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Abstract

In the present study, we attempt to estimate the severity of depression using a Convolutional Neural Network (CNN). The method 

is special because an auto- and cross-correlation structure has been crafted rather than using an actual image for the input of the 

network. The importance to investigate the possibility of this research is that depression has become one of the leading mental 

disorders in the world. With its appearance, it can significantly reduce an individual's quality of life even at an early stage, and in severe 

cases, it may threaten with suicide. It is therefore important that the disorder be recognized as early as possible. Furthermore, it is also 

important to determine the disorder severity of the individual, so that a treatment order can be established. During the examination, 

speech acoustic features were obtained from recordings. Among the features, MFCC coefficients and formant frequencies were used 

based on preliminary studies. From its subsets, correlation structure was created. We applied this quadratic structure to the input of 

a convolutional network. Two models were crafted: single and double input versions. Altogether, the lowest RMSE value (10.797) was 

achieved using the two features, which has a moderate strength correlation of 0.61 (between estimated and original).
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1 Introduction
Depression is one of the most common psychiatric disorder 
affecting more than 264 million people worldwide [1, 2]. 
Its symptoms are wide, which makes it difficult to make 
an accurate diagnosis. The detection rates are low and 
patients are therefore not receiving appropriate treatment.

Exact causes of depression are not yet known however; 
the physiological symptom of depression is most often 
a form of dysfunction of the cortical limbic system [3].

Depending on the severity of the depression, the individual 
may find it difficult to cope with personal and/or social activ-
ities [4]. In addition, worsening of depression may increase 
the risk of suicide [5]. Finally, diagnosing the disease requires 
specialist knowledge, which falls on a small group of doctors. 
Therefore, developing a high-accuracy diagnostic tool to help 
doctors work has a primary focus. This will help the patient 
to be diagnosed earlier and receive adequate treatment.

There is large amount of research works that explore 
the applicability of several biomarkers in the recognition 
of depression. Speech is such a biomarker. It can indicate 
not only depression but also many other illnesses, such as 

Parkinson's disease [6] or dysphonia [7]. Speech provides 
an opportunity to develop effective, non-invasive diagnos-
tic tools that can assist professionals in their work [8, 9].

Automatic detection of depression is a recent area of 
research based on speech production, primarily due to the 
increasing depressed speech databases and the advance-
ment of information technology [10].

A wide range of speech acoustic features is available for 
an objective description of speech production. A subset of 
these are widely used to recognize and estimate the severity 
of depression [11–13]. Descriptive features are generally 
divided into prosodic and spectral sets [14]. The former 
includes pitch, speech rate, jitter and shimmer while the latter 
contains mel-band energy values, MFCCs (mel-frequency 
cepstral coefficients), formants and their bandwidths.

Numerous studies have shown that acoustic features cal-
culated from speech correlate with the severity of depres-
sion. However, it is still an open research question to demon-
strate the effectiveness of acoustic features in separating 
different levels of depression severity as well [15–17].

https://doi.org/10.3311/PPee.15958
https://doi.org/10.3311/PPee.15958
mailto:jenei%40tmit.bme.hu?subject=


228|Jenei and Kiss
Period. Polytech. Elec. Eng. Comp. Sci., 65(3), pp. 227–234, 2021

One of the challenges of AVEC in 2013 was to assess 
depression severity [12] measured by Beck Depression 
Inventory (BDI-II) scale questionnaire. Training and val-
idation sets were provided with 50–50 samples and their 
associated BDI values. Challenge participants had to esti-
mate these BDIs with as little error as possible.

As baseline, support vector machine regression results 
with linear kernel were provided for the test set: 14.12 RMSE 
(Root mean square error) and 10.35 MAE (Mean abso-
lute error). For this, the features of the recordings were 
extracted using basic segmentation. The best results were 
achieved by using 20 seconds long non-overlapping seg-
ments, which were averaged on the full recording.

The winner of the challenge was Williamson et al. [18], 
who achieved 7.42 RMSE and 5.75 MAE as the best result 
on development set (and 0.80 of Pearson correlation). 
A Gaussian Mixture Model was used on a correlation matrix 
containing formants and delta-mel-cepstral coefficients.

In study [19], Lang He and his colleague conducted an 
investigation on AVEC2013 audio recordings. They have 
created their own models and deep convolutional neural 
networks (DCNN) to estimate severity. The best result 
on the development set was obtained with DCNN spec-
trogram model (RMSE = 9.122, MAE = 7.537). Similarly, 
using the test set, DCNN spectral-based model performed 
best (RMSE = 10.456, MAE = 8.483).

Similar correlation structure was used in our research as 
in Williamsons' work. However, while they used the eigen-
values of the structure for regression, the structure itself 
was applied here as an input image to a convolutional neu-
ral network to predict the severity of depression according 
to BDI-II. The advantage of this method is that the machine 
learning process also has the task of properly processing 
the correlation matrix. As a novelty, we were also able to 
test the procedure on speech samples from 91 patients, 
which is considered large among datasets internationally.

In the second Section, the speech database is presented. 
In the third Section, we present the BDI scale, the applied 
low-level features, the method of calculating the correla-
tion matrix and the convolutional neural networks itself, 
as well as the evaluation methods. In the fourth Section, 
the results are detailed. Section 5 summarizes the main 
findings of the research and further plans briefly.

2 Hungarian depression speech database
The speech dataset includes 91 recordings from depressed 
people (DE) and 91 from healthy ones (HC). This is a 
constantly expanding database. Whose recordings were 
collected by the members of the Laboratory of Speech 
Acoustics. Recordings were collected from healthy sub-
jects without any known disease that would affect speech 
production. Depressed patients included in the study had 
not been diagnosed with any other speech-related disorder.

Recordings from depressed patients were collected 
at Psychiatry and Psychotherapy Clinic of Semmelweis 
University. 21 mild, 32 moderate and 38 severe, (overall 91 
depression) cases were included in the severity categories 
defined by BDI-II (Beck Depression Inventory-II) [20] in 
Table 1. 88 % of the depressed subjects (80 cases) can be 
found between 20 and 40 BDI score (moderate or severe 
depression).

The individuals had to read a phonetically rich tale 
("The North Wind and the Sun"), with approximately 
1-minute duration. Recordings were made in a quiet room 
with a clip-on microphone at 44.1 kHz sampling rate.

3 Methods
Fig. 1 shows the process developed in the research. 
Acoustic features were obtained from speech samples, 
from which a 2D auto- and cross-correlation structure was 
constructed. This was given to the convolutional network 
after separated to training and testing sets.

Fig. 1 Examination process elements: speech recordings, extracted acoustic features, correlation structure, CNN models with training and testing cycle.
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3.1 Scales of depression severity
Two scoring systems are the most commonly used to 
estimate the severity of depression. These are the Beck 
Depression Inventory (BDI) and the Hamilton Depression 
Rating Scale (HAM-D).

The BDI is a 21-item self-assessment questionnaire, cre-
ated in 1961 [21]. In 1978 and 1996, it underwent a review 
to form the BDI-II. The questionnaire was translated into 
several languages and it is commonly used in clinical prac-
tice. A shorter version consists of seven elements and is 
available as BDI-FS. In this study, BDI-II scale was used, 
because it was originally recorded by the doctor examining 
the patient. This questionnaire is also faster to complete 
and more common in practical application than HAM-D.

Each item has a score between 0 and 3, summing up to 
maximum 63 on the questionnaire. The severity categories 
for depression on BDI scale are shown in Table 1.

3.2 Extracted speech acoustic characteristics
In advance, sound recordings were normalized to peak 
amplitude. Then, with the help of the Praat [22], the fol-
lowing features were obtained.

MFCC: The MFCC values were calculated as the dis-
crete cosine transform of the 27 mel-band energy values, 
from which the first 14 coefficients were used.

Formant frequency: A broad peak, or local maxi-
mum frequency in the spectrum. In the research, the first 
three-formant frequency values were calculated, hereinaf-
ter referred to as F1, F2, and F3.

The features were extracted in 10 millisecond steps 
with a 50 millisecond-sliding window. The MFCC coeffi-
cients were calculated throughout the whole speech sam-
ple and the formant frequencies in the voiced sections. 
Finally, 14 MFCC and 3 formant frequency time-like vec-
tors were available for one subject. Later on, we refer this 
time-like vectors as feature signals.

3.3 Auto- and cross correlation structure
The illustration of the correlation structure is showed in 
Fig. 2 for feature signals 1 to n. An arbitrary cell holds the 
correlation of the two related feature signals. In this case, 
the matrix would be of size n × n (left side of Fig. 2). Instead 
of one correlation value, we created a submatrix that con-
tains the correlation coefficient values along with the dis-
placement in the feature signals (right side of Fig. 2).

The submatrices in the main diagonal are filled with 
autocorrelation, while the submatrices in the side diago-
nals are filled with cross-correlation coefficients.

The feature signals were shifted k–1 times (k–1 addi-
tional signal), so the size of the submatrices is k × k (by 
including the original signals). The size of the total cor-
relation structure is (n × k) x (n × k).

In the submatrices, the first cell still has the correla-
tion coefficient of the original signals (row 1, column 1). 
In a given row i and column j addressed cell, we put the 
correlation coefficient of two feature signals where the first 
feature signal was shifted by i–1 times and the second fea-
ture signal was shifted by j–1 times. For example, if i = 5, 
then the first feature signal was shifted by 4 times with the 
degree of displacement.

In this study, 1 and 8 were used for the degree of dis-
placement and 10, 20 were applied for the k (later referred 
as offset). From the feature groups the first 14 MFCCs, the 
first 7 MFCCs and the first 3-formant frequencies were 
used. These features and values come from the [23] pre-
liminary research where a larger number of features were 
examined for classification.

3.4 Convolutional Neural Network (CNN)
The CNN was created in Python using TensorFlow 1.8.

Two structures are presented in this study. The first one 
has one input layer (Fig. 3) while the second one has two 
(Fig. 4). In other words, the second CNN can handle two 
correlation structures from one person at the same time.

The first network contains two convolutional layers with 
32 non-overlapping filters respectively with ReLU activa-
tion functions. The size of the first convolutional kernel 

Table 1 Depression severity categories in BDI-II scale

BDI-II Number of patients

Normal 0–13 0

Mild depression 14–19 21

Moderate depression 20–28 32

Severe depression
29–63 38

Very severe depression

Fig. 2 The full correlation matrix from n features (left) and a submatrix 
of two features with k–1 displacement (right).
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was adjusted to the size of the submatrix shown above. 
It was 10 × 10 for k = 10 and 20 × 20 for k = 20. The size 
of the second convolutional kernel was set to get the output 
size of 2 × 2. It was followed by a max-pooling layer with 
2 × 2 pool size. Dropout regulation was applied after the 
first three layers, which ignored 25 % of the neurons during 
the training process. The flatten layer arranged the 32 fil-
ters value into a row vector. At the end, a dense (fully con-
nected neural network) layer was implemented that served 
the estimation with a linear activation function. The input 
neuron number of the dense layer was 32 and the output 
was 1 (output 1 value).

The second network was designed to get two input cor-
relation matrices from different features from one per-
son. The first matrix was crafted from the MFCC values, 
and the second one from formants only. From here, both 
channels followed the construction of the first network to 
the dense layer, except that they are not contained max 
pooling layer. This is due to avoid excessive dimensional 
reduction. Furthermore, the second convolutional layer 
was applied with 64 filters instead of 32. The input size 
of the dense layer is 1 × 64 while the output is one num-
ber (normalized BDI value) in each of channels that was 
linked together by an average (merge) layer. To put it sim-
ply, the first model was applied twice with small modifica-
tions (one channel for MFCCs and one for formants) and 
then the outputs were averaged as the estimated (normal-
ized) BDI value.

3.5 Implementation of evaluation
The values in the correlation structure were normalized 
between -1 and 1 while its associated BDI was normalized 
between 0 and 1.

To preprocess the correlation structure, all 182 sam-
ples were randomly shuffled to distribute the healthy and 
depressed sample as evenly as possible.

For training and testing the convolutional networks, full 
cross-validation was performed (leave one out cross-val-
idation, LOOCV) that separated one element into a test 
set while the remainder served as training samples, iter-
ating through all samples in the dataset. In this case, 182 
training/testing process was performed (since 182 samples 
were used). The training and test sets were always disjoint 
and there was no overlap between them.

ADAM optimization algorithm was used with default 
parameters by Keras [23] to optimize learning rate. Mean 
squared error was used as cost function.

For training phase, the batch size was set to the number 
of training samples (batch size: 181). So in each epoch, the 
network could see the whole training set at once. Multiple 
epoch numbers were chosen: 25, 50, 75, 100, 150, 250, 500.

MFCC features were used at a displacement rate of 8 
and formants at a displacement rate of 1 based on [24] pre-
liminary study.

RMSE was used to determine the error between the 
original and estimated BDI values [25].

As a first approach, RMSE values were obtained by the 
first 7 and 14 MFCC feature signals separately in the net-
work of Fig. 3 using two different offset (10 and 20).

The offset with lowest RMSE was selected and extended 
later on with a set of formant frequencies. This has been 
examined in the model of Fig. 4.

As additional measure, Pearson correlation coefficient 
was calculated between the estimated and original BDI 
values to determine how proportional the estimator is to 
the original BDI scale [26].

4 Results
4.1 Results of single channel model with MFCCs
The results obtained using 14 MFCC values are shown in 
Fig. 5. On the left vertical axis, the progress of the RMSE 
values on the test sets can be seen as a function of the 
epoch. The right vertical axis shows the training loss.

For both offsets, there is a monotonous decrease in 
RMSE, which is similar to that of training loss. It can be 
seen that applying 10 offset (submatrix's size 10 × 10) in 

Fig. 3 Implemented convolutional network for one correlation structure 
(single channel model).

Fig. 4 Implemented convolutional network for two correlation 
structures (double channel model).
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the correlation structure, lower RMSE was achieved than 
using 20 offset. At the end (500 epoch) of the training, 11.69 
RMSE was resulted with k = 20, while 11.04 with k = 10.

The use of a large offset number is likely to make the 
correlation structure even more complex, which may carry 
additional information to estimate severity. However, 
it might require a deeper network, for which there is not 
enough data currently.

Using half of the MFCC features, the results are shown 
in Fig. 6. The axes and their names are the same as in Fig. 5. 
Applying a k of 10 gave an increase in RMSE after a given 
number of epoch. In this case, the network may not have 
found a pattern that it could use to estimate BDI effectively.

Similarly to Fig. 5, a decaying curve can be observed 
using k = 20 on Fig. 6. In this case, the more complex spec-
tral structure contributed to the stable descending nature 
of the curve. Moreover, it has a lower RMSE than applying 
10 offset after 370 epochs.

The training loss decreases earlier and reaches almost 
a constant value rather than in the Fig. 5. Thus, the test 
sample as able to follow the RMSE evolution of the train-
ing sample in a monotone manner at 20 offset. Increasing 
the epoch would probably have resulted lower RMSE 
using k = 20 (Fig. 6) or 14 MFCCs (Fig. 5).

4.2 Results of double channel model
In the single channel model, it was evident that using 10 
offset, a lower RMSE was obtained with a given set of fea-
tures in most cases than using 20 offset. Therefore, in the 
double channel model, MFCCs parallel with formant fre-
quencies were investigated using only 10 offset.

The result is shown in Fig. 7, where the horizontal axis 
is the number of epoch. The left vertical axis includes the 
RMSE values of the test set while the right vertical axis 
consists of RMSE values of the training set. Both 7 and 14 
MFCCs were examined separately with the specified for-
mant frequencies as below:

Setup 1: 7 MFCCs + formants (referred as MFCC7), 
Setup 2: 14 MFCCs + formants (referred as MFCC14).
It can be seen that the MFCC7 curves follow nearly 

the same progress as the 10 offset experiment in Fig. 6. 
The MFCC7 has a local minimum of test's RMSE at 150 
epochs, then diverges at larger epochs. The training set 
RMSE decreases monotonously and converges to 0.

The MFCC14 also follows a decreasing progress simi-
lar to the 10 offset experiment in the Fig. 5. At lower num-
ber of epoch, it has spikes on the diagram. At higher epoch 
numbers, however, it takes on a monotonous decreasing 
characteristic. Based on the decline trend, lower RMSEs 
may be achievable with higher epoch numbers.

Fig. 5 Results obtained with 14 MFCC features on the single channel 
model with two different offset values. TL = training loss.

Fig. 6 Results obtained with 7 MFCC features on the single channel 
model with two different offset values. TL = training loss.

Fig. 7 Results achieved with MFCCs and the three formants with 10 
offset. TL = Training loss.
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The network also started at a lower RMSE, and was 
able to go below a values of 11 at certain intervals.

It should be taken into account that despite of the full 
cross-validation and regulation, over-learning is still possi-
ble. Therefore, an epoch can be selected where the training 
and testing loss the closest to each other. In other words, 
both training and testing curves have declined until the 
selected epoch, but after that, the curve of the test set may 
diverge. Table 2 summarizes the test RMSE and correla-
tion at selected epochs.

It should also be borne in mind that if a point is selected 
too early as a local minimum, then the system may be under- 
trained at that point.

It can be seen that the test RMSE ranges from 11.7 to 
10.8. Furthermore, the correlation values are at the top of 
the moderate and the bottom of the strong correlation cat-
egory [27]. Based on this selection, the double input model 
performed better than the single ones.

The original and estimated BDI scatter plot is visualized 
on Fig. 8 at the correlation result of 0.61. It can be seen that 
it has a high standard deviation at higher BDI values.

Furthermore, RMSE values at the 0.61 correlation setting 
were derived according to the severity classes of depres-
sion (defined in Table 1). It can be found that our algorithm 

is more prone to error in the severe category than in the 
normal, mild and moderate cases (Table 3). According to 
this, the learning algorithm estimated depression of normal, 
mild, and moderate severity with an average 8.67 RMSE 
while the severe category rose up to 17.35 RMSE. 

Referring to Table 3, acoustic features extracted from 
speech may have a less significant effect on the separation 
of depression at a severe level. Also, there are few samples 
that have outstandingly high BDI-II value in the database, 
making the CNN difficult to learn and predict more pre-
cisely in this category.

 Projecting the result of MFCC7 and formants double 
channel model (at 150 epoch) to binary classification, the 
confusion matrix according to Table 4 can be written. 
74 true positive, 81 true negative, 17 false negative and 
10 false positive samples can be seen resulting in 85.2 % 
accuracy, 81.3 % sensitivity and 89.0 % specificity mea-
sures.  Thus, a hypothetical ideal model would use the 
double channel approach with the given parameters of 
Section 3.4 and the evaluation of Section 3.5. The input 
features are MFCCs (displacement rate of 8 and 10 offset) 
and formants (displacement rate of 1 and 10 offset) that 
resulted less than 11 RMSE and strong correlation (0.60 
and 0.61).

5 Conclusion
Acoustic features were obtained from speech recordings 
in the present study from which a special auto- and cross 
correlation structure were developed. The first 14 and 7.

MFCC values and the first three formant frequencies 
were used as features to estimate BDI values.

As regressor, convolutional neural network was used 
fed by images as input. Two models were created: single 
channel (MFCCs) and double channel (MFCCs and for-
mant frequencies) models. The models were trained and 

Fig. 8 Original and estimated BDI values for the double channel model 
with MFCC7 and formant frequencies (offset 10).

Table 2 Selected epochs where possible to stop the process.

k Features Epoch RMSE test r

10
14 MFCCs

500 11.045 0.60

20 500 11.686 0.54

10
7 MFCCs

250 11.210 0.58

20 500 11.433 0.55

10
7 MFCCs + 3 formants 150 10.797 0.61

14 MFCCs + 3 formants 500 10.927 0.60

Table 4 Result of binary classification with MFCC7 and formants 
features on the double channel model (at 150 epoch).

Original

DE HC

Predicted
DE 74 10

HC 17 81

Table 3 Distribution of RMSE by depression severity classes based on 
Table 1 with MFCC7 and formants double channel model.

Normal Mild Moderate Severe

RMSE 7.58 9.56 8.88 17.35
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tested by full cross-validation and ADAM optimization.
Using the single channel model, the first 14 MFCCs 

achieved more monotonic decrease and almost resulted 
the same RMSE values than the 7 MFCCs.

The number of offsets (k) also affected the results. We 
found that increasing the offset number may provide more 
information in the correlation table. This is shown in the 
monotonous progress of the curves in case of MFCC7. 
However, the estimation in this case has worse (higher) 
RMSE statistics.

Using the dual channel model, better results were 
achieved at the certain epochs.

In terms of estimating the severity of depression, the 
RMSE had a flat tail after reaching a certain epoch num-
ber. Therefore, the experiment was stopped at 500 epochs 
as a compromise in running time and performance.

The obtained results are difficult to compare to others' 
works due to the distinct dataset (different in language, BDI 
distribution, sample number). We could not exceed the esti-
mation of depression severity presented in Williamson's 
study (7.42 RMSE) [18]. However, it performed better than 
the specified baseline value (RMSE =  4.120) and was near 
to Lang He study (RMSE = 10.456) [19]. The comparisons 

can hardly be interpreted. For example, at high BDI values, 
the presented method resulted much higher RMSE values. 
We can easily imagine that different BDI distribution of 
a dataset results in higher or lower RMSE variations.

The advantage of the procedure is that it is independent 
of the subject's gender and does not require complicated 
preprocessing of the speech sample (e.g., segmentation at 
the level of speech). Finally, it should be noted that the reg-
ulations have been designed to minimize the possibility of 
over-learning.

This study has highlighted the possibility of using CNN 
to estimate the severity of depression. We definitely want 
to continue our research in the future. Possible directions 
are to include other features like prosodic ones, restruc-
ture the CNN architecture (changing layers and parame-
ters) and data augmentation. The correlation structure can 
also be modified to better suit deep learning.
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