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Abstract

The Current Transformers (CT) saturation may cause the protective relays mal-operation either non-recognition of internal fault or 

undesirable trip under external fault conditions. Therefore, compensation of CT saturation is very important for correct performance 

of protective schemes. Compensation of CT saturation by combination of signal processing methods and intelligent algorithms is 

a suitable solution to solve the problem. It decreases the probability of mal-operation and increases the reliability of the power 

system. In this paper, Support Vector Regression (SVR) method is employed to compensate the distorted secondary current due to CT 

saturation. In SVR method, despite the other methods such as MLPand ANFIS, instead of minimizing the model error, the operational 

risk error is considered as target function. In this method, by using Kernel tricks, a smart RBF neural network is obtained, so that all 

operational procedures will be optimized automatically. In this paper, an intelligent method based on Particle Swarm Optimization 

(PSO) algorithm is presented to determine the optimal values of SVR parameters. Due to the stability and robustness of this method in 

presence of noise and sudden changes in current, this method has a high accuracy. In addition, a sample power system is simulated 

using PSCAD software. Afterwards, current signals are extracted and fed to PSO-SVR algorithm, which is implemented in MATLAB 

environment. The obtained results show the preference of the proposed method in aspect of estimation accuracy as compared to 

some presented methods in the field of CT saturation detection and correction.
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1 Introduction
Current Transformers (CTs) are very important elements 
as they provide relays current signals proportional to pri-
mary current with a smaller range. Although CTs use iron 
core to maximize the flux linkage between primary and 
secondary windings, they are prone to saturation due to 
the non-linear magnetic characteristics of core.

The effective factors on the CT saturation are: short 
circuit level, short circuit occurrence location, fault resis-
tance and fault angle. Among the above mentioned fac-
tors, the first three factors affect the severity of the fault 
current and the fourth factor determines the polarity and 
the magnitude of the exponential component of fault cur-
rent. For  operating conditions above the knee point of 
the magnetization curve, magnetizing current increases 
significantly. Therefore, the ratio error increases and 
results in  distortion of the output signal. One way to 
limit this effect is either using CT with higher nominal 

characteristics or to use special algorithms to compen-
sate this phenomenon. Since using CT with higher nomi-
nal characteristics is not cost-effective economically, soft 
compensation of CT saturation phenomenon in power sys-
tem is an appropriate solution, which results in cost reduc-
tion and increase of the power system reliability [1].

A compensation method is suggested in  [1] in which 
after estimating the magnetizing current, this current 
is added to the measured secondary current to correct 
the  distorted secondary current. This algorithm works 
well for different fault conditions but the residual flux is 
considered zero before the fault occurrence. The proposed 
algorithm in  [2] calculates the core flux and detects the 
saturation of CT under different conditions. However, in 
this method the initial flux is considered zero in the begin-
ning of calculation, which is not appropriate assumption 
under real conditions.
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The different order of secondary current signal devia-
tion is also applied to detect the saturation [3–8]. A com-
bination of second-order derivation and zero-passing 
technique is also applied to improve the detection of satu-
ration time internal. In this method, only saturation cycles 
are detected and the start and the end points of satura-
tion time intervals are not determined [5]. In [8], the sec-
ondary current and its derivatives are used in order to 
compensate the saturation of current transformer. In  [7] 
and [9], a method is presented to detect the saturation of 
CT based on third-order derivative of secondary current. 
In these papers, the effect of the anti-aliasing low-pass 
filter is also considered. A method for detection of sat-
uration is suggested in  [10] by calculating the mean and 
the variance of the fault. In  [11], a method is presented 
for detection and compensation of the saturated second-
ary current by using the derivatives of secondary current 
and Newton backward differential formula. The proposed 
method is dependent on an index as the saturation detec-
tion criterion. This index is consistently compared with an 
expected value while the start point and the end point of 
saturation area can be detected. A low-pass filter is used to 
remove the noise and harmonics contents of the secondary 
current. This method is simulated by taking into account 
the residual flux of core, burden of CT as well as the DC 
component and the noise of the current signal. Regarding 
the advantages of differential methods such as simplicity 
of calculations and the possibility of their implementation 
in on-time applications, these methods have suffered from 
some difficulties such as very high dependency on sam-
pling frequency, high sensitivity to noise, high depen-
dency of detected output signal to the strength and weak-
ness of the CT's core saturation [11].

Wavelet transform as a signal analysis tool within the 
domain of time and frequency can determine the begin-
ning and the end points of saturation [12–14]. In wavelet 
transform based methods, the current signals are decom-
posed into two levels of approximation and detail in dif-
ferent stages by using some determined filters called 
mother wavelet  [12]. Detail level including the contents 
of high frequency components, can be employed to rec-
ognize the saturation time interval. The main problem of 
wavelet transform and derivative based methods is noise 
sensitivity. Therefore, before applying these methods, the 
signal should be passed through the low-pass filters [13].

In many articles, Artificial Neural Networks (ANN) 
are utilized for detection and correction of CT satura-
tion  [15–17]. The current samples of CT secondary side 
are applied for training the neural network. In  [18,  19], 

a method is suggested to detect the saturation of CT using 
ANN trained by Genetic Algorithm (GA). The main prob-
lem of ANN based method is that a large number of train-
ing data is needed during learning process. This method 
requires so many parameters, which should be set in order 
to achieve optimal and efficient structure [18].

In this paper, Support Vector Regression (SVR) method 
is presented for detection and correction of the CT second-
ary current in saturation conditions. SVRs have the capa-
bility to learn training patterns and can be utilized as either 
classifier or regression tool. Compared to ANN, SVRs 
have less adjustable parameters and simpler structure [20]. 
In this paper, Particle Swarm Optimization (PSO) method 
is presented to optimize the SVR model parameters val-
ues. This new structure is presented as PSO-SVR method.

2 Test study
As shown in Fig.  1, a part of a high voltage substation 
in Iran  [21,  22], including a power transformer, ground-
ing transformer and CTs is modeled in PSCAD software. 
The  specification of the power transformer and CTs are 
presented by Tables  1 and 2, respectively. In order to 
model the residual flux, current sources are inserted in the 
primary side. To examine a wide range of faults, various 
faults were applied inside and outside the protected areas 
considering with different resistances.

It must be noted that the CTs are simulated based on 
the Jiles-Atherton (JA) model  [21]. This model is based 
on the phenomenological model of a ferromagnetic core 
and the relationship between the magnetic moment and 

Fig. 1 Power system modeled in PSCAD

Table 1 Power Transformer Characteristics

Technical Data Value

Rated Power (MVA) 160

Rated Voltage Ratio (kV/kV) 230/63

Connection Y/∆

Frequency (Hz) 50

Leakage Reactance (p.u.) 0.14

No-Load Losses (p.u.) 0.002

Copper Losses (p.u.) 0.004
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the intensity of the magnetic field. Currently used mod-
els, use mathematical techniques, which approximate the 
behavior of the hysteresis loop for recoil loops and rena-
scence effects [22, 23]. For many studies, these models are 
quite adequate except where accurate values of renascence 
are required following a circuit interruption with a subse-
quent reclose into a live circuit. This feature is particularly 
important in relay studies where it is necessary to simu-
late successive faults due to reclosing of a permanent fault. 
During validation of the new model against recordings 
from a synthetic test plant, the shape of the loop in  the 
shoulder area was also found to be critical in situations 
where the burden was small (as in digital relays) and the 
core carried residual flux. In situations where the burden 
is large, which leads to severe saturation, the exact shape 
of the loop was not critical. The latter situation is the one 
that most often used in simulation studies [23]. Jiles and 
Atherton used a soft magnetic material for their investi-
gation and modeled the saturation characteristic using 
a modified Langevin function. In JA model, by solving the 
basic equations [21], model parameters can be determined 
by maximizing the accurate estimation of the curve of the 
magnetic CT core. Since the magnetizing curve is avail-
able, the above mentioned parameters can be determined 
by using random search methods. In this article, the PSO 
method is used to determine the JA parameters. CT core 
magnetizing curve is shown in Fig. 2 and JA model param-
eters can be found in Table 3.

3 Support Vector Regression (SVR)
SVR method (Fig.  3) is one of the supervised learning 
methods, which is widely used to solve complicated data 
classification and regression problems [24]. The SVR algo-
rithm can be easily implemented in other machine learn-
ing problems such as function fitting. Unlike other meth-
ods such as Multilayer Perceptron (MLP) and Adaptive 
Neuro-Fuzzy Inference System (ANFIS) that try to min-
imize the modeling error, in SVR method, operational 
risk is considered as target function. In this method, using 
Kernel core functions technique and by determining 
its parameters, indeed an intelligent Radial Basis Function 

(RBF) will be achieved, which all of the operational pro-
cedure will be automatically optimized. In the regres-
sion by SVR, the non-linear and complicated relation-
ship between input and output is estimated [20]. In spite 

Table 2 CT specifications with 1 A secondary nominal current

CT HV Side LV side

Turn Ratio 600/1 2000/1

Cross Section ( m2 ) 32.9 × 10−4 10.36 × 10−4

Core Length (m) 0.848 0.548

Sec. Winding Res. (Ω) 4.3 7.77

Fig. 2 Current Transformer magnetizing curve

Table 3 Parameters related to specific CT core by the JA

Item Value

Domain Flexing Parameter (c) 0.1537

Domain Pinning Parameter (k) 2.55 × 10−7

Parameter to Adjust K with M (β) 0.97

Inter-Domain Coupling (α) 3.93 × 10−6

Coefficient 1 of Anhysteretic Curve ( α1 ) 2896

Coefficient 2 of Anhysteretic Curve ( α2 ) 3054

Coefficient 3 of Anhysteretic Curve ( α3 ) 17245

Coefficient 4 of Anhysteretic Curve (b) 2

Saturation Anhysteretic Magnetization ( Ms ) 1.889 × 106

Fig. 3 The parameters used in the SVR method
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of pattern recognition problems that have discrete output 
(0 and 1), regression problems outputs are real numbers.

The basis of SVR performance in non-linear regres-
sion is to predict the target curve with the maximum con-
fidence margin. To solve the equation and find the target 
regression curve, Quadratic Programming (QP) methods 
are used, which are well-known for solving the optimiza-
tion problems. For solving non-linear problems with high 
dimensions, Lagrangean dual theorem is used to convert 
the desired minimization problem into its dual form [25].

The first step in creation of SVR model is to select 
a non-linear mapping algorithm as a kernel function 
through which the input vectors are mapped into a high 
dimensional space. In this space, simpler linear regres-
sions can be replaced with complex non-linear regressions 
of the original input space  [25]. To perform regression, 
it is assumed that l pair of training data for learning pro-
cess is as follows: 

D x i y i R R i ln= ( )  ( )  ∈ × = …{ }, , , , ,1 2 	 (1)

y f x w w x b= ( ) = × ( ) +, .ϕ 	 (2)

Equation  (1) includes l pair of sample data 
( x1 , y1 ), …, ( xn , yn ), in which the inputs of n dimensional 
vectors of x Rn∈  and the outputs of unidimensional vec-
tor y R∈ , are in the form of real numbers. In Eq. (2), w is 
the matrix of the regression weight vector, b is bias, ϕ(x) 
is a non-linear function by which x is mapped into a high 
dimensional space. In the mapping process, a kernel func-
tion is constructed by K x x x x, ′( ) = ( )× ′( )( )φ φ . Kernel 
functions which can be implemented in SVR method are 
very variant  [26]. In this paper, Gaussian (RBF) kernel 
function is used to obtain optimal solution (i.e. Eq.  (3)). 
The  RBF kernel is generally applied most frequently 
because it has few adjustment parameters as well as 
a desired performance in high-volume data.
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where xi is the input vector and γ is the parameter of the 
RBF kernel function.

The obtained answer for the regression hyperplane of 
f x w w x b,( ) = × ( ) +φ  will produce a non-linear regres-

sion hyperplane in the main input space. Total risk value 
and the norm of w should simultaneously be minimized.

Therefore, a linear regression hyperplane and risk 
minimization is obtained employing Lagrangian tech-
niques as follows:
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In the above equations, C is penalty factor, which deter-
mines the penalty value for the violation of samples from 
the allowed error of regression. N is the number of the 
samples. ε is the error tolerance parameter, which is con-
sidered 0.001 in this paper. ξn  and ξn

*  are positive aux-
iliary variables, which determine the violation level of 
training data from up and down limits of ε. ξn  represents 
the upper training errors subject to ε and ξn

*  represents 
the lower training errors subject to ε.

C and γ are two main parameters in SVR method 
by  RBF kernel implementation, which should appro-
priately be adjusted for desired performance of algo-
rithm  [27,  28]. Parameter C expresses the cost value of 
violation penalty. The value C is effective on the regres-
sion precision and the performance of SVR system. If C 
is selected very large, the accuracy of regression will be 
high in the training phase, but in testing phase the accu-
racy will be very low. If C is selected very small, the accu-
racy of training phase will be very low and the appropriate 
model will not be obtained. The parameter γ has an effect 
more than that of C in SVR model. High value of γ causes 
over-fitting and very small value of it causes under-fitting. 
In this paper, PSO method is employed to optimize the 
SVR parameters value [29].

4 The presented CT saturation detection model
In this section, PSO-SVR hybrid model is presented 
for  regression in high-dimensional data. In this method, 
the purpose is to enhance the precision of prediction and 
regression using determination of the appropriate struc-
ture of the input data and adjustment of RBF kernel and 
SVR parameters. This study employs the PSO technique 
for  proper setting of adjustable parameters. Two other 
decision variables i.e. C and γ should also be determined. 
Firstly, the population of particles is initialized. Each parti-
cle has a random position within the D-dimensional space 
and a random velocity for each dimension. At second step, 
for each particle, the fitness i.e. the regression accuracy is 
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calculated. If the fitness is better than the particle's best fit-
ness, then the position vector is saved for the particle. If the 
particle›s fitness is better than the global best fitness, then 
the position vector is saved for the global best. Finally, the 
particle's velocity and position are updated until the ter-
mination condition is satisfied  [30–33]. Fig.  4 shows the 
architecture of the developed PSO-based parameter deter-
mination approach for SVR model.

For preparation of input data, we collect the necessary 
information from primary and secondary current in the 
event of faults and the secondary current that has been 
distorted by saturation. Sampling frequency in this project 
is 2.5 kHz. To cover a wide range of faults, different faults 
at different times within the protection area and outside 
of it are applied by different resistances. In order to cover 
all of the fault conditions, 20 SVR systems are considered 
for CT saturation compensation.

Each SVR system designed for a short range of time 
constant value and each one includes different fault ampli-
tude. For each SVR system, the input matrix P and the 
desirable output T is created for training stage. In the first 
moments after the fault occurrence, data are healthy in the 
secondary current signal before the saturation. By taking 
the first 8 healthy samples in secondary current, the first 7 
samples is considered as the first column elements of 
P matrix and the 8th sample is considered as the first ele-
ment of output matrix. Then, the second to eighth samples 
create the second column of the matrix P and ninth sample 
create the second element of matrix T and so on.
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In the next step, kernel function and its parame-
ters as  well as SVR parameters should be determined. 
The main advantage of this method is that there is a few 
adjustable parameters during training of the SVR system 
for regression. By choosing the RBF kernel function, γ and 
C parameters are determined by PSO method.

After determining the model coefficients and running 
the program, the Lagrange coefficients α and α *  will be 
calculated. Support vectors are those that (α − α * ) is non-
zero for them. In the next step bias coefficient b will be 
calculated and finally, we have all the parameters of the 
model in Eq. (7).

f X W W X b K X X bT
i i
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l

i, ,
*( ) = × ( ) + = −( )× ( ) +

=
∑0

1

Φ α α 	

(7)

SVR system intelligently determines the number of 
RBF kernel functions, so results in the simple RBF model 
that causes the minimum time in running the model 
(Fig.  5). In this method, by using Kernel Trick we can 
achieve a smart RBF neural network that all operational 
procedures will be optimized automatically. In the classic 
model of RBF neural network, we have the neurons place-
ment problem and determining the number of hidden neu-
rons. However, in SVR method this problem is resolved 
by using support vectors theory.

In the final step, we test the SVR system with the test-
data and calculate the prediction error indicators to eval-
uate the accuracy of model. In order to analyze the per-
formance of the model, five indicators are determined 
including the Absolute Error (AE), Relative Error (RE), 

Fig. 4 The architecture of the proposed PSO-SVR method
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Mean Square Error (MSE), Root Mean Square Error 
(RMSE) and correlation coefficient (R). These indicators 
were selected to evaluate the fitness and precision of the 
model. AE represents the deviation between monitoring 
and predicted values. RE is the ratio of AE and monitor-
ing values reflecting the objective accuracy of measure-
ment results. MSE and RMSE reflect the performance of 
the prediction model. Generally, the smaller the RMSE, 
the better the performance. R represents the degree of lin-
ear relevance among the variables. The closer R to 1, the 
higher is the relevance. The expressions of these indicators 
is as follows where yi is the real value of the data set, yiˆ  is 
predicted value, y  is the average of the original data, and 
n is the amount of data for the testing set.

AE = −y yi iˆ 	 (8)
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AE

= ×
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100 % 	 (9)
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5 Results and discussion
Saturated current prediction using Artificial Neural 
Networks (ANN) and prediction error indicators for the 
fault current with 5.711 kA amplitude and the time con-
stant 89.17 ms is shown in Fig. 6. As you can see, the error 
of prediction is gradually increased and the anticipated 
signal cannot predict purpose signal correctly.

The results of anticipated saturated current with ANN 
method provided in Table 4 for different values of wave-
form amplitude and time constant. In ANN method, 

Fig. 5 SVR system structure and its similarity to the 
RBF neural network.

(a)

(b)

(c)

(d)

Fig. 6 ANN prediction for the fault current with 5.711 kA amplitude 
and the time constant 89.17 ms. (a) The primary current transferred to 
the secondary and predicted signal. (b) Correlation between actual and 
predicted data. (c) Changes of error and MSE and RMSE quantities. 

(d) Histogram of prediction error and its mean (μ) and variance (σ).
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we can reach low RMSE index level by designing ANN 
network properly. But selecting the structure of ANN and 
its parameters adjustment and the huge number of data 
that are needed for training ANN, are serious challenges. 
However, this method is highly sensitive to changes in the 
structure of the power system so that any changes can lead 
to a lack of efficiency and accuracy of this method in pre-
dicting the target signal.

Saturated current prediction using SVR that its param-
eters are determined by PSO algorithm, is shown in Fig. 7. 
For the fault current with 5.711 kA amplitude and the time 
constant 89.17  ms, the RMSE reached to 0.0182 that is 
very small and acceptable for practical applications. 
According to the tolerance of error in Fig. 7 (c), predicted 
signal has very small deviation from the target signal. 
By PSO-SVR hybrid method and the performance of the 
support vectors, the deviation of the predicted signal is 
limited to small quantities. The results of anticipated sat-
urated current with PSO-SVR method provided in Table 5 
for different values of waveform amplitude and time con-
stant (Fig. 8). As shown, the error indices have small and 
desirable values.

6 Conclusion
In this paper, a new hybrid algorithm is presented based on 
SVR for compensation of CT saturation. There are a few 
adjustable parameters in the structure of SVR model such 
as Non-sensitive area parameter (ε), penalty factor (C) and 
parameters related to the kernel function. In this paper, 
PSO-SVR hybrid model is presented to determine the 
optimal values of adjustable parameters. The main advan-
tages of the proposed intelligent method are low compu-
tational burden and high stability and robustness in the 
presence of noise and sudden changes in current samples. 
Because of few numbers of adjustable parameters and 
high training capabilities, the SVR method is an appro-
priate tool to compensate the fault current of CTs in sat-
uration mode in  real time implementation. The obtained 
results justify the applicability of the proposed method to 
effectively compensate the CT saturated secondary cur-
rent for different operating conditions.
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Table 4 Prediction results by ANN method

Prediction by ANN MethodFault 
Current Prediction Error Indexes ( × 10−3 )

σμRMSEMSER (%)τ (ms)Im (KA)

280345445.2198.299.889.175.711

2039143.71.999.925.75.671

10135169.528.799.915.075.553

(a)

(b)

(c)

(d)

Fig. 7 PSO-SVR prediction for the fault current with 5.711  kA 
amplitude and the time constant 89.17  ms. (a)  The primary current 
transfered to the secondary and predicted signal. (b)  Correlation 
between actual and predicted data. (c) Changes of error and MSE and 
RMSE quantities. (d) Histogram of prediction error and its mean (μ) 

and variance (σ).
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