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Abstract

The use of DC motors is increasingly high and it has more parameters which should be normalized. Now the calibration of each 

parameters is important for each motor, because it affects in its performance and accuracy. A lot of researches are investigated in this 

area. In this paper demonstrated how to estimate the parameters of a Nonlinear DC Motor using different Nonlinear Optimization 

techniques of fitting parameters to model, that called model calibration. First, three methods for calibration of a DC motor are defined, 

then unknown parameters of the mathematical model with the nonlinear optimization techniques for the fitting routines and model 

calibration process, are identified. In addition, three optimization techniques such as Levenberg-Marquardt, Constrained Nonlinear 

Optimization and Gauss-Newton, are compared. The goal of this paper is to estimate nonlinear parameters of a DC motor under 

uncertainty with nonlinear optimization methods by using LabVIEW software as an industrial software and compare the nonlinear 

optimization methods based on position, velocity and current. Finally, results are illustrated and comparison between these methods 

based on the results are made.
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1 Introduction
A DC motor is a kind of Electrical motors that convert cur-
rent electrical energy to mechanical energy. The speed of a 
DC motor by applying variable voltage and currents, can be 
controlled. In this paper, a motor is assumed not a generator. 
DC motors are used in many applications and it becomes 
a popular case of study among researchers. Nowadays, DC 
motors are increasingly used in industrial applications, 
and for performing accurately, they must be calibrated. 
Calibration of DC motors, both large and small motors, is an 
important field of study in recent years among scientists and 
each DC motor must be calibrated for its specific application.

A lot of techniques for improving the performance of 
DC motor are proposed. The problem of optimum Kalman 
Filter for the stochastic systems which are linear and discrete 
and includes multiplicative noises and sensors with random 
two-step delays are proposed in [1] and [2], and a method 
for the state space control of a DC motor are proposed 
in [3]. The state feedback control which is linear completed 

by using a feedforward control because of the relief of 
Coulomb friction. Chevrel et al. in [4], proposed an approach 
for modeling of an effective DC-motor speed controlling 
relying on switched quadratic regulators is proposed.

To improve the linear brushless direct current motor, 
in [5] a method of modified linear-quadratic optimal con-
trol is presented. Various optimization techniques are 
applied to solve suchlike problems [6]. Metaheuristics are 
general heuristic search patterns and strategies which are 
not specified for a particular problem [7]. An overview of 
optimization methods is proposed in [8]. Also, a new opti-
mization framework is proposed by Pánek et al. in [9].

For controlling of permanent magnet DC motors some 
methods like extended Kalman filter and Space vector 
modulation are represented in [10–12].

A dual-layer optimization method is proposed in [13], 
first a nonlinear optimization method for finding the opti-
mum parameters and then a metaheuristic optimization 
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method is defined to estimate the best parameters. Roy and 
Srivastava in [14], designed a PID controller in order 
to control the speed of a permanent magnet DC motor. 
They used constrained particle swarm optimization tech-
nique. Also, another design for the permanent magnetic 
BLDC motor is proposed for finding the optimal magnetic 
density field as the main objective of this problem by find-
ing the optimum parameters [15]. Moreover, a new sto-
chastic optimization algorithm based on biology investi-
gated by Sundareswaran and Bhattacharjee in [16]. 

Gauss-Newton Optimization is another well-known 
method which is investigated by many researchers [17–19]. 
Levenberg-Marquardt technique is used to solve non-lin-
ear least-square problems. Its application in parameter 
estimation is very popular among researchers [20–22]. 
A robust speed control of a motor is proposed by Zeb et al. 
in [23], by using a fuzzy logic controller. Alhanjouri [24], 
investigated an artificial neural network in order to control 
the speed of a DC motor.

This paper demonstrates how to estimate and compare 
the parameters of a Nonlinear DC motor using different 
techniques of fitting parameters to model, here called 
model calibration. In this study, the signals of the drive 
current (i), motor position (shaft angle (θ)), motor veloc-
ity (Angular velocity ( w = θ )) are measured by the sen-
sor. This paper is implemented by LabVIEW software 
and three nonlinear optimization methods on nonlinear 
parameters of a DC motor under uncertainty are used, and 
in order to approve which methods perform better than 
others the comparison is made.

Section 2 is a description of the system of a DC motor 
and its equations. Methods are described in Section 3, 
models and results are defined in Section 4 and Section 5, 
respectively. Section 6 is the conclusion.

2 Description
In this paper, the calibration of DC motor by using nonlin-
ear optimization techniques such as constraint nonlinear 
optimization technique, Guass-Newton optimization and 
Levenberg-Marquardt fit theory are compared.

Here, first, the range of parameters and maximum and 
minimum ranges are specified. Also, the initial conditions 
for the fitting routines are defined and it will be clear that 
some methods are very susceptible to the initial conditions.

Then unknown parameters of the mathematical model 
with the different nonlinear optimization techniques 
for the fitting routines and model calibration process are 
defined. Moreover, the techniques for model calibration 

are chosen. Also, after choosing the technique, notice 
that some parameters are specific for the technique used. 
In addition, the parameters can be changed directly 
by modifying the parameters control.

When the model calibration process is done, the param-
eters can be accepted to transfer the optimum values 
as initial conditions. Also a doublet for excitation are cre-
ated and all measured responses are under uncertainty.

The electric circuit of the armature and layout of the 
rotor demonstrated in the following Fig. 1.

DC motor variables are electric resistance (R), induc-
tance (L), motor constant ( Ke ), armature  constant ( Kt ), 
Moment of inertia of the rotor (J), and damping ratio of the 
mechanical system (B).

Source voltage (V) is input and drive current (i), motor 
position (shaft angle (θ)) and motor velocity (Angular 
velocity ( w = θ )) are outputs. The rotor and shaft are 
assumed to be rigid. For this study, in Table 1, the follow-
ing values for the physical parameters will be considered. 
These values are measured before.

(a)

(b)

Fig. 1 The electric circuit of the armature and diagram of the rotor; 
(a) Electric circuit; (b) Armature diagram.
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2.1 System equations
Mathematical model and the dynamic equations in state-
space form are the following Eq. (1) and Eq. (2):

T K it= ,  (1)

e Ke= θ .  (2)

The motor torque (T), is relevant to the armature cur-
rent (i), by a armature constant factor ( Kt ). The back elec-
tromotive force (e), θ  is angular velocity and motor con-
stant factor ( Ke ) is defined.

From the Fig. 1, the below equations relying on Newton's 
law composed by Kirchhoff's law can be written:

J b Ki θ θ+ = ,  (3)

L di
dt

Ri V K+ = − θ .  (4)

The above equations can be represented in terms of s 
by using Laplace transformation:

s Js b s KI s+( ) ( ) = ( )θ ,  (5)

Ls R I s V Ks s+( ) ( ) = − ( )θ .  (6)

By removing I(s) the following transfer function can 
be achieved:

θ
V

K
s Js b Ls R K

=
+( ) +( ) +( )2

.  (7)

However, during this study, the position (θ) was looked 
at as the output. The position can be obtained by inte-
grating theta dot, therefore it just needed to distribute the 
transfer function by s:

θ
V

K
s Js b Ls R K

=
+( ) +( ) +( )2

.  (8)

So, the dynamic equations in state-space form are 
as follow:
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3 Methods
In Section 3, nonlinear optimization techniques to esti-
mate the parameters of a nonlinear equation of fitting 
parameters to model Eq. (3), are described. The parame-
ters and equations of a DC motor are nonlinear and these 
three methods are famous in problems with nonlinear con-
straints or objective functions. In experimental science, 
some simple data analysis can be achieved by using linear 
techniques, however, in general, these kinds of problems 
are also nonlinear. Typically, a theoretical model of the 
system which is under discussion with changing param-
eters in it and an experiment model which may also have 
passive parameters. This makes an effort to meet a numer-
ically best fit. In these conditions, one desires a measure-
ment of the accuracy of the outcome, as well as the best fit. 
Constrained nonlinear, Levenberg-Marquardt and Gauss-
Newton algorithm are using to solve nonlinear least-square 
problems. These methods are considered and more appro-
priate results for calibration of a DC motor are achieved.

3.1 Constrained Nonlinear Optimization technique
This technique demonstrates fitting a parameterized sim-
ulation using the Constrained Nonlinear Optimization. 
A generic nonlinear optimization difficulty together with 
nonlinear parity limitation and nonlinear impurity restric-
tions can be settled by using a continuous quadratic pro-
gramming technique. Quadratic programming is a partic-
ular type of nonlinear programming. When an objective 
function is second-class and restrictions are linear, qua-
dratic programming methods are applied.

In Fig. 2, the reference is an objective and constraint 
function that implements the nonlinear function to min-
imize. The connections to the Constrained Nonlinear 
Optimization function are shown in Fig. 2.

• A reference is an objective and constraint function 
that implements the nonlinear function to minimize.

• Bounds is a group which includes the upper and 
lower numerical restrictions for parameters which 

Table 1 Real values of physical parameters

Parameters Real value

R (Ohm) 3

L (Henry) 0.4

Ke (N m / A) 0.0025

Kt (N m / A) 0.0025

J ( Kg m2 / s2 ) 0.005

B (T) 0.1
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become optimum and the imparity limitations. Least 
value has the least permissive value of the parame-
ters which become optimum. Maximum value con-
tains the highest allowed value of the parameters 
being optimized.

• Function calls are equal to objective function calls 
in the optimization procedure.

• Local minimum in n dimension is specified 
by minimum.

• f (minimum) is the value of objective function at the 
specified minimum.

The cost function with evaluate Position and Velocity 
and Current is calculated. Also, no equality or inequality 
constraints are assumed for this problem.

3.2 Gauss-Newton Optimization technique
The purpose of Subsection 3.2 is to parameter estimate 
a user-defined model. A linear or nonlinear model can be 
defined and then the System Identification Estimate User-
Defined Model can be used to estimate this defined model.

Subsection 3.2 summarizes the algorithms of the Gauss-
Newton Optimization technique. The Gauss-Newton 
Optimization method can be applied to refine the estima-
tion of continuous transfer function models, user-defined 
models, partially known models, and polynomial models 
such as the ARMAX, Output-Error (OE), Box-Jenkins 
(BJ), and General-Linear (GL) models.

The connections to the Gauss-Newton Optimization 
function are shown in Fig. 3.

A user-defined model estimated by refining the initial 
estimates using Gauss-Newton Optimization routines.

The purpose of Gauss-Newton Optimization is to min-
imize the cost function (VN (θ)). Also, the purpose of 
model estimation is to identify the model coefficients 

by minimizing the mean square error (VN (θ)), which is 
defined by the following equations (Eqs. (10) and (11)):

V
N

e kN
k

N

θ θ( ) = ( )
=
∑1 1

2

2

1

, ,  (10)

e k y k y k, , ,θ θ( ) = ( ) − ( )ˆ  (11)

where θ is the variable vector, y k( , )θˆ  is the response to the 
user-defined model calculates, and y(k) is the measured 
response. In this equation, all the coefficients to be esti-
mated are combined together as a vector θ. The e(k, θ) is 
the error, indicating the difference between the predicted 
or simulated output of the system (y k( , )θˆ ), and the mea-
sured output (y(k)).

Some methods, such as the multi-stage method for 
polynomial models, can be used to get a coarse estimation 
of θ. The following iteration can be assumed to refine θ:

θ θ θi i iaf+( ) ( ) ( )= + ( )1

,  (12)

where a is the step size and f iθ ( )( )  is the search direction. 
The purpose of iteration is to minimize the mean square 
error VN (θ). The problem to solve lies in how to select and 
compute the search direction.

The Algorithm Gauss-Newton minimization defines 
the search direction f (θ) as:

f V Vθ θ θ( ) = − ′′( )[ ] ′( )−1
, ,  (13)

′( ) = − ( ) ( )
=
∑V

N
k e k

k

N

θ ψ θ θ
1

1

, , , ,  (14)

′′( ) ≈ ( ) ( )
=
∑V

N
k kT

k

N

θ ψ θ ψ θ
1

1

, , , ,  (15)

ψ θ
θk dy k

dk
,

,
.( ) = ( )  (16)

Fig. 2 Constrained Nonlinear Optimization technique Fig. 3 Gauss-Newton Optimization technique
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T denotes transposing. By inserting Eqs. (14) and (15) 
into Eq. (13), we obtain the following equation:

f
k e k
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f(θ) can evaluated by solving the following linear 
equation:
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The following equations define ψ(k, θ) to calculate 
the gradients

ψ θ
θ θ θ θ

θ
k y k d y k d

d
,

, ,

,
( ) = +( ) − −( )

2

 (19)

d DIFF
DIFF E

θ θ= ⋅
= −

_ ,

_ . .

2

2 3 2057501263 6where:
 (20)

3.3 Nonlinear Levenberg-Marquardt Fit Theory
The nonlinear Lev-Mar notion is applied in order to com-
pute the best-fit parameters which minimize the weighted 
mean square error among the observations in Y and the 
best nonlinear fit. 

The Nonlinear Lev-Mar Fit Theory specifies the group 
of coefficients a a aM1 2

, , ,…( )  which fits the observations. 
The best-fit factors minimize the below equation (chi-
square quantity), which characterizes the interval among 
the curve and the fitted model:

w y f x a a ai i i M
i

N

− ( )( )…
=

−

∑ ; , , , ,
1 2

2

0

1

 (21)

where N is the longitude of Y and yi , xi and wi are the i-th 
element of Y, X and Weight, respectively. Where X is the 
autonomous variable and A a a aM= { }…

1 2
, , ,  are unde-

fined coefficients.
In this equation, x yi i,( )  are the input, and 
f x a a a f X Ai M; , ,, ,

1 2
…( ) = ( )  is the nonlinear. If the 

measurement errors are absolute and normally divided 
with fixed standard deviation, this is also the least-square 
approximation.

However, when there is a nonlinear relation, the 
Nonlinear Lev-Mar Fit function can be used to determine 
the coefficients. The Lev-Mar method can be used, which 
is very strong, due to find the factors A of the nonlinear 
relation among A and y[i].

As an initial step, it needed to determine the nonlinear 
function y f X A= ( ),  where the group of factors (A), is 
defined by the Lev-Mar algorithm.

The correlations to the Constrained Nonlinear Lev-Mar 
Fit technique are declared below in Fig. 4.

• Inputs are X and Y.
• First supposal parameters are our primary guess 

as to what the factor values are. Using the Nonlinear 
Lev-Mar.

• Best fit factors related to the values of coefficients A 
which fit the model of empirical data.

In calculation, the Lev-Mar technique, is well-known as 
the damped least square method, and it is applied in order to 
dissolve nonlinear least-square difficulties. These minimi-
zation subjects appeared mostly in least-square curve fitting.

The following equation defines the curve model:

y i f x i a a a[ ] = [ ] …( ), ., , ,
0 1 2

 (22)

The purpose of curve fitting is to find a nonlinear func-
tion f X A,( )  for the data x yi i,( )  where i n= … −0 1 2 1, , , , . 

Fig. 4 Nonlinear Lev-Mar Fit
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The function f X A,( )  minimizes the residual (MSE) 
under the weight W. The residual is the distance between 
the data samples and f X A,( ) . A smaller residual (MSE) 
means a better fit. In geometry, curve fitting is a curve 
Y f X A= ( ),  that fits the data x yi i,( ) . In nonlinear curve 
fitting, supposed that there is previously aware of the 
nonlinear relations among the absolute parameter x and 
dependent parameter y.

The Lev-Mar algorithm receives X and the group of factors 
a a aM1 2
, , ,…( )  as inputs and evokes f X a a aM; ,, ,

1 2
…( )  

and a 2D array of the partial derivatives regards to the fac-
tors. The below equations describes the layout of the sec-
tional derivative matrix of a function with M coefficients 
and n X values:

′( ) =

∂ ( )
∂
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∂
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(23)

The number of columns (M) in the matrix is equivalent 
to the number of passive coefficients, while the number of 
rows in the matrix is equivalent to the number of X values.

4 Model
The comparison platform for calibration of DC motor 
by using nonlinear optimization techniques are imple-
mented by LabVIEW with the control design and simu-
lation module. LabVIEW is an optical programing lan-
guage and, is a platform for designing systems and 
extension environment that was targeted at enabling the 
whole formations of the system to be developed. It is 
used most by companies that manufacture hardware of 
some sort, specifically in the groups responsible for test-
ing that the product was designed correctly and that the 
product works before leaving the factory.  It’s also con-
sidered in researches (i.e. government labs and univer-
sities) that use LabVIEW to facilitate their experiments. 
Also, LabVIEW is used across many industry verticals 
within the manufacturing realm, including: Military 
aerospace, Automotive, Semiconductor.

The initial platform consists of two tabs: Parameters 
range and Identification. The parameters range tab is show-
ing the initial parameters for the simulation. In addition, 

there is an excitation profile which is the Fourier trans-
form of the time-related pulse form and defines the width, 
uniformity, and phase of the frequency spectrum excited.

In identification tab, there are three methods which are 
going to be compared. In Table 2, there are parameters 
which start with the initial value that we set in the param-
eters tab, before. When the simulation runs the parame-
ters start with the initial condition. For each parameter the 
identify button must be clicked to start calibration of the 
DC motor. During this, parameters automatically are tun-
ing when it achieves to a stable range. Then, the parame-
ters can be accepted and the calibration is done.

5 Result and discussion
In Section 5, three nonlinear optimization techniques 
for calibration of a DC motor are going to compare. 
The main parameters which are investigated in this prob-
lem are: Position, Velocity and Current. In Table 1, there 
are some real world parameters with desired values. 
In Results, the main parameters are tried to control such 
as: Position, Velocity and Current, and the parameters 
which are defined in Table 1.

5.1 Result Levenberg-Marquardt method
5.1.1 Lev-Mar (least square)
By using initial conditions, the program for this method 
is running.

As can be seen from the Fig. 5, the calibrated response 
is tracking the simulated response in three concepts: posi-
tion, velocity and current. In the plots, it was illustrated 
that the measured response is far from both simulated and 
calibrated response.

Table 2, is the results of parameters and Errors for each 
parameter. Parameters are almost close to initial condi-
tions in comparison to the real world values.

5.1.2 Lev-Mar (bi-square)
Here, the results are shown as Fig. 6. As can be seen the 
calibration response for position and velocity perform very 

Table 2 Parameters after run in Lev-Mar (least square) method

Parameters Identified Parameters Error

R (Ohm) 4.98834 1.98834

L (Henry) 0.499045 0.09900451

Ke (N m/A) 0.00234385 −0.00015615

Kt (N m/A) 0.00258264 8.26434E-5

J ( Kg m2 / s2 ) 0.00495403 −4.59719E-5

B (T) 0.0996606 −0.00033971
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well and track the simulation response effectively. But, in 
current plot, there are more disturbances and chaoses. 

Table 3, shows the parameters after stopping the program.

5.1.3 Lev-Mar (least absolute residual)
In this method, the results are as Fig. 7. As it declared the 
calibration response has overlap with simulation response 
and measured response. Table 4, shows parameters after 

(c)

Fig. 5 Result Lev-Mar (least square) method; (a) Results for the 
position; (b) Results for the velocity; (c) Results for the current.

(a)

(b)

(a)

(b)

(c)

Fig. 6 Result Lev-Mar (bi-square) method; (a) Results for the position; 
(b) Results for the velocity; (c) Results for the current.

Table 3 Parameters after run in Lev-Mar (bi-square) method

Parameters Identified Parameters Error

R (Ohm) 4.99999 1.99999

L (Henry) 0.500114 0.100114

Ke (N m/A) 0.0024995 −4.98257E-7

Kt (N m/A) 0.00383366 0.00133366

J ( Kg m2 / s2 ) 0.00657493 0.00157493

B (T) 0.0998273 −0.000173012
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simulation. By setting the simulation method on Lev-
Mar (least absolute residual) technique and running the 
method, parameters can be accepted after identifying.

5.2 Result Gauss-Newton method
In Subsection 5.2, the program is switched on Gauss-
Newton method. After this simulation, it can be seen that 
the calibration response performed very well and it is 
tracking the simulated response and it also is same as mea-
sured response Fig. 8 and Table 5, is the results of param-
eters after simulation.

5.3 Result Constrained Nonlinear Optimization method 
The last method is constraint nonlinear optimization. 
As can be seen from the Fig. 9, the calibration response in 
the concept of position is tracking the simulated response, 
but in the velocity and current we have a little bit chaos. 
Table 6, shows the parameters after running the program.

After these results, the results in three concepts are 
going to compare such as: cost function, number of func-
tion calls and MSE. Here, in Table 7, the comparison of 
methods is shown.

6 Conclusion
In this paper, the goal was to estimate the parameters 
of a DC motor, called calibration, by using three non-
linear optimization techniques and the goal is to make 
a comparison to identify which method is performing 
well. These three methods are Lev-Mar, Gauss-Newton, 
and constraint nonlinear optimization. First of all, initial 
parameters as well as in the real world are defined, then 
the program applied for each method.

After running, by clicking the identify button the pro-
gram start to tuning the parameters and calibrated them 
to achieve the simulation response. After a number of 
function calls the program staying stable and parame-
ters can be accepted. The results show that the Lev-Mar 
methods perform very well with lower MSE. It means 
the calibration response has overlap with the simula-
tion response. Here MSE is important for us because it 
shows that the method performs well with a low number of 
errors. However, like several fitting methods, the Lev-Mar 
detects just local minimums, which are not as a matter of 
course, the global minimums.

The Lev-Mar inserts among the Gauss-Newton 
Algorithm (GNA) and the technique of gradient descent. 
Lev-Mar is stronger than the Gauss-Newton, which in 
several cases it detects a solution even while it begins very 

Table 4 Parameters after run in Lev-Mar (least absolute residual) method

Parameters Identified Parameters Error

R (Ohm) 3.06112 0.0616486

L (Henry) 0.40934 0.0094177

Ke (N m/A) 1E-5 −0.00249

Kt (N m/A) 0.00252899 2.81609E-5

J ( Kg m2 / s2 ) 0.00487799 −0.000129496

B (T) 0.098828 −0.00113768

Fig. 7 Result Lev-Mar (least absolute residual) method; (a) Results for 
the position; (b) Results for the velocity; (c) Results for the current.

(a)

(b)

(c)
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Table 6 Parameters after run in Constrained Nonlinear 
Optimization method

Parameters Identified Parameters Error

R (Ohm) 3.03953 0.0395296

L (Henry) 0.397634 −0.00236579

Ke (N m/A) 0.0024586 −4.13982E-5

Kt (N m/A) 0.00361373 0.00111373

J ( Kg m2 / s2 ) 0.00735488 0.00235488

B (T) 0.143119 0.043119

Fig. 8 Result Gauss-Newton method; (a) Results for the position; 
(b) Results for the velocity; (c) Results for the current.

(a)

(b)

(c)

Table 5 Parameters after run in Gauss-Newton method

Parameters Identified Parameters Error

R (Ohm) 2.95541 −0.0445906

L (Henry) 0.403294 0.00329365

Ke (N m/A) 0.01 0.0075

Kt (N m/A) 0.00252173 2.17299E-5

J ( Kg m2 / s2 ) 0.00496237 −3.76258E-5

B (T) 0.100691 0.000691178

Fig. 9 Result Constrained Nonlinear Optimization method; (a) Results 
for the position; (b) Results for the velocity; (c) Results for the current.

(a)

(b)

(c)
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out of the final minimum. Lev-Mar has an inclination to 
be slower than Gauss-Newton for well-performed func-
tions and sensible starting parameters. Also, Lev-Mar can 
be Gauss-Newton by using a trust-region method.

Table 7 Comparison of mentioned methods

Methods
Parameters

Cost 
Function

function 
calls MSE

Lev-Mar (least square) 2.08801 91 8.82137E-5

Lev-Mar (bi-square) 2.10319 494 1.57821E-12

Lev-Mar (least-absolute-
residual) 0.0748517 325 0.00136936

Gauss-Newton 0.0561348 67 0.0013293

Constrained Nonlinear 
Optimization 0.0885244 275 0.00111373
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