
Cite this article as: Szirmay-Kalos, L. "Higher Order Automatic Differentiation with Dual Numbers", Periodica Polytechnica Electrical Engineering and 
Computer Science, 65(1), pp. 1–10, 2021. https://doi.org/10.3311/PPee.16341

https://doi.org/10.3311/PPee.16341
Creative Commons Attribution b |1

Periodica Polytechnica Electrical Engineering and Computer Science, 65(1), pp. 1–10, 2021

Higher Order Automatic Differentiation with Dual Numbers

László Szirmay-Kalos1*

1 Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics, Budapest 
University of Technology and Economics, H-1521 Budapest, P. O. B. 91, Hungary

* Corresponding author, e-mail: szirmay@iit.bme.hu

Received: 28 April 2020, Accepted: 27 September 2020, Published online: 26 October 2020

Abstract

In engineering applications, we often need the derivatives of functions defined by a program. The approach chosen for derivative 

computation must be algebraic to allow computer implementation. A particular solution to obtain first derivatives is the application of 

dual numbers. This paper proposes simple and compact generalizations of this idea to obtain derivatives of arbitrary order for single 

or multi-variate functions and the automatic handling of 0/0 ambiguities in the calculations. We also provide the C++ code that takes 

advantage of operator overloading and recursion. The method is demonstrated by path animation, Gaussian curvature computation, 

and curve fairing.
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1 Introduction
Many engineering tasks require the computation of 
derivatives of a function specified by a program seg-
ment. Although, the most essential approaches need only 
the first derivative, there are many problems requiring 
second or higher order derivation as well. For example, 
dynamics simulation uses the Newton’s laws stating that 
the force is proportional to the second derivative of the 
path. The Frenet frame is based not only on the first but 
also on the second derivatives. Curvature calculation also 
needs the derivatives up to order two. Computational aes-
thetics, curve or surface fairing [1] use the assumption that 
a fair curve or surface uniformly distributes the curva-
ture, which means that the third derivative of the paramet-
ric function should also be evaluated. Newton-Raphson 
methods attacking inverse problems use the Hessian i.e. 
the second derivative of the target function, and particu-
lar applications include reverse engineering [2, 3], regres-
sion methods [4], deep learning [5, 6] or medical imag-
ing [7], etc. Second derivatives of parametric surfaces 
play an important role in non-photorealistic rendering 
as well to identify the principal curvature directions [8]. 
There are several options to implement derivative compu-
tation in a computer program: 

• Numerical differentiation [9] approximates the 
derivatives of f at t by 
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where ∆ is a small offset. This is very simple, but 
suffers from severe problems. If ∆ is too large, then 
the approximation is rather poor. However, when it 
is too small, the result is numerically unstable and is 
valid for very few digits (Fig. 1).

• Symbolic differentiation [10] mimics the manual 
differentiation process and generates the mathemat-
ical definition of the derived function. Symbolic dif-
ferentiation handles the function as a whole, thus, 
it cannot solve conditionals and special cases.

• Automatic differentiation [5, 11, 12] determines 
the value and the derivative of a function defined by a 
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program exactly up to the precision allowed by the 
finite digit representation of the computer. As this 
approach takes the function and the value where the 
function and the derivative should be determined, 
it is able to handle conditionals and to check and 
solve special cases.

Forward mode first order automatic differentiation is 
accomplished by replacing the algebra of real numbers 
by the algebra of dual numbers with arithmetic similar 

to the derivation rules. Concerning higher order differen-
tiation, Fike and Alonso [13] proposed hyper-dual num-
bers that have the following form: 

Z x y z w= + + +   
1 2 1 2

,  

where the imaginary units satisfy    
1

2

2

2

1 2

2
0= = ( ) = . 

Hyper-dual numbers have three imaginary parts to mimic 
second order derivatives [14]. Following this construction, 
order N derivatives would need 2N − 1 imaginary units, mak-
ing this approach prohibitively expensive for higher orders.

In this paper, we provide a simple and compact approach 
for higher order derivation. When dealing with deriva-
tives up to order N, we store the function and the deriv-
atives in an N + 1 dimensional vector, i.e. we use only 
the minimally required N imaginary units. To demonstrate 
the simplicity, we also present the C++ classes implement-
ing the different solutions in this paper.

The structure of this paper is as follows. In Section 2 
we first review the theory of dual numbers and their 
application in derivative computation. Section 3 presents 
our first result that generalizes dual numbers for multiple 
imaginary units and establishes the arithmetic rules for the 
computation of higher order derivatives. We also address 
the case of multi-variate functions and provide a solution 
for the computation of arbitrary derivatives with the appli-
cation of recursive functions in Section 4.

Summarizing, the main contributions of this paper are:  
• Generalization of dual numbers for multiple but min-

imal number of imaginary units to compute higher 
order derivatives.

• Generalization of dual numbers to handle higher 
order cross differentiation of multi-variate functions. 

• Simple solution for the automatic higher order deri-
vation with recursive functions.

• Automatic handling of 0/0 type ambiguities.

2 Dual numbers
Dual numbers are similar to ordinary complex numbers. 
Both of them are particular Clifford algebras or hyper-num-
bers of form z = x + yi where x and y are real numbers 
and i is the imaginary unit. We expect the existence of 
addition, multiplication and division with the properties of 
ordinary complex operations, like commutativity, distrib-
utivity, associativity. This means that when we compute 
the product of two such numbers, the result should have 
the same form, which necessitates the definition of i2 also 
in the form of x + yi. The particular definition of i2 distin-
guishes different hyper-number types. For differentiation, 
we take dual numbers defined with the i2 = 0 fundamental 
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Fig. 1 Numerical differentiation of a function with different Δ values. 
The function is X(t) = sin(t)(sin(t) + 3)4 / (tan(cos(t)) + 2) (a) when 
∆ = 0.1 the numerical derivative is not precise; (b) when ∆ = 0.001 
the derivative becomes noisy; (c) when ∆ = 0.0001 the noise becomes 

intolerable. We used single precision floating point calculation.
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property, stating that i is an imaginary number, which 
does not belong to the real numbers, but its square can be 
replaced by zero. The arithmetic rules in this algebra are 
as follows. The addition or subtraction is 

Z Z x y x y x x y y
1 2 1 1 2 2 1 2 1 2
± = +( ) ± +( ) = ±( ) + ±( )i i i.    (1)

The multiplication is 
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To establish the rule of division, both the numerator 
and the denominator are multiplied with the conjugate of 
the denominator to get rid of the imaginary part in the 
denominator: 
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Examining Eqs. (1), (2), and (3), we can realize that 
the real part undergoes the same elementary operation 
as the dual number, while the imaginary part reflects 
the arithmetic rules of derivation for addition, multiplica-
tion and division. This means that considering function f 
and its derivative f' as the real and imaginary parts of a dual 
number  f f f( ) = + ′i , an arbitrary sequence of the four 
elementary operations results in the function value in the 
real part and the derivative in the imaginary part.

3 Generalizations of the dual numbers for higher order 
derivatives
As the dual number algebra provided a mechanism to com-
pute function values and first derivatives, we aim at its gen-
eralization to cope with higher order derivatives. Suppose 
that we wish to compute the value of f (t) for t, together 
with its derivatives f' (t), f" (t), ... up to order N. We use 
the notation of f ( j) for the jth derivative, thus f (0) (t) = f (t), 
f (1) (t) = f' (t), f (2) (t) = f" (t), etc.

To find an appropriate algebra, we should allow as many 
imaginary parts as many derivatives we wish to compute. 
The jth imaginary unit is denoted by ij and by convention 
we say that i0 = 1 to allow a uniform treatment for the real 
and imaginary parts. With these notations a generalized 
dual number representing a function and its derivatives 
has the following form: 

 f f j
j

j

N

( ) = ( )

=
∑ i
0

.  

Our goal is to define the arithmetic rules for such num-
bers, and find product ijik in particular, to make these rules 
similar to those of higher order derivation.

Derivatives of the sum or difference of two functions 
are just the sum or difference of the derivatives, respec-
tively, so the generalized dual number rules of addition 
and subtraction are equivalent to the rules of derivation: 

  f f f f f fj j
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Let us consider multiplication. The product of two gen-
eralized dual numbers is
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On the other hand, the dual number representation of 
product f1 f2 is 
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Substituting the formula of the nth derivative of a product, 
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The derivatives can be computed with generalized dual 
number algebra if the two rules lead to identical results: 

  f f f f
1 2 1 2( ) ( ) = ( ).  

Swapping the double summation in Eq. (7) and replac-
ing m by j and n − m by k, we obtain: 
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Comparing this to Eq. (5) term by term, we obtain 
the following rule that makes the generalized dual num-
ber algebra equivalent to the higher order differentiation 
with respect to multiplication: 

i i ij k j k
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Let us prove that this definition is consistent with 
the commutativity and associativity of multiplication. 
The commutativity is shown by 
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Multiplication is also associative: 
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The formulas developed for addition and multiplication 
guarantee that division also works since division is just 
a sequence of multiplying the numerator and the denomina-
tor with the conjugate of the denominator, and a division 
by a scalar when all imaginary units have disappeared from 
the denominator. Note that when we multiply denominator  

f f j
j

j

N

+ ( )

=
∑ i

1
 with its conjugate f f j

j
j

N

− ( )

=
∑ i

1
, the result is 

f f f f f fj
j

j

N
j
j

j

N
j
j

j

N

+







 −







 = − 








( )

=

( )

=

( )

=
∑ ∑ ∑i i i
1 1

2

1



2

.  

In the imaginary part of the new denominator, products 
of imaginary units show up 
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If the minimal index j of non-zero imaginary part is jmin 
in the original denominator, then in the new denomina-
tor the minimal index of non-zero imaginary part is 2jmin . 
Since the indices of the imaginary units start with 1 and 
can be at most N, each multiplication with the current con-
jugate reduces the number of imaginary units, which will 
disappear in at most log2(N) + 1 steps.

3.1 Matrix representation for the case of N = 2
An intuitive way of imagining generalized dual num-
bers and imaginary units is to consider them as matrices. 
For the sake of simplicity, we discuss the N = 2 case, i.e. 
at most second derivatives are computed. A three-dimen-
sional dual number Z = xi0 + yi1 + zi2 and units i0 , i1 , i2 can 
be regarded as 3 × 3 matrices: 

Z
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x
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The matrices have been selected to meet the established  

formula of i i ij k j k
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Using matrices instead of generalized dual numbers is 
not practical but has theoretical advantages. The proper-
ties of arithmetic operations like the associativity and the 
distributivity of multiplication are inherited and thus need 
no further proof. Only the commutativity of multiplication 
has to be checked: 

Z Z
x x x y x y x z y y x z

x x x y x y
1 2

1 2 1 2 2 1 1 2 1 2 2 1

1 2 1 2 2 1

2 2 2

0 2

0 0
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xx x
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This is symmetric for the swapping of indices 1 and 2, 
thus commutativity of multiplication holds.

The second lesson learnt from the matrix analogy is that 
in this dual number algebra not only the division by zero is 
forbidden, but also the division by a pure imaginary dual 
number. The reason is that the matrices of i1 and i2 are sin-
gular, so they cannot be inverted.

3.2 C++ implementation
The C++ implementation of the generalized dual numbers 
of order N is in Algorithm 1 (addition and subtraction are 
trivial, and therefore not included). The solution should 
also prepare for nested functions, given also as a general-
ized dual number. Suppose that we wish to evaluate func-
tion f with derivatives f', f", ... for an expression g of deriv-
atives g', g", ..., i.e. evaluate the value and the derivatives of 
f g( )( ) . The dual number version is denoted by  f g( )( ) : 

 f g f g t f g t g t

f g t g t f g t

( )( ) = ( )( ) + ′ ( )( )× ′( )

+ ′′ ( )( )× ′( )( ) + ′ ( )

i
1

2 (( )× ′′( )( ) +…g t i
2

.
 

Algorithm 1 also contains the implementations of 
a constructor preparing for nested second derivatives and 
a few common mathematical functions with up to the sec-
ond derivatives.

3.3 Multi-variate case
In the multi-variate case, the scalars defining the gener-
alized dual number are also functions of other variables, 
associated with a completely different set of units. For the 
sake of notational simplicity, we consider the two-variate 
case. Let us denote the two variates of f by t1 and t2 , and 
the ( j, l)th cross derivative by 
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We consider derivatives up to order N, i.e. j + l ≤ N. 
The dual number representation should also be multi-di-
mensional, where the units are ij,l : 
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The addition/subtraction rule (Eq. (1)) remains valid, 
and the multiplication rule is a straightforward extension: 

i i ij l k m j k l m
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 + +  

if j + k + l + m ≤ N and zero otherwise.

The division is also similar to the one-variate case, 
we multiply the numerator and the denominator with the 
conjugate of the denominator until the denominator turns 
to be real. The complete C++ implementation is shown 
by Algorithm 2.

4 Recursive formulation of derivation
So far, we stored the function value in the real part of a gen-
eralized dual number and the derivatives were the imagi-
nary parts. Alternatively, the function and derivatives can 
also be regarded as an N + 1 element vector f, where f [0] is 
the function value and f [ j] is the jth derivative.

As the array contains increasing order derivatives, the 
derivative of the whole array is just a shift of array ele-
ments to left: 
d

d

f f
t
= ,  

where derivation operator   copies element j + 1 into ele-
ment j. Note that if f has n + 1 elements, then f  can have 
only n valid elements. We also need an operation to reduce 
the number of elements without the application of deriva-
tion, which means simply ignoring the last element. For this, 

Algorithm 1 DnumN class and operations

#define foreach(j) for(int j=0; j<=N; j++)
class DnumN {

float f[N+1]; // value and derivatives
public:

DnumN(float v, float d = 0) {
foreach(j) f[j] = 0;
f[0] = v; f[1] = d;

}
float& operator()(int j) { return f[j]; }
bool isReal() {

foreach(j) if (j > 0 && f[j] != 0) return false;
return true;

}
DnumN conjugate(){

DnumN res;  foreach(j) res(j) = -f[j];
res(0) = f[0];
return res;

}
};
DnumN operator/(DnumN f1, float f2) {

DnumN res;  foreach(j) res(j) = f1(j) / f2;
return res;

}
DnumN operator*(DnumN f1, DnumN f2) {
 DnumN res;  
 foreach(j) foreach(k)
         if (j + k <= N) res(j+k) += f1(j) * f2(k) * choose(j+k, j);
 return res;
}
DnumN operator/(DnumN f1, DnumN f2) {

if (f2.isReal()) return f1 / f2(0);
else return (f1 * f2.conjugate()) / (f2 * f2.conjugate());

}
// v: value, d: first derivative, s: second derivative
DnumN::DnumN(float v, float d, float s, DnumN g) {

f[0] = v; f[1] = d * g(1); f[2] = s * g(1) * g(1) + d * g(2);
}
DnumN Exp(DnumN g) { 

return DnumN(exp(g(0)), exp(g(0)), exp(g(0)), g);
}
DnumN Sin(DnumN g) {

return DnumN(sin(g(0)), cos(g(0)), -sin(g(0)), g);
}
DnumN Pow(DnumN g, float n) {

return DnumN(pow(g(0, 0), n), n * pow(g(0, 0), n - 1),
       n * (n - 1) * pow(g(0, 0), n - 2), g);
}

Algorithm 2 DnumNxN class for two-variate functions

#define foreach(j,l) for(int j=0; j<=N; j++) for(int l=0; l<=N-j; l++)
class DnumNxN {

float f[(N+1)*(N+2)/2]; // triangle matrix
public:

DnumNxN(float v, float du = 0, float dv = 0) {
foreach(j,l) (*this)(j,l) = 0;
(*this)(0,0) = v; (*this)(1,0) = du; (*this)(0,1) = dv;

}
float& operator()(int j, int l) { return f[j*(N+1) - j*(j-1)/2 + l]; }
bool isReal() {

foreach(j, l) if ((j!=0 || l!=0) && (*this)(j,l)!=0) return false;
return true;

}
DnumNxN conjugate() {

DnumNxN res;  foreach(j,l) res(j,l) = -(*this)(j,l);
res(0,0) = (*this)(0,0);
return res;

}
};
DnumNxN operator/(DnumNxN f1, float f2) {

DnumNxN res; foreach(j,l) res(j,l) = f1(j,l) / f2;
return res;

}
DnumNxN operator*(DnumNxN f1, DnumNxN f2) {

DnumNxN res;
foreach(j, l) foreach(k, m)

if (j+k+l+m <= N)  res(j+k,l+m) += f1(j,l) * f2(k,m) *
           choose(j+k, j) * choose(l+m, l);

return res;
}
DnumNxN operator/(DnumNxN f1, DnumNxN f2) {

if (f2.isReal()) return f1 / f2(0,0);
else return (f1 * f2.conjugate()) / (f2 * f2.conjugate());

}
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we introduce the front operator  , i.e. f  is an n element 
array where the first n elements are identical to those of f.

As we remove elements both from the front and the end 
of the array, the appropriate data structure is the deque. 
We define two constructors, the default parametrization 
of the first one assumes that f(t) = v and f' (t) = 0, which 
corresponds to constant v. For the derivation variable, i.e. 
for f(t) = t, the first derivative should be f [1] = f' (t) = 1, 
and all other derivatives are zero. The second construc-
tor just merges the function value and all the derivatives 
(Algorithm 3). Global function Single also acts as a con-
structor that constructs a single element array from which 
recursion builds up the N + 1 element array.

The arithmetic operations are based on the recursive 
traversal of the respective computation trees. When two 
functions are added or subtracted, the same operation 
should be applied for the derivatives, which leads to a 
recursive implementation (Fig. 2).

To establish the rule of multiplication, we should rec-
ognize that the derivative of a product is the sum of two 
products: 
a t b t a t b t a t b t( ) ( )( ) = ′( ) ( ) + ( ) ′( ).  

Every term in the original sum spawns into two prod-
ucts, thus the computation up to the nth derivative can be 
imagined as a binary tree where the root is the original 
product, and every level corresponds to a particular order 
of derivation. Every internal node represents a product of 
two functions a(t)b(t) and has two children a' (t)b(t) and 
a(t)b' (t). The first child is a similar multiplication to its 
parent after a a← ′  substitution, and the second child is 
a similar after b b← ′  substitution (Fig. 3). The sum of 
terms on level j is the element j in vector f1 f2 .

To attack division, we should recognize that the deriva-
tive of the ratio of two functions is the sum (or difference) 
of other ratios of functions: 

a t
b t

a t
b t

a t b t
b t

( )
( )







 =

( )
( )

+
− ( ) ( )

( )
′ ′

2
.  

In this computation tree, a ratio a / b also has two chil-
dren performing the same operation. The left child gets the 
two functions after a a← ′  substitution, the right one gets 
them after the a ab← − ′  and b b← ′  substitutions (Fig. 4).

𝑎𝑎 + 𝑏𝑏 

𝑎𝑎 = 𝑓𝑓1
𝑏𝑏 = 𝑓𝑓2 

= 𝑓𝑓1 +𝑓𝑓2
𝑎𝑎 = 𝑎𝑎𝑎
𝑏𝑏 = 𝑏𝑏𝑎 

𝑎𝑎 + 𝑏𝑏 
𝑎𝑎 = 𝑎𝑎𝑎
𝑏𝑏 = 𝑏𝑏𝑎 

… 

= 𝑓𝑓𝑎1 +𝑓𝑓′
2

= 𝑓𝑓𝑎𝑎1 +𝑓𝑓′′
2𝑎𝑎 + 𝑏𝑏 

Fig. 2 Computation tree of the recursive addition.

Algorithm 3 Derivation with recursion

struct Dvec : public deque<float> {
Dvec(float v = 0, float d = 0, int n = N) : deque(n + 1, 0) {

(*this)[0] = v;  if (n > 1) (*this)[1] = d;
}
Dvec(float v, Dvec d) : deque(d) { push_front(v); }
bool isReal() { return (size() == 1); }
Dvec F() {  // Front operator

Dvec ffront(*this);  ffront.pop_back();  return ffront;
}
Dvec D() {  // Derivation operator

Dvec fback(*this);  fback.pop_front();  return fback;
}

};
Dvec Single(float e) { return Dvec(e, 0, 0); }
Dvec operator+(Dvec f1, Dvec f2) {

return (f1.isReal() || f2.isReal()) ? Single(f1[0]+f2[0])
      : Dvec(f1[0]+f2[0], f1.D()+f2.D());
}
Dvec operator*(Dvec f1, Dvec f2) {

return (f1.isReal() || f2.isReal()) ? Single(f1[0]*f2[0])
                 : Dvec(f1[0]*f2[0], f1.D()*f2.F()+f1.F()*f2.D());
}
Dvec operator/(Dvec f1, Dvec f2) {

return (f1.isReal() || f2.isReal()) ? Single(f1[0]/f2[0])
                 : Dvec(f1[0]/f2[0], (f1.D()*f2-f1*f2.D())/(f2*f2));
}
Dvec Cos(Dvec g) {

return g.isReal() ? Single(cos(g[0])) : 
   Dvec(cos(g[0]), -Sin(g.F())*g.D());
}
Dvec Sin(Dvec g) {

return g.isReal() ? Single(sin(g[0])) :
   Dvec(sin(g[0]), Cos(g.F())*g.D());
}

𝑎𝑎 ∙ 𝑏𝑏 

𝑎𝑎 = 𝑓𝑓1
𝑏𝑏 = 𝑓𝑓2 

𝑎𝑎 ← 𝑎𝑎
𝑏𝑏 ← 𝑏𝑏𝑏 

𝑎𝑎 ← 𝑎𝑎𝑏
𝑏𝑏 ← 𝑏𝑏 

𝑎𝑎 ∙ 𝑏𝑏 
𝑎𝑎 ← 𝑎𝑎
𝑏𝑏 ← 𝑏𝑏𝑏 

𝑎𝑎 ← 𝑎𝑎𝑏
𝑏𝑏 ← 𝑏𝑏 

𝑎𝑎 ∙ 𝑏𝑏 
𝑎𝑎 ← 𝑎𝑎
𝑏𝑏 ← 𝑏𝑏𝑏 

𝑎𝑎 ← 𝑎𝑎𝑏
𝑏𝑏 ← 𝑏𝑏 

= 𝑓𝑓1 𝑓𝑓2

𝑎𝑎 ∙ 𝑏𝑏 𝑎𝑎 ∙ 𝑏𝑏 𝑎𝑎 ∙ 𝑏𝑏 𝑎𝑎 ∙ 𝑏𝑏 

+ 

+ + + 

= 𝑓𝑓𝑏1 𝑓𝑓2 + 𝑓𝑓1𝑓𝑓𝑏2

= 𝑓𝑓𝑏𝑏1 𝑓𝑓2 + 𝑓𝑓𝑏1𝑓𝑓𝑏2 + 𝑓𝑓𝑏1𝑓𝑓𝑏2 + 𝑓𝑓1𝑓𝑓𝑏𝑏2

… 
Fig. 3 Computation tree of the recursive multiplication.

𝑎𝑎/𝑏𝑏 

𝑎𝑎 = 𝑓𝑓1
𝑏𝑏 = 𝑓𝑓2 

𝑎𝑎 ← −𝑎𝑎𝑏𝑏𝑎𝑎𝑎 ← 𝑎𝑎𝑎
𝑏𝑏 ← 𝑏𝑏 

𝑎𝑎/𝑏𝑏 
𝑎𝑎 ← 𝑎𝑎𝑎
𝑏𝑏 ← 𝑏𝑏 

𝑎𝑎/𝑏𝑏 
𝑎𝑎 ← 𝑎𝑎𝑎
𝑏𝑏 ← 𝑏𝑏 

= 𝑓𝑓1/𝑓𝑓2

𝑎𝑎/𝑏𝑏 𝑎𝑎/𝑏𝑏 𝑎𝑎/𝑏𝑏 𝑎𝑎/𝑏𝑏 

+ 

+ + + 

= 𝑓𝑓𝑎1/𝑓𝑓2−𝑓𝑓1𝑓𝑓′2/𝑓𝑓2
2

… 

𝑏𝑏 ← 𝑏𝑏2 

𝑎𝑎 ← −𝑎𝑎𝑏𝑏𝑎
𝑏𝑏 ← 𝑏𝑏2 

𝑎𝑎 ← −𝑎𝑎𝑏𝑏𝑎
𝑏𝑏 ← 𝑏𝑏2 

Fig. 4 Computation tree of the recursive division.
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The chain rule for higher order derivatives can also be 
expressed in a recursive way.

Note that we do not have to specify all derivatives, just 
the first derivative, provided that it is also in the set of ele-
mentary functions with prepared derivatives.

5 Handling 0 / 0 type ambiguities
When we encounter a 0 / 0 type undefined division or the 
numerator and denominator are close to zero causing 
numerical instability, the l'Hospital rule can automatically 
be applied. If f t

1 0( )  and f t
2 0( )  are zero, then 

lim ,
t t

f t
f t

f t
f t

f
f

f f f
→

( )
( )

=
′( )
′( )










′
=

′′ ′ − ′ ′′
0

1

2

1 0

2 0

1

2

1 2 1
ff

f
2

2

2
2 ′( )

.  

If ′( )f t
1 0  and ′( )f t

2 0  are also zero, the l'Hospital rule 
can be applied recursively. Based on this, we modify 
the division operator, find the first derivatives of no 0 / 0 
ambiguity, and use their ratio (Algorithm 4).

Fig. 5 depicts the sin(t) / t function and its first and sec-
ond derivatives evaluated with the proposed method.

6 Applications
The presented methods can be applied in problems where 
higher order derivatives are needed or when 0 / 0 type 
ambiguities should also be solved. Here we present two 
particular applications belonging to dynamics simula-
tion and differential geometry. Our first example uses the 

Dvec class, i.e. the recursive evaluation, the second takes 
advantage of the DnumNxN class, i.e. the two-variate 
generalized dual number.

6.1 Path animation and aesthetics of curves
Suppose the path of an object is defined by a time depen-
dent function r t( ) , or alternatively, by the three sca-
lar functions of Cartesian coordinates X(t), Y(t), Z(t). 
Transformation of the object requires velocity ′( )r t  that 
defines the current heading direction, and acceleration 
′′( )r t , from which the Frenet frame can be calculated. 
The curvature is also obtained from these quantities: 

κ t r r
r

( ) =
′× ′′

′

 

 3
.  (12)

Let us take the following example path (X(t) with its 
automatic and numerical derivatives are shown by Fig. 1): 

X t t t
t

Y t t

( ) =
( ) ( ) +( )

( )( ) +

( ) =
( ) +( )

sin sin .

tan cos
,

cos sin

3 0 4

2

8 1 1.. .

sin sin
,

exp .

2 0 2

2

100

3

2 2

+
( ) ( )( ) +

( ) = −
( ) + ( )( )









t t

Z t X t Y t

 

In fairing the uniformity of the curvature is maxi-
mized, thus the integral of the absolute value of the cur-
vature derivative with respect to the path length should be 
minimized. This requires the computation of the follow-
ing local quantity where s is the path length: 

d

d

d

d

κ κt s
s

t
t r t

( )( )
=

( )
×

′( )
1


.  (13)

We introduce the Vec3 class that contains three Dvec 
generalized dual number objects to represent the three 
Cartesian coordinates. Vector operations are implemented 
for this vector of functions, including cross product Cross 
and absolute value Abs (Algorithm 5).

Algorithm 4 Modified division with the l'Hospital rule

Dvec operator/(Dvec f1, Dvec f2) {
int j = 0;
if (fabs(f2[0]) < epsilon && fabs(f1[0]) < epsilon) {

for (j = 0; j < f2.size(); j++) if (fabs(f2[j]) >= epsilon) break;
}
return (f1.isReal() || f2.isReal()) ? Single(f1[j]/f2[j])

                 : Dvec(f1[j]/f2[j], (f1.D()*f2-f1*f2.D())/(f2*f2));
}

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -4 -2  0  2  4  6

sin(x)/x with l`Hospital
automatic first derivative

automatic second derivative

Fig. 5 Plot of the sin(t) / t function and of its derivatives evaluated 
with the proposed method and applying the l'Hospital rule.

Algorithm 5 Vec3 for vector derivation

struct Vec3  {
Dvec X, Y, Z; 
Vec3(Dvec X0, Dvec Y0, Dvec Z0) : X(X0), Y(Y0), Z(Z0) { }
Vec3 D() { return Vec3(X.D(), Y.D(), Z.D()); }
vec3 operator()(int i) { return vec3(X[i], Y[i], Z[i]); }

};
Dvec Abs(Vec3 v) { return Pow(v.X * v.X + v.Y * v.Y + v.Z * v.Z, 0.5); }
Vec3 Cross(Vec3 v1, Vec3 v2) {

return Vec3(v1.Y * v2.Z - v1.Z * v2.Y,
         v1.Z * v2.X - v1.X * v2.Z, v1.X * v2.Y - v1.Y * v2.X);
}



8|Szirmay-Kalos
Period. Polytech. Elec. Eng. Comp. Sci., 65(1), pp. 1–10, 2021

The program of Algorithm 6 takes parameter t and con-
verts it to a function with derivatives T. As this is the der-
ivation variable, its derivative is set to 1. The correspond-
ing point of the path together with the derivatives up to 
order 3 are stored in R. The curvature and its derivative 
are in curv[0] and curv[1] after evaluating Eq. (12).

Fig. 6 shows the path and the axes of the Frenet frame, 
which are parallel with the velocity, centripetal acceleration, 
and binormal direction. The diffuse color of the curve in the 
left image depicts the curvature. We used the rainbow col-
ors, blue corresponds to zero and red to the maximum value.

In the right image of Fig. 6, the aesthetic measure of 
Eq. (13) depending even on the third derivative is visual-
ized. The aim of fairing would be to force this measure to go 
to zero, which would be visualized with blue diffuse color.

6.2 Gaussian curvature of parametric surfaces
The Gaussian curvature κ of a parametric surface can be 
computed as the ratio of the determinants of the second and 
the first fundamental forms. The first fundamental form 
contains the partial derivatives ′ru  and ′rv  of the surface 
function r u v,( )  with respect to parameters u and v, the sec-
ond fundamental form the second derivatives ′′ruu  and ′′rvv  
and also the cross derivative ′′ruv . The Gaussian curvature is 

κ =
⋅ ′′( ) ⋅ ′′( ) − ⋅ ′′( )
′ ⋅ ′( ) ′ ⋅ ′(

     

   

n r n r n r

r r r r
uu vv uv

u u v v

2

)) − ′ ⋅ ′( ) r ru v
2
,  

where 


 

 

n
r r
r r
u v

u v

=
′× ′
′× ′

 

is the unit normal.
In order to visualize the surface together with the cur-

vature information, we evaluate the surface function 
r u v,( )  together with up to second order derivatives. 
Suppose we have function eval(U, V, X, Y, Z) that gets 
the Dvec version U and V of parameters u and v, respec-
tively, and computes not only the r X Y Z= ( ), , , but also 
the first and second derivatives.

Note the conversion of u to U. The value is u, the deriv-
ative with respect to u is 1, and the derivative with respect 
to v is zero. The conversion of v is similar, but now 
the derivative with respect to u is 0, and the derivative 
with respect to v is 1.

Having called eval(U, V, X, Y, Z) all derivatives are 
available from which the normal vector, determinants of 
the fundamental forms, and the Gaussian curvature can be 
computed (Algorithm 7).

As the derivatives are automatically calculated, func-
tion eval(U, V, X, Y, Z) looks like only the surface func-
tion implementation. Tables 1 and 2 show the particular 
implementations for the surface types of Fig. 7.

7 Conclusions
This paper presented simple C++ classes that can solve 
the automatic derivation problem up to arbitrary order. 
We also considered the multi-variate case. To handle 0 / 0 
ambiguities, the application of the l'Hospital rule is auto-
mated. The classes can be used in any program where higher 
order derivatives of analytical functions are needed. We pre-
sented two applications, the first addressed path animation 
and curve fairness, the second the Gaussian curvature of 
surfaces. The programs can be downloaded from [15].

(a) (b)

Fig. 6 (a) Path animation with the visualization of the curvature and 
(b) the curvature derivative together with the Frenet frame.

Algorithm 6 Curvature and fairness computation

Dvec T(t, 1); // derivation variable
Vec3 R;  // path point and derivatives
R.X = Sin(T)*(Sin(T)+3)*0.4 / (Tan(Cos(T))+2);
R.Y = (Cos(Sin(T)*8+1)*1.2+0.2) / (Pow(Sin(T)*Sin(T),3)+2);
R.Z = Exp((X*X + Y*Y) / (-100));
vec3 r = R(0), rt = R(1), rtt = R(2);          // point, velocity, acceleration
Dvec curv = Abs(Cross(R.D(),R.D().D()))/Pow(Abs(R.D()),3);
float curvature = curv[0];            // Eq. (12)
float fairness = curv[1] / length(R(1));   // Eq. (13) Algorithm 7 Gaussian curvature of surfaces

// Computation of surface function and derivatives
DnumNxN U(u, 1, 0), V(v, 0, 1), X, Y, Z;
eval(U, V, X, Y, Z); // (U, V) -> X, Y, Z
// First fundamental form
vec3 ru = vec3(X(1, 0), Y(1, 0), Z(1, 0));
vec3 rv = vec3(X(0, 1), Y(0, 1), Z(0, 1));
vec3 n = normalize(cross(ru, rv));
float E = dot(ru,ru), F = dot(ru,rv), G = dot(rv,rv);
// Second fundamental form
vec3 ruu = vec3(X(2, 0), Y(2, 0), Z(2, 0));
vec3 ruv = vec3(X(1, 1), Y(1, 1), Z(1, 1));
vec3 rvv = vec3(X(0, 2), Y(0, 2), Z(0, 2));
float L = dot(n,ruu), M = dot(n,ruv), N = dot(n,rvv);
// Curvature is the ratio of the determinants
float curvature = (L * N - M * M) / (E * G - F * F);
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Table 1 Surface evaluation functions eval(U, V, X, Y, Z) of the sphere, tractricoid, cylinder, torus, and Möbius strip.

Sphere Tractricoid Cylinder Torus Möbius

U=U*2*M_PI; U=U*2*M_PI; U=U*2*M_PI; U=U*2*M_PI; U=U*M_PI;

V=V*M_PI; V=V*h; V=V*h; V=V*2*M_PI; V=(V-0.5)*w;

X=Cos(U)*Sin(V); X=Cos(U)/Cosh(V); X=Cos(U); X=(Cos(U)*r+R)*Cos(V); X=(Cos(U)*V+R)*Cos(U*2);

Y=Sin(U)*Sin(V); Y=Sin(U)/Cosh(V); Y=Sin(U); Y=(Cos(U)*r+R)*Sin(V); Y=(Cos(U)*V+R)*Sin(U*2);

Z=Cos(V); Z=V-Tanh(V); Z=V; Z=Sin(U)*r; Z=Sin(U)*V;

Fig. 7 Rendering of parametric surfaces with diffuse color hues defined by the Gaussian curvature. Green depicts zero curvature. From blue to green, 
the curvature is negative. From green to red, the curvature is positive. The square and the cylinder have zero curvature everywhere. The sphere has 

constant positive curvature, the tractricoid has constant negative curvature. The curvature of other surfaces depends on the location.

Table 2 Surface evaluation functions eval(U, V, X, Y, Z) of the Klein bottle and the Boy surface.

Klein bottle Boy surface

U = U*M_PI*2; U = (U-0.5)*M_PI;

V = V*M_PI*2; V = V * M_PI;

DnumNxN a = Cos(U)*(Sin(U)+1)*0.3; float r2 = sqrt(2);

DnumNxN b = Sin(U)*0.8; DnumNxN denom = (Sin(U*3)*Sin(V*2)*(-3/r2)+3)*1.2;

DnumNxN c = (Cos(U)*(-0.1)+0.2); DnumNxN CosV2 = Cos(V)*Cos(V);

X = a+c*((U(0,0)>M_PI) ? Cos(V+M_PI) : Cos(U)*Cos(V)); X = (Cos(U*2)*CosV2*r2+Cos(U)*Sin(V*2)) / denom;

Y = b+((U(0,0)>M_PI) ? 0 : c*Sin(U)*Cos(V)); Y = (Sin(U*2)*CosV2*r2-Sin(U)*Sin(V*2)) / denom;

Z = c*Sin(V); Z = (CosV2*3) / denom;
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