ξ σ ξ ξ

ξ
ξ
σ

f f x f f x f f x

c x
d x

d

() ()() = − ()() = − ()

() =
−

()

, () ()

,

,

e

() = − = −

2

d dξ ξ ξ, ()x x x

 (2)

where k(x) is the weight of bilateral filter h(x); s(f(ξ), f(x))
and c(ξ, x) are spatial weight and similar weight, respec-
tively; σ(ξ, x) and d(ξ, x) are radiation distance and
Euclidean distance, respectively.

After the image is enhanced, as shown in Fig. 3 (f),
the gaps are filled, and the objects are more obvious.
The enhancement of the initial panoramic depth map
not only can optimize its visualization, but also improve
the accuracy of object detection in the later stage.

Fig. 3 Transformation of a 3D point cloud. (a) Visualization of the
3D point cloud. (b) Camera view of the frame corresponding to the
point cloud. (c) Original panoramic depth map transformed from the
3D point cloud. (d) HSV visualization of the original panoramic depth
map. (e) Enlarged part of the area corresponds to the view shown in (b).

(f) Result of image enhancement.

278|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

3.3 Ground removal
This study uses the improved Ground Plane Fitting (GPF)
algorithm [30] for fast ground removal. The advantage of
this algorithm is that it is suitable for a variety of auton-
omous driving scenarios. According to Algorithm 3,
the initial points are sorted in ascending order of height
values. A set of lowest points is used to estimate the initial
plane model of the ground. The ground model parameters
are calculated by Eq. (3):

ax by cz k

n a b c

p x y z

T

T

+ + + =

= []
= []

0

 (3)

where n is the normal of the ground, p represents 3D point,
and k is the distance from the point to its orthogonal pro-
jection. The parameters ∑ and μ represent the covariance
matrix and mean of the initial ground points, respectively.
The covariance matrix ∑ captures n by its Singular Value
Decomposition (SVD). The threshold Thpoint of the ground
height is obtained by n and μ, and the point whose height
value is lower than Thpoint is considered as ground point.
The distance value k is calculated by the ground model
formula after the acquisition of n. If the distance value is
lower than Thpoint , it is the ground point, otherwise it is
the non-ground point.

The ground removal of point clouds is mainly to prepare
for point clouds clustering in the later stage. The visual
comparison of a point cloud before and after ground
removal is shown in Fig. 4.

3.4 DPPDM generation
The panoramic depth map transformed from the 3D point
cloud is less visual than the RGB image, which is not con-
ducive to object detection. By clustering, the same cluster
is represented by one color, which highlights the detection
object. However, the clustering based on depth map is not
perfect. Therefore, this study runs clustering based on the
3D point cloud after ground removal.

Algorithm 2 Image enhancement of panoramic depth map

Result: I_out - depth image after interpretation
1 Initialization:
2 I_in - original depth image
3 sigma - parameter for bilateral filter
4 filter_size - size for neighbour consideration
5 Main loop:
6 I_out = I_in;
7 for r = 0 : I_in.rows do:
8 for c = 0 : I_in.cols do:
9 if (I_in[r][c] == 0) do:
10 p1 = linear_interpolation (I_in[r][c], I_in.row(r));
11 p2 = linear_interpolation (I_in[r][c], I_in.col(c));
12 I_out.[r][c] = ( p1 + p2 ) / 2;
13 end
14 end
15 end
16 I_out = bilateral_filter (I_out, sigma, filter_size);
17 return I_out

(a)

(b) (c)

Fig. 4 Ground removal of a 3D point cloud. (a) Camera view of the
frame corresponding to the point cloud. (b) Visualization of the point
cloud with ground marked blue. (c) Visualization of the point cloud

after ground removal

Algorithm 3 Ground removal of point cloud

Result: P_ground - point cloud with ground points
  P_noground - point cloud without ground points
1 Initialization:
2 P_in - original point cloud
3 N_ground - initial number of ground points
4 Thpoint - threshold for ground removal
5 Main loop:
6 sort (P, with_z_value);
7 P_ground = getLastPoints (P, N_ground);
8 [∑, μ] = computeMeanAndCovarianceMatrix (P_ground);
9 n = svd.matrixU (∑).col (2);
10 k = -n.transpose * μ.head <3> (0,0);
11 Thpoint = 0.5 - k;
12 point_matrix = Matrix (P_in.size, 3);
13 point_matrix << P_in;
14 d = point_matrix * n;
15 for r = 0 : d.rows do:
16 if d[r] < Thpoint do:
17 P_ground.push(P_in[r]);
18 else
19 P_noground.push(P_in[r]);
20 end
21 end
22 return P_ground, P_noground

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |279

As shown in Algorithm 4, the original point cloud is clas-
sified according to the position of the 3D-LiDAR scan line
where the point is located. The first point of each scan line
is a new cluster and is assigned to a new label. When the
distance between the latter point and the previous point is
less than the set threshold Thcluster , the two points are con-
sidered to be the same cluster; otherwise, the latter point
represents a new cluster and is assigned a different label.
In particular, the scanning range of a scan line is a circle.
If the distance between the last point and the first point
in the scan line is less than the threshold Thcluster , the two
clusters are considered to be the same one and assigned
to the same label by updating. After the above clustering
is completed with the point cloud of 64 scan lines, all clus-
ters shall be updated. The distance between points on the
same position on two adjacent scan lines should be calcu-
lated. Therefore, if the distance is less than the threshold
Thcluster , the two clusters are updated to the same one.

In order to improve the visualization of the detection
object, the clustered point cloud should be filtered. By cal-
culating the center position and scale of the cluster, the fil-
tering conditions are set to remove objects that are farther
away from the 3D-LiDAR and that have a large difference
in geometry from the pedestrian. Two kinds of clusters are
filtered in two corresponding steps:

1. the clusters too far away from the sensor, for exam-
ple more than 50 m, have no detection significance
in the actual and are filtered; and

2. the clusters significantly different from the size of
the pedestrian are filtered.

For example, the clusters with a vertical center greater
than 1.5 m or less than 0.5 m, and the clusters with an
arbitrary size greater than 3 m or less than 0.3 m in the
horizontal direction, are regarded as significantly different
from the size of the pedestrian. In fact, the specific param-
eters are debugged according to the testing environment
and requirements.

The filtered point cloud is projected onto the enhanced
panoramic depth map to obtain the Double Projected
Panoramic Depth Map (DPPDM), which is shown in Fig. 5.

3.5 Image join
The initial 3D point cloud data is from the open source
dataset KITTI, which is collected by Velodyne HDL-64E
LiDAR. The DPPDM can be represented by 3-dimentional
tensors of size H × W × 3. The first two dimensions encode
spatial position, where H and W are the image height and
width, respectively. Because the Velodyne HDL-64E

Algorithm 4 Object clustering of point cloud without ground points

Result: clusters - all clusters
1 Initialization:
2 P_noground - point cloud without ground points
3 N - total scans of the Lidar sensor
4 Thcluster - threshold for two points become a cluster in same scan
5 Thscan - threshold for two points become

a cluster between two neighbour scans
6 Main loop:
7 scans = sort_pointcloud_with_scans(P_noground);
8 k = 0;
9 for s = 0 : N do:
10 clusters = label_clusters (s, k);
11 clusters = update_labels (s);
12 end
13 clusters = filter_clusters (clusters);
14 return clusters
15 function sort_pointcloud_with_scans (P_noground):
16 for p in P_noground do:
17 scans[p.ring].push (p);
18 end
19 return scans
20 function label_clusters (s, k):
21 scans[s][0].label = k;
22 clusters[k].push (scans[s][0]);
23 for i = 0 : (sacans.size – 2) do:
24 pi = scans[s][i];
25 pj = scans[s][i+1];
26 if distance ( pi , pj ) < Thcluster do:
27 scans[s][i+1].label = scans[s][i].label;
28 else do:
29 k = k + 1;
30 scans[s][i+1].label = k;
31 end
32 clusters[k].push (scans[s][i+1]);
33 end
34 n = sacans[s].size;
35 if distance (scans[s][0], scans[s][n-1]) < Thcluster do:

36 merge_labels(scans[s][0].label, scans[s][n-1].label,
clusters);

37 end
38 return clusters
39 function merge_clusters (l1 , l2 , clusters):
40 for c in clusters[ l2 ] do:
41 c.label = l1 ;
42 clusters[ l1 ].push (c);
43 end
44 clusters[ l2 ].clear ();
45 return clusters
46 function update_labels (s, clusters):
47 for i = 0 : (scans[s].size-1) do:
48 pi = scans[s][i];
49 for j = (s – 1) : 0 do:
50 pj = scans[j][i];
51 if distance ( pi , pj ) < Thscan do:
52 merge_labels (pi .label, pj .label, clusters);
53 pi = pj ;
54 end
55 end
56 end
57 return clusters

280|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

LiDAR has 64 channels in the vertical direction, H = 64.
In this paper, the panoramic depth map is divided into
870 grids, so W = 870. As shown in Algorithm 5, five iden-
tical, consecutive, or random DPPDMs are joined into one
image to generate a LDPPDM with a size of 320 ×870 × 3.
The reasons for image join are as follows:

1. more training data can be obtained;
2. the input image is not only applicable to the pro-

posed CNN, but also applicable to Faster-RCNN [7]
and PVANET [9], so as to facilitate the comparison
of accuracy between different algorithms; and

3. the trained model can directly test DPPDM.
The LDPPDM is shown in Fig. 6.

3.6 Dataset establishment
The LDPPDM with a size of 320 × 870 × 3 is input of
the improved PVANET. After transforming 3420 3D point
clouds in KITTI dataset, the corresponding DPPDMs are
obtained. Five pieces of identical, consecutive, or random
DPPDMs are jointed together, which enhance the data.
This jointed method can ensure the dataset is expanded
or reduced in various forms as required. A new dataset is
built and is split into a training set with 1644 frames and
a validation set with 408 frames.

3.7 Network structure
PVANET has 25 anchors. The size of the anchor is deter-
mined by the basic size 16, 5 different scales (3, 6, 9, 16,
32) and 5 different ratios (0.5, 0.667, 1.0, 1.5, 2.0). In order
to improve the detection accuracy, this study sets the scale,
ratio and anchor number more suitable for the object in the
new dataset by analyzing the size of the object boxes.
The boxes of 25714 pedestrians in 2052 maps of the new
dataset are analyzed. As can be seen from Fig. 7, the boxes
range in size from 200 to 700, and the aspect ratio of
the boxes is mainly distributed between 2:1 and 4:1.
Further analysis of the height and width of object boxes

(a)

(b)

(c)

Fig. 5 DPPDM in different scenarios

Algorithm 5 Image joint

Result: I_ joint - jointed depth images
1 Initialization
2 I_dp - depth images
3 mode - joint mode for SAME / CONTINUE / RANDOM
4 Main loop:
5 if mode == SAME do:
6 n = I_dp.size;
7 for i = 0 : n do:
8 for k = 1 : 5 do:
9 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[i] (0, rows);
10 end
11 end
12 else if mode == CONTINUE do:
13 n = I_dp.size / 5;
14 for I = 0 : n do:
15 for k = 1 : 5 do:
16 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[5*i+k] (0, rows);
17 end
18 end
19 else if mode == RANDOM do:
20 n = I_dp.size;
21 for I = 0 : n do:
22 for k = 1 : 5 do:
23 I_ joint[i].row ((k-1)*rows, k*rows)

= I_dp[random (n)] (0, rows);
24 end
25 end
26 end
27 return I_ joint;

(a)

(b)

(c)

Fig. 6 LDPPDM with different jointed methods.
(a) Jointed by 5 identical DPPDMs. (b) Jointed by 5
consecutive DPPDMs. (c) Jointed by 5 random DPPDMs.

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |281

shows that the height is mainly distributed between 20 and
50, while the width is mainly distributed between 10 and
20. Therefore, in Fig. 7, the size of object boxes in the data-
set changes little, and the average size of objects is small,
which provides the basis for changing the scale and ratio
to reduce the size and number of the anchor. Through anal-
ysis, the scale is set as (1, 2, 3, 5), and the ratio is set
as (0.333, 0.5, 1, 2, 3, 4).

Learning rate is an important parameter in deep learn-
ing, which determines whether the objective function can
converge to a local minimum and when it converges to a
minimum. Since the learning rate is the weight of the nega-
tive gradient, the accuracy of the small object detection can
also be increased by adjusting the learning rate. PVANET
applies the learning rate strategy Plateau [31], which adjusts
the learning rate by monitoring the change of loss value.
However, the proportion of pedestrians in the LDPPDM is
too small, which results in a large negative sample space
and a slow convergence rate when training the model.
When PVANET uses the strategy Plateau [31] to train
the model, the learning rate remains unchanged at the ini-
tial learning rate of 0.001. Therefore, the original learn-
ing rate strategy is not applicable to the new dataset, and
the learning rate strategy needs to be changed. According
to [32], to find the adaptive batch size and initial learning
rate, the batch size is set to 32, 64, 128, 256, 512 and the
initial learning rate to 0.001 and 0.01 × batch_size / 256,
respectively. Fig. 8 shows the change of AP with different
batch size and initial learning rate. It can be seen that when
the batch size is 128, the initial learning rate of 0.005 can
achieve the best detection result.

The CNN proposed in this paper is improved
from PVANET, and the network structure of the proposed
CNN is shown in Fig. 9. The proposed CNN is a lightweight
feature extraction network structure for object detection,
so it achieves real-time object detection performance without
losing accuracy. The upper part of Fig. 9 shows the feature
extraction network, from which feature maps are generated
through C.ReLU [33], Inception [34], and HyperNet [35].
Meanwhile, batch normalization [36] and residual connec-
tions [37] optimize the performance of the model. By opti-
mizing the output node, C.ReLU [33] reduces the number
of output channels, and achieves the weight reduction of
network structure, which leads to speed-up of the training
without losing accuracy. Due to the convolution combi-
nation of multiple receptive fields, Inception [34] can cap-
ture both small objects and large objects in the input image.
In order to detect small objects in the new dataset, 1 × 1

Fig. 7 Box information of pedestrians in new dataset

Fig. 8 AP changes with different batch size and initial learning rate

282|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

convolution achieves the purpose of improving the detection
accuracy of small objects by slowing down the growth of
perception fields of some output features. HyperNet [35] col-
lects 1/8, 1/16 and 1/32 of the feature maps in conv3 for fea-
ture association, which increases multi-scale information
in the final feature map and realizes effective detection of
multi-scale objects. The structure of the final RPN network
is shown in the lower part of Fig. 9.

4 Experiment
4.1 Evaluation metrics
Average Precision (AP) and Recall are used as the
main evaluation indexes to measure the performance of
the model. AP and Recall are defined as follows:

Precision
TP

TP FP
=

+

Recall
TP

TP FN
=

+

AP P R dR= ()∫
0

1

where TP (True Positive) refers to the correct classifica-
tion of positive cases as positive cases, FN (False Negative)
refers to the correct classification of positive cases as nega-
tive cases, TN (True Negative) refers to the correct classifi-
cation of negative cases as negative cases, FP (False Positive)
refers to the correct classification of negative cases as posi-
tive cases, and P(R) refers to the corresponding relationship
between the two represented by the Precision-Recall curves.

4.2 Experimental setup
The new dataset is transformed from KITTI dataset [8],
which consists of a training set with 1644 frames and
a validation set with 408 frames. Since the LDPPDM is
jointed by 5 identical, consecutive, or random DPPDMs,
there is no temporal correlation between them.

This study mainly compares the proposed CNN
with Faster-RCNN and PVANET for pedestrian detec-
tion on the new dataset, and the AP, Recall (R), Frames
Per Second (FPS) are used to evaluate the comprehen-
sive performance of these models. It should be noted
that the VGG16 [38] network is used for Faster-RCNN.
In order to highlight the innovation of the proposed data-
set obtained by Clustering and Double Projection (CDP)
based on 3D point cloud in object detection, the study
compares our model with the model trained without CDP.

4.3 Experimental results
Performance comparison of several algorithms is summarized
in Table 1, which shows our AP is higher than PVANET and
Faster-RCNN, both on the dataset with CDP and the dataset

Intput Image

HyperNetConv 1~3:C.ReLU+residual Conv 4~5:Inception+Residual

1/4 Scale 1/8 Scale 1/16 Scale 1/32 Scale

RO
I

Po
ol

in
g

Region Proposals
RPN Feature Maps
h/16 x w/16 x128

512-d

120 Scores

.

.

.

.

60
Anchor
 Boxes

Conv Feature Map

Sliding Window

Cls Layer Reg Layer
240 Coordinates

RPN

Fig. 9 Network structure of proposed CNN

Table 1 Detection performance of various algorithms

Method AP/% R/% FPS

Ours(w/ CDP) 0.7844 0.4785 3.33

Ours(w/o CDP) 0.7608 0.5276 3.45

PVANET(w/ CDP) 0.7563 0.5219 3.21

PVANET(w/o CDP) 0.7382 0.4747 3.17

Faster-RCNN(w/ CDP) 0.3856 0.3261 3.80

Faster-RCNN(w/o CDP) 0.3142 0.3074 3.88

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |283

without CDP. The RPN feature of Faster-RCNN [7] is only
obtained from the last convolutional layer. From [39], the RPN
feature of Faster-RCNN [7] is not conducive to the detection of
small objects, which results in the AP of Faster-RCNN [7] being
significantly smaller than PVANET. As mentioned above, the
proposed algorithm setting reasonable anchors and initial learn-
ing rate, and these improvements together boosted the accuracy
by 2.2 % and 2.8 % in pedestrian detection both on the dataset
with CDP and the dataset without CDP. In addition, the objects
of the dataset with CDP are more obvious. Therefore, as shown
in Table 1, models trained on the dataset with CDP perform bet-
ter than that trained on the dataset without CDP.

On a ZOTAC GTX 1070 GPU, our model can process
3.33 pictures per second. Because the LDPPDM in the val-
idation set is composed of 5 DPPDMs, the actual process-
ing speed of a frame of DPPDM is faster, which is condu-
cive to the actual operation of automatic driving.

Fig. 10 (a) illustrates the proposed algorithm can detect
the pedestrians within the camera view that are not easily
detected due to the influence of illumination. Fig. 10 (b)
illustrates that the proposed algorithm can detect pedes-
trians outside the camera view, which is highly desirable
for autonomous driving applications. Figs. 10 (c) and (d)
illustrate the model trained on the dataset with CDP can
detect the objects that cannot be detected by the model
trained on the dataset without CDP.

5 Conclusions
An effective object detection algorithm is proposed in this
paper for pedestrian detection based on 3D LiDAR data.
The pipeline of the algorithm:

1. transforms 3D LiDAR data to 2D image to ensure
detection accuracy is not affected by illumination
variations;

2. builds a new dataset so that pedestrians outside
the camera's field of view can be accurately detected,
which improves the safety of autonomous driving;

3. uses clustering and filtering to make pedestrians
in the dataset more prominent, so that the detection
object is separated from the background; and

4. proposes a Convolutional Neural Network based
on PVANET, which increases the accuracy in pedes-
trian detection.

The proposed algorithm has been successfully tested
in our dataset and its performance has been verified.
The proposed algorithm achieves high accuracy and
robustness of pedestrian detection, which has been sup-
ported by the experimental evaluation and is more suitable

for autonomous driving. In the future, the proposed algo-
rithm can be improved to apply to the detection of multiple
objects in more scenarios.

Acknowledgment
This work is partially supported by the Key
Technology R&D Program of Henan Province of China
(No. 172102310664), the Fundamental Research Funds
for the Universities of Henan Province (No. NSFRF170913)

(a)

(b)

(c)

(d)

Fig. 10 Detection advantages of the proposed algorithm.
(a) Not affected by light. (b) Not limited to the camera view.

(c) and (d) Higher detection accuracy.

284|Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020

References
[1] Girshick, R., Donahue, J., Darrell, T., Malik, J. "Rich Feature

Hierarchies for Accurate Object Detection and Semantic
Segmentation", In: 2014 IEEE Conference Computer Vision and
Pattern Recognition, Columbus, OH, USA, 2014, pp. 580–587.

 https://doi.org/10.1109/CVPR.2014.81
[2] He, K., Gkioxari, G., Dollár, P., Girshick, R. "Mask R-CNN",

In: 2017 IEEE International Conference on Computer Vision
(ICCV), Venice, Italy, 2017, pp. 2980–2988.

 https://doi.org/10.1109/ICCV.2017.322
[3] Wu, B., Wan, A., Yue, X., Keutzer, K. "SqueezeSeg: Convolutional

Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud", In: 2018 IEEE
International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 2018, pp. 1887–1893.

 https://doi.org/10.1109/ICRA.2018.8462926
[4] Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K. "SqueezeSegV2:

Improved Model Structure and Unsupervised Domain Adaptation
for Road-Object Segmentation from a LiDAR Point Cloud",
In: 2019 International Conference on Robotics and Automation
(ICRA), Montreal, Canada, 2019, pp. 4376–4382.

 https://doi.org/10.1109/ICRA.2019.8793495
[5] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. "You Only

Look Once: Unified, Real-Time Object Detection", In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 2016, pp. 779–788.

 https://doi.org/10.1109/CVPR.2016.91
[6] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y.,

Berg, A. C. "SSD: Single Shot MultiBox Detector", In: European
Conference on Computer Vision, Amsterdam, Netherlands,
Springer, Cham, Switzerland, 2016, pp. 21–37.

 https://doi.org/10.1007/978-3-319-46448-0_2
[7] Ren, S., He, K., Girshick, R., Sun, J. "Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks", IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(6),
pp. 1137–1149, 2017.

 https://doi.org/10.1109/TPAMI.2016.2577031
[8] Geiger, A., Lenz, P., Urtasun, R. "Are we ready for autono-

mous driving? The KITTI vision benchmark suite", In: 2012
IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 2012, pp. 3354–3361.

 https://doi.org/10.1109/CVPR.2012.6248074
[9] Kim, K. H., Hong, S., Roh, B., Cheon, Y., Park, M. "PVANET: Deep

but Lightweight Neural Networks for Real-time Object Detection",
Computer Science: Computer Vision and Pattern Recognition
(arXiv:1608.08021), pp. 1–7, 2016. [online] Available at: https://arxiv.
org/abs/1608.08021 [Accessed: 30 September 2016]

[10] Wang, Y., Chao, W. L., Garg, D., Hariharan, B., Campbell, M.,
Weinberger, K. Q. "Pseudo-LiDAR from Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous Driving",
Computer Science: Computer Vision and Pattern Recognition
(arXiv:1812.07179), pp. 1–16, 2019.

 https://doi.org/10.1109/CVPR.2019.00864
[11] Ma, X., Wang, Z., Li, H., Zhang, P., Fan, X., Ouyang, W.

"Accurate Monocular Object Detection via Color-Embedded 3D
Reconstruction for Autonomous Driving", Computer Science:
Computer Vision and Pattern Recognition (arXiv:1903.11444),
pp. 1–11, 2019. [online] Available at: https://arxiv.org/abs/1903.11444
[Accessed: 12 August 2019]

[12] Szemenyei, M., Vajda, F. "3D Object Detection and Scene
Optimization for Tangible Augmented Reality", Periodica
Polytechnica Electrical Engineering and Computer Science, 62(2),
pp. 25–37, 2018.

 https://doi.org/10.3311/PPee.10482
[13] Zhou, Y., Tuzel, O. "VoxelNet: End-to-End Learning for Point

Cloud Based 3D Object Detection", In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 4490–4499.

 https://doi.org/10.1109/CVPR.2018.00472
[14] Minemura, K., Liau, H., Monrroy, A., Kato, S. "LMNet: Real-time

Multiclass Object Detection on CPU Using 3D LiDAR", In: 2018
3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS),
Singapore, Singapore, 2018, pp. 28–34.

 https://doi.org/10.1109/ACIRS.2018.8467245
[15] Zeng, Y., Hu, Y., Liu, S., Ye, J., Han, Y., Li, X., Sun, N. "RT3D:

Real-Time 3-D Vehicle Detection in LiDAR Point Cloud
for Autonomous Driving", IEEE Robotics and Automation Letters,
3(4), pp. 3434–3440, 2018.

 https://doi.org/10.1109/LRA.2018.2852843
[16] Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., Posner, I.

"Vote3Deep: Fast object detection in 3D point clouds using effi-
cient convolutional neural networks", In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore,
Singapore, 2017, pp. 1355–1361.

 https://doi.org/10.1109/ICRA.2017.7989161
[17] Li, B. "3D fully convolutional network for vehicle detection

in point cloud", In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, Canada,
2017, pp. 1513–1518.

 https://doi.org/10.1109/IROS.2017.8205955

and National Natural Science Foundation of China
(No. U1304525). The authors also gratefully acknowledge
the helpful comments and suggestions of the reviewers,
which have improved the presentation.

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICRA.2018.8462926
https://doi.org/10.1109/ICRA.2019.8793495
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2012.6248074
https://arxiv.org/abs/1608.08021
https://arxiv.org/abs/1608.08021
https://doi.org/10.1109/CVPR.2019.00864
https://arxiv.org/abs/1903.11444
https://doi.org/10.3311/PPee.10482
https://doi.org/10.1109/CVPR.2018.00472
https://doi.org/10.1109/ACIRS.2018.8467245
https://doi.org/10.1109/LRA.2018.2852843
https://doi.org/10.1109/ICRA.2017.7989161
https://doi.org/10.1109/IROS.2017.8205955

Chen et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(3), pp. 274–285, 2020 |285

[18] Beltrán, J., Guindel, C., Moreno, F. M., Cruzado, D., García, F.,
De La Escalera, A. "BirdNet: A 3D Object Detection Framework
from LiDAR Information", In: 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
2018, pp. 3517–3523.

 https://doi.org/10.1109/ITSC.2018.8569311
[19] Yang, B., Luo, W., Urtasun, R. "PIXOR: Real-time 3D Object

Detection from Point Clouds", In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 7652–7660.

 https://doi.org/10.1109/CVPR.2018.00798
[20] Qi, C. R., Liu, W., Wu, C., Su, H., Guibas, L. J. "Frustum PointNets

for 3D Object Detection from RGB-D Data", In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 2018, pp. 918–927.

 https://doi.org/10.1109/CVPR.2018.00102
[21] Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S. L. "Joint 3D

Proposal Generation and Object Detection from View Aggregation",
In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 2018, pp. 5750–5757.

 https://doi.org/10.1109/IROS.2018.8594049
[22] Xu, D., Anguelov, D., Jain, A. "PointFusion: Deep Sensor Fusion

for 3D Bounding Box Estimation", In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 244–253.

 https://doi.org/10.1109/CVPR.2018.00033
[23] Qi, C. R., Yi, L., Su, H., and Guibas, L. J. "Pointnet++:

Deep Hierarchical Feature Learning on Point Sets in a Metric
Space", Advances in Neural Information Processing Systems,
pp. 5099–5108, 2017.

[24] Qi, C. R., Su, H., Mo, K., Guibas, L. J. "PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation", In: 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 2017, pp. 77–85.

 https://doi.org/10.1109/CVPR.2017.16
[25] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,

Zisserman, A. "The PASCAL Visual Object Classes (VOC)
Challenge", International Journal of Computer Vision, 88(2),
pp. 303–338, 2010.

 http://doi.org/10.1007/s11263-009-0275-4
[26] Liu, W., Liao, S., Hu, W., Liang, X., Chen, X. "Learning Efficient

Single-Stage Pedestrian Detectors by Asymptotic Localization
Fitting", In: European Conference on Computer Vision (ECCV),
Munich, Germany, 2018, pp. 643–659.

 https://doi.org/10.1007/978-3-030-01264-9_38
[27] Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J. "DetNet:

Design Backbone for Object Detection", In: European Conference
on Computer Vision, Munich, Germany, 2018, pp. 339–354.

 https://doi.org/10.1007/978-3-030-01240-3_21
[28] Huang, J. P., Shi, Y. H., Gao, Y. "面向小目标的多尺度Faster_RCNN

检测算法" (Multi-scale Faster-RCNN algorithm for small object
detection), Journal of Computer Research and Development, 56(2),
pp. 319–327, 2019. (in Chinese)

 https://doi.org/10.7544/issn1000-1239.2019.20170749

[29] Xu, Z., Wang, Y. H. "基于候选区域和并行卷积神经网络的行人检测"
(Pedestrian detection based on candidate regions and paral-
lel convolutional neural network), Computer Engineering and
Applications, pp. 1–12, 2019.

 https://doi.org/10.3778/j.issn.1002-8331.1902-0004
[30] Zermas, D., Izzat, I., Papanikolopoulos, N. "Fast Segmentation of

3D Point Clouds: A Paradigm on LiDAR Data for Autonomous
Vehicle Applications", In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), Marina Bay Sands,
Singapore, 2017, pp. 5067–5073.

 https://doi.org/10.1109/ICRA.2017.7989591
[31] Li, J., Peng, K., Chang, C. C. "An Efficient Object Detection

Algorithm Based on Compressed Networks", Symmetry, 10(7),
Article number: 235, 2018.

 https://doi.org/10.3390/sym10070235
[32] Mishkin, D., Sergievskiy, N., Matas, J. "Systematic evaluation of

convolution neural network advances on the ImageNet", Computer
Vision and Image Understanding, 161, pp. 11–19, 2017.

 https://doi.org/10.1016/j.cviu.2017.05.007
[33] Shang, W. L., Sohn, K., Almeida, D, Lee, H. "Understanding

and improving convolutional neural networks via concatenated
rectified linear units", Computer Science: Machine Learning
(arXiv:1603.05201), pp. 2217–2225, 2016. [online] Available at:
https://arxiv.org/abs/1603.05201 [Accessed: 19 July 2016]

[34] Szegedy, C., Liu, W., Jia, Y. Q., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A. "Going deeper with con-
volutions", In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1–9.

 https://doi.org/10.1109/CVPR.2015.7298594
[35] Kong, T., Yao, A. B., Chen, Y. R., Sun, F. C. "HyperNet: Towards

Accurate Region Proposal Generation and Joint Object Detection",
In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 845–853.

 https://doi.org/10.1109/CVPR.2016.98
[36] Ioffe, S., Szegedy, C. "Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift", Computer
Science: Machine Learning (arXiv:1502.03167), pp. 1–11,
2015. [online] Available at: https://arxiv.org/abs/1502.03167
[Accessed: 2 March 2015]

[37] He, K. M., Zhang, X. Y., Ren, S. Q., Sun, J. "Deep Residual Learning
for Image recognition", In: Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR),
Nevada, USA, 2016, pp. 770–778.

 https://doi.org/10.1109/CVPR.2016.90
[38] Simonyan, K., Zisserman, A. "Very Deep Convolutional Networks

for Large-Scale Image Recognition", Computer Science: Computer
Vision and Pattern Recognition (arXiv:1409.1556), 2014,
pp. 1–14. [online] Available at: https://arxiv.org/abs/1409.1556
[Accessed: 10 April 2015]

[39] Hosang, J., Benenson, R., Dollár, P., Schiele, B. "What Makes
for Effective Detection Proposals?", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(4), pp. 814–830, 2016.

 http://doi.org/10.1109/TPAMI.2015.2465908

https://doi.org/10.1109/ITSC.2018.8569311
https://doi.org/10.1109/CVPR.2018.00798
https://doi.org/10.1109/CVPR.2018.00102
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/CVPR.2018.00033
https://doi.org/10.1109/CVPR.2017.16
http://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-3-030-01264-9_38
https://doi.org/10.1007/978-3-030-01240-3_21
https://doi.org/10.7544/issn1000-1239.2019.20170749
https://doi.org/10.3778/j.issn.1002-8331.1902-0004
https://doi.org/10.1109/ICRA.2017.7989591
https://doi.org/10.3390/sym10070235
https://doi.org/10.1016/j.cviu.2017.05.007
https://arxiv.org/abs/1603.05201
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.98
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1409.1556
http://doi.org/10.1109/TPAMI.2015.2465908

	1 Introduction
	2 Related work
	2.1 Main object detection methods
	2.2 Small object detection methods

	3 Method description
	3.1 Point cloud transformation
	3.2 Image enhancement
	3.3 Ground removal
	3.4 DPPDM generation
	3.5 Image join
	3.6 Dataset establishment
	3.7 Network structure

	4 Experiment
	4.1 Evaluation metrics
	4.2 Experimental setup
	4.3 Experimental results

	5 Conclusions
	Acknowledgment
	References

