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Abstract

In this paper, a modified Finite Impulse Response based linear Pass integrator for centered frequency, ranging between 0.1 π to 0.9 π 

has been realized. Both the cases have been considered i.e. for what values the phase response is of use and where the phase response 

has zero value. An iterative formula has been used to calculate the weights depending upon the Transfer Functions, and applying 

differentiation method. A flat output approximation for the desired frequency ω has been applied for which the results overlap with 

the ideal integrator. Performance comparison of the proposed integrator has been done with the previous one and relative percentage 

errors have been observed for both cases implemented. Graphical analysis has also been carried out for frequency responses having 

degree greater than one (i.e. k = 2, 3, 4) for both cases of proposed integrator and compared with the ideal integrator's response.
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1 Introduction
Integrators are widely used in many fields related to 
SONAR, average speed calculations, image processing, 
navigations, and many others where digital signal process-
ing is being utilized [1–3]. Digitization of integrators has 
increased the dependability and accuracy of these calcu-
lations. Digital integrators constitute important members 
for operations required in numerous subsystems of the sig-
nal processing domain. The dynamic behavior of vibrat-
ing mechanical structures, for example is analyzed by first 
measuring the acceleration (using accelerometer) and then 
deriving displacement with the help of a digital integra-
tor. Another example is the use of digital integrators in 
the field of medical for quantifying the activity of muscle 
where electromyograph signals can be integrated to quan-
tify the activity of the muscle. Hence it leads us to work in 
this direction for reducing error, time and complexity of 
the existing techniques.

A range of traditional algorithms such as McClellan et al. 
are available to design Finite Impulse Response (FIR) 
integrators which may appear to be complex in terms of 

calculations and time consuming [4, 5]. Al-Alaoui [6–9] 
made use of fractional delay for efficient control of mag-
nitude and phase for both integrators and differentiators, 
focusing mainly on Infinite Impulse Response (IIR) types. 
Papamarkos and Chamzas [10] proposed an alternative 
method of calculating the unknown weights of the transfer 
function from the ideal magnitude responses of the inte-
grator by taking the absolute difference between the ideal 
response H ω( ),  obtaining Hn ω( )  and minimizing the 
obtained difference. Dam et al. [11] has designed first order 
FIR integrator consisting of FIR filter as successor with a 
sampling rate of higher numbers. The employed method 
includes least square error criterion. This is in the fre-
quency domain and uses oversampling to improve the per-
formance of the filter of the FIR integrator. Also, involving 
primarily the derivation of transfer function using trapezoi-
dal integration rule and differential equation of low order 
formulas another form of integrator was implemented 
with polyphase decomposition by Tseng and Lee [12] 
and for integrators with fractional delay by Tseng [13]. 
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Ngo [14] proposed a wideband filter for low order which is 
highly accurate for the Nyquist frequency range.

Kansal and Upadhya [15] developed a linear phase 
integrator and differentiator with Genetic Algorithm for 
fourth order integrator. Jain et al. [16] implemented inte-
grators with higher orders where magnitude was improved 
using pole-zero and constant optimization method. Many 
authors [17–20] gave techniques for IIR integrators with 
techniques like backward integrator, low orders approx-
imation avoiding fractional delays, group delay compen-
sation based on Taylor series, presenting compact formula 
related to the length of the filter using Lagrange interpo-
lators, etc. Mathematical formula to calculate weights for 
the specified filter design, related to order [21–24] lead to 
the implementation of the digital integrators popularly. 

The frequency response for an ideal differentiator is given 
as follows in Eq. (1):

D jω ω π ω π( ) = − ≤ ≤, .  (1)

The above-mentioned frequency response is typically 
realized using IIR filters. As these filters have poles at dc, 
the input signal is required to be multiplied by the fre-
quency response. It is imperative for the integrators to be 
designed keeping in mind the order that makes them use-
ful for applications. Our approximations for a designed 
integrator are based on the cognitive recognition of fre-
quency. The alterations are made within the limits of 
the response range of an ideal integrator. The frequency 
response of the ideal integrator is given by: 

H
D

ω
ω

π ω π( ) =
( )

− ≤ ≤
1

, .  (2)

By using Z transform, the transfer function in Eq. (2) 
can be split into the function of sine and cosine. Constant 
phase of π/2 radians at all frequencies is represented by the 
factor 'j' in Eq. (3). Therefore, where a compulsion con-
stant phase of π/2 radians exists in addition to magnitude 
response requirement, we can approximate the frequency 
response by using the Z transform as:
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 and t = 1,2…n.

And when the constant phase is not the constraint any 
more, the response of the integrator is approximated by:

F b tn
i
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cos ,  (4)
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=
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 and t = 1, 2… n.

Where, coefficients at and bt are filter coefficients, 'N ' 
denotes the length of the filter and 'n' is the order of the 
filter. Generally, taking an even number of N requires a 
practical consideration of fractional delay, which is not 
suitable for many applications. Computing weights using 
exact mathematical formulas involved in this design of 
integrators will give us more stable FIR integrator with 
less error involved for the Nyquist Range. 

In this brief, the approximations of H ω( )  and F ω( )  
have been modified to has the maximum flatness points, 
in terms of ω, where ω is in the range 0 to π. In Section 2, 
calculations of weights for Fn ω( ),  which are dependent 
on the transfer function have been done. This results in 
the equation for the transfer function of FIR integrator of 
degree, k ≥1.  In Section 3, the magnitude response of the 
designed FIR integrators has been plotted with respect to 
the normalized frequency. Analysis has also been done 
on the response of integrators for various degrees, k > 1. 
In Section 4, performance comparison of the proposed 
FIR integrator has been done with the already existing 
integrators in terms of magnitude response and absolute 
values of relative error.

2 Proposed single band FIR pass integrator
2.1 Calculation of dependent variable and weights 
for Hn(ω)
The magnitude response characteristics of the ideal inte-
grator in Eq. (2) is for degree 1. As the degree is increased, 
the magnitude response characteristics will tend to go 
deeper. Hence, it will be a challenge to adjust the weights 
in order to prevent the diversion. Since the related char-
acteristics for Hn ω( )  requires fractional delays, we will 
be focusing mainly on Fn ω( )  for different value of ω. 
Odd order integrator is preferred over even order inte-
grator as the later requires half sample delay. The generic 
equation for the calculation of weights for n, from previ-
ous values n–1 and n–2 weights is given by Eq. (5):
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where n = 2, 3, 4, 5...
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Here, ω0 is the desired frequency at which the weights 
are being calculated. 'vth' time derivation is done for cal-
culation of weights. 'v' varies from 1 to n–3. The values of 
at
n  have been calculated and then the weights for the next 

higher order approximation Hm+
( )

1 ω  have been com-
puted through the use of Hm−

( )
1 ω  and Hm ω( ).

Let value of  be approximated by Eq. (6) as: 
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where A Bn n,  and Cn  are functions of n which we shall com-
pute. After calculation and determination of the multipliers 
A Bn n,  and Cn ,  we obtain the values An =1 and B Cn n= .

Taking nth derivative of Eq. (6), also putting ω = ω0 and 
after simplification as done in, we obtain finally at:
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where n = 2, 3, 4, 5…
Now, the above relation shows that ω0 is related to Bn.  

The desired weights i.e. at
n( )  can be determined from at

n−( )1  
and at

n−( )2  if there is prior knowledge of ai
n−( )1  and ai

n−( )2
.  

For the estimation of ai
n( ) ,  manual calculation of the pre-

vious two weights at
n−( )2  and at

n−( )1  is required. This con-
cludes that computation of all weights up to n–2 has to be 
done. Since computation of at

n−( )2  and at
n−( )1  has been done 

manually and the value of n cannot be negative, so Bn  will 
be calculated from n = 2. 

Further, performing mathematical manipulations and 
using general trigonometric formulas, it can be found that:
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for t n= … +1 2 1, , , .

2.2 Calculations of weights for Fn(ω)
The generic equation for the Fn ω( )  is given by: 
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Same as Hn ω( ),  weights of the filter have been rep-
resented by bt

n( )   in Eq. (9). As discussed above, the odd 
value of N requires delays. 

Again, proceeding similarly as for that of Hn ω( ),  and 
deriving at the desired frequency:
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for v n= …0 1, , , .

Now, calculating the value of first two weights bt
n−( )1  

and bt
n−( )2  manually, the value of bt

n( )  and higher weights 
can be calculated. Fn ω( )  can be made flat at the desired 
frequencies using the above relation and by calculating 
Fn− ( )

1 ω  and Fn− ( )
2
ω .  Thus Fn ω( )  is given by:

F A F

B F C F
n n n

n n n n

ω ω

ω ω ω ω

( ) = ( )

+ ( ) − ( )  −( )
− −

− − − −

1 1

1 1 1 2 0
cos cos .

 (11)

Calculating the value of coefficients, A Bn n− −1 1
,  and 

Cn−1  to satisfy Eq. (13):
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It will result in An− =1 1  and B Cn n− −=
1 1

.  Now, for the nth 
derivative at the desired frequency ω0 will result in Eq. (13): 
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for n = 2, 3, 4.
Bn  will have positive real finite values for the desired 

band i.e. 0 < <ω π ,  but will not work for 0 or π, which are 
the starting and end points of the desired band. The weights 
of higher degree will be calculated by putting the value of 
Bn  in Fn(ω). After applying mathematical logics and gen-
eral trigonometric relations, we get:
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for t = 2, 3, … m + 1, t ≠ 1,
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for t = 1.
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Also, one important assumption to mention here is 
that bt

n( ) = 0  for t < 0 or for n > t. Hence, in order to find 
the F1(ω) and F2(ω), the first step is to find the weights 
b b
0

1

1

1( ) ( )
,  for F1(ω) and b b b

0

2

1

2

2

2( ) ( ) ( )
, ,  for F2(ω) and then 

will be computing higher order weights progressively. 
An important point to be mentioned here is that the 

above solution is for degree, k = 1. Equation for order k = 1 
is given by modifying Eq. (3) as:
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In Eq. (16), the argument of H is 1, denoting the degree. 
For degree 2, the equation for ideal integrator is given by:
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Now replacing '1/ω' with its optimal approxima-
tion Hn ω,1( )  we arrive at the optimal approximation 
for 1/ j kω( )  i.e. the approximation for integrators of 
kth degree. We finally obtain: 
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3 Results and performance 
In Fig. 1, the magnitude response of the proposed FIR inte-
grator, Fn(ω) is plotted against the normalized frequency. 
As the FIR integrator is designed for different frequen-
cies, we have chosen the frequencies that satisfies Eq. (3) 
and Eq. (4). This results in the response shown in Fig. 1, 
for ω0 =0.33 π. Different values of n i.e. 10, 12, 15, 16, 
20, and 31 are taken and plotted along with characteris-
tics of ideal integrator. It has been marked in the graph 
that proposed integrator's magnitude response is overlap-
ping on and around the desired ω0 for ideal integrator, cen-
terd around ω0 =0.33 π. The band explodes near the edges 
and exhibits characteristic different from its ideal nature. 
The degree of the designed FIR integrator is k = 1. 

In Fig. 2, the centered frequency, ω0 is taken as 0.4 π, 
and the order n is taken as n = 10, 12, 15, 16, 20 and 31. 

Graph here clearly reveals that proposed integrator is over-
lapping with the ideal integrator response at the specified 
frequency. In Fig. 3, ω0 = 0.5 π, taken as centered frequency, 
and the magnitude response are overlapping for the desired 
frequency with the ideal integrator frequency response. 
For Fig. 4, centered frequency, ω0 = 0.6 π is taken for 
designing of integrator. In Fig. 5, the magnitude response 
of Hn(ω) is plotted against the normalized frequency.

The graphs in Fig. 1, Fig. 2, Fig. 3 and Fig. 4, follow the 
curve of cosine. The graph in Fig. 5 follows the sine curve, 
thus becoming negative between the normalized frequency 
range of 0 and π. 

Fig. 6 represents the integrator of degree, k = 2 as 
explained by Eq. (18) The centerd frequency, ω0, of interest is 
taken as 0.5 π. Hence giving the flat response for the desired 
frequency ω0 different values of n = 0, 12, 15, 16, 20 and 
31 is taken. However, as we gradually increase the degree 

Fig. 1 Magnitude response of designed FIR integrator Fn(ω), for 

ω0 = 0.33 π and different n, in comparison to ideal integrator

Fig. 2 Magnitude response of designed FIR integrator Fn(ω), for 

ω0 = 0.4 π and different n, in comparison to ideal integrator
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of desired filter, for k = 3, as seen in Fig. 7, the response of 
the designed filter diverges away from the ideal integrator 
response as shown in Fig. 6 having degree k = 2. Fig. 8 rep-
resents the integrator with degree, k = 4, and as explained, 
with the increase in the degree, k, the amplitude of the inte-
grator's magnitude response increases.

In order to find the relative percentage of error corre-
sponding to the approximation of both Hn(ω) and Fn(ω) 
will be used within the following formula (Eq. 20):

R.P.E =
( ) − ( )

( )
H H

H
n ω ω

ω
,  (20)

where Hn(ω) represents the approximated integrator func-
tion and Hn(ω) represents the ideal integrator response. 
The same formula is used for the calculation of relative 

Fig. 3 Magnitude response of designed FIR integrator Fn(ω), for 

ω0 = 0.5 π and different n, in comparison with ideal integrator

Fig. 4 Magnitude response of designed FIR integrator Fn(ω), for 

ω0 = 0.6 π and different n, in comparison with ideal integrator

Fig. 5 Magnitude response of designed FIR integrator Hn(ω), for 

ω0 = 0.5 π different n, in comparison with ideal integrator

Fig. 6 Magnitude response of designed FIR integrator Hn(ω) with degree 

k = 2, for ω0 = 0.5 π and different n, in comparison with ideal integrator

Fig. 7 Magnitude response of designed FIR integrator Hn(ω) with degree 

k = 3, for ω0 =0.5 π and different n, in comparison with ideal integrator
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percentage error for Fn(ω) also. However, to calculate the 
relative error, the range around the flatness point ω0 is taken 
at equal intervals. Different values of n have been taken 
for calculating the relative error for both Hn(ω) and Fn(ω) 
the same value of n for both approximations has been taken.

Table 1 depicts the relative error percentage for  and is 
calculated using the relation in Eq. (20). Relative error is 
calculated for different values of n, where n = 10, 20 and 
30 and for center frequency being 0.33 π, 0.4 π and 0.5 π. 
As the value of n is increased, the relative error increases 
proportionally and is highest for n = 30, being 28.631 % 
for ω =0.33 π. For ω =0.4 π, the maximum error observed 
is 22.215 %, which is again for n = 30. However, if we look 
at the relative error, it can be seen that the range of error 
is quiet less and is gradually decreasing as the operat-
ing frequency of the designed FIR integrator is increased 
towards the end of the band i.e. at π. The range of error for 
same value of ω, and two different value of n, for n = 10 
and 30, the latter has slightly high percentage range of rel-
ative error in the interval [15.707, 17.689] (%).

Table 2 delineate relative error percentage of Fn(ω), 
varying the value of n, n = 10, 20 and 30. The value of fre-
quency ω is taken same as what was taken for Hn(ω). This is 
done to aid the examination of relative error between Hn(ω) 
and Fn(ω). In contrary to Hn(ω), the pattern observed in 
Fn(ω) is of ascending error. As the value of frequency ω 

is increased, the percentage relative error is increased. 
As, from n = 10 to n = 30 for ω = 0.33 π the range of error 
increases from 1.098 % to 2.861 % and from 4.140 % to 
5.632 % for ω = 0.5 π. It can be noted that as the degree of 
the integrator is increased the error will also increase.

4 Performance comparison
Fig. 9 compares the magnitude response of the designed 
FIR integrator with previous existing integrators plotted 
against normalized frequency. The proposed integrator 
represents the magnitude of the designed integrator which 
is in orange. It can be seen that for the Nyquist range, 
the magnitude response of the proposed integrator over-
laps quite well with the response of the ideal integra-
tor. Reference [6] represents the magnitude response of 
the Al-Alaoui first-order integrator, depicted by a green 
continuous line. Reference [9] represents Al-Alaoui sec-
ond-order integrator via the red line. The integrator 
designed by Papamarkos and Chamzas is represented by 
reference [10]. As it is evident from the graph, amongst all, 
the response of the integrator proposed integrator offers 
maximum overlaps with the ideal integrator response. 

Fig. 10 offers a comparison of the relative error for 
the designed FIR integrator with previous existing inte-
grators. In terms of relative error, it can be clearly seen 
that the relative error of the designed integrator is better 
than remaining integrators. In Fig. 10 the relative error 

Fig. 8 Magnitude response of designed FIR integrator Hn(ω) with degree 

k = 4, for ω0 = 0.5 π and different n, in comparison with ideal integrator

Table 1 Hn(ω) Relative error for different values of ω and n

n
Centered frequency

0.33 π  0.4 π 0.5 π

10 22 % 21 % 15.707 %

20 27 % 22 % 16 %

30 28.631 % 22.215 % 17.689 %

Table 2 Fn(ω) Relative error for different values of ω and n

n
Centered frequency

0.33 π  0.4 π 0.5 π 

10 1.098 % 3 % 4.140 %

20 1.819 % 3.109 % 4.158 %

30 2.861 % 4.132 % 5.632 %

Fig. 9 Magnitude comparison of proposed integrator with existing integrators
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for the proposed integrator is marginally lower than ref-
erence [6] for the range 0 < ω < π, performing better than 
reference [6] for the Nyquist range. Also, in comparison to 
reference [9] proposed integrator performs better for the 
Nyquist range. When compared to reference [10], the pro-
posed integrator performs better for the range of ω > 0.5 π 
and ω < 0.4 π. Relative error for the Nyquist range of fre-
quencies is improved marginally, approximately 2 % as 
compared to reference [9]. As compared to previous exist-
ing integrators the relative error has been successfully 
reduced by more than 20 % as the maximum value for 
reference [10] goes to 2.5 %. However, in comparison ref-
erence [6] relative error value is reduced by 16 % as after 
the Nyquist range, the relative error increases sharply. 
The main factors for this good performance of the pro-
posed integrator are low order and reduced complexity.

Such kind of single band FIR pass integrator approxi-
mated above has advantages that they can be used in real 
time applications including oil expedition, wireless data 
transmission, or through telephonic channels, seismology, 
etc. where single operating frequency is existing. The above 
approximated integrators are highly suitable for applica-
tions requiring fast calculations like for freezing in an IC, 
storing the weights vectors, and providing various output 
taps to simulate approximation of various lower order fil-
ters. Another practical implementation of these integrators 

can be in situations where the equiripple (Chebyshev type) 
approximations are generally preferred. These designs are 
accomplished by optimization techniques using iterations 
which are time-consuming and non-analytical. In such 
applications, our approximation will reduce the complexity 
by giving the exact mathematical formula that will help in 
designing the integrator required for equiripple passband 
of frequencies. The disadvantage of the proposed integra-
tor although, is that in case of multiple frequencies, several 
FIR integrators will be required to operate simultaneously. 
The system in such cases becomes more complex in terms 
of calculations and hardware. Another scope of improve-
ment is that since after the Nyquist range there is a rise in 
relative error because of the approximation done using sine 
and cosine functions, hence this divergence from the ideal 
integrator response should be optimized further and is the 
area to be worked upon. Authors are working to develop 
novel FIR integrator for working on multiband pass fre-
quencies at a time.

5 Conclusion
FIR based linear pass integrator has been proposed, oper-
ating in the frequency range of 0.1 π to 0.9 π. Dependent 
cases on phase are considered and weights have been 
derived using the iterative formula depending upon the 
Transfer functions  and . Respective graphs for both trans-
fer functions have been plotted depicting the overlapping of 
the designed FIR integrator with the ideal integrator at the 
desired frequency, ω. For desired order of the filter, n, the 
relative percentage errors have been calculated and found in 
the range of interval [15.707, 28.631] % and [1.098, 5.632] % 
for  and  respectively and the same is used for performance 
comparison with the existing integrators. Also, FIR based 
linear pass integrator having degree, k = 2, 3 and 4 have 
been studied and plotted graphically. Such integrators are 
useful for real-time applications like digital signal process-
ing systems, in navigations (RADAR, SONAR) etc.
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