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Abstract

The Voltage Response measurement since its introduction in the 1960s has been used successfully for the diagnostics of electrical
insulation. The method is based on two quantities of decay and return voltage slopes and can be used to study the conduction
and polarization processes inside the insulation. Extended Voltage Response method, being an advanced version of the Voltage
Response measurement helps in further studying the polarization process by using a large polarization spectrum and hence dielectric
relaxation processes. These dielectric relaxation processes can be modeled by the Debye model. Since as most of the techniques
used for diagnostic purpose does not give the information about the conduction and polarization processes separately, it is difficult
to determine the R-C parameters of the Debye model. The Voltage Response technique is very useful in this regard because of the
two voltage slopes. The paper shows a novel experimental benchmark for testing the function fitting methodologies of the Voltage
Response methodologies, which helps in determining the R-C parameters. Moreover, the problem can be used for testing the novel
genetic, evolutionary algorithms, where benchmarking is an actual challenge. The proposed nonlinear function fitting method uses

the genetic algorithms via the Artap framework, which lets it possible to select the most accurate optimization algorithm from the

provided list of the algorithms and achieve better fitting precision, faster calculation time or more powerful processing ability.
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1 Introduction

Aging of electrical insulating materials has been a topic of
great interest for many years, which increased the impor-
tance of diagnostic techniques to determine the condition of
electrical insulations [1, 2]. The measurement of the dielec-
tric properties is a most important tool among the diagnos-
tic techniques. The dielectric properties can be measured
either using a time-domain method or frequency domain
method [3]. Out of numerous time-domain techniques, mea-
surement of return voltage is one such method, which was
introduced in the 1960's by Endre Németh [4]. The concept
behind the technique was to study the slow dielectric polariza-
tion processes inside the insulation material. Two techniques
emerged from the voltage return method, Return Voltage
Measurement (RVM) and Voltage Response (VR) method.

The non-destructive nature of the techniques gained
the attention of the researcher for insulation diagnosis.
Since then, the techniques have been used by many research-
ers fora wide range of electrical insulations to study the aging
and the phenomenon of dielectric relaxation processes in the
insulations [4—6]. Apart from its simplicity and robustness,
the technique has a disadvantage of having a long measure-
ment time [7]. In recent times, an extended version of the
VR method Extended Voltage Response (EVR) method was
introduced, which is useful to study in detail the polarization
processes by measuring more than one return voltage slopes
achieving a polarization spectrum [5—8].

It is well established that the dielectric can be modeled
using the extended Debye circuit having R and C elements,
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which are used for model the conduction and polarization
phenomenon of insulation (see Fig. 1). In this circuit model
the R, represents the dc conductivity, the C, is the capacitiy
of the electrode arrangement without dielectric. The Rpl.—Cpl.
branches (Debye elements) represent the elementary polar-
isaion processes of the tested insulation. The determination
of parameters of Debye branches can help to identify the
characteristic ageing processes of insulations. Understanig
the ageing phenomenon is essential for reliable life-time
management of electrical equipment.

Besides the conventional iteration methods used to
determine the parameters of extended Debye model,
in this research work, a novel function fitting methodol-
ogies based on experimental benchmark problem solving
is used [9-12]. A physical Debye circuit insulation mod-
els were used for experiments and the Voltage Responses
of the models were measured. Then based on the Voltage
Response measurement results of insulation models, a non-
linear function fitting method using genetic algorithms via
the Artap framework is adopted. This helps in the selec-
tion of the most accurate optimization algorithm from the
provided list of the algorithms [13, 14]. The results show
that the technique was helpful in the computationally hard
problem to calculate the R and C parameters of the Debye
model due to its powerful processing ability and faster
calculation speed. Moreover, this method finds the global
optimum of the problem.

2 Extended Voltage Response measurements
The Extended Voltage Response is a developed method
of Voltage Response measurement [4—6]. The measure-
ment of Voltage Response is based on the measurement of
decay and return voltages of a charged insulation. The test
arrangement can be seen in Fig. 2 and the timing diagram
of the measurement is in Fig. 3.

For charging, the SW1 is in "ON" position. The SW2
is used for discharging the charged insulation. During the
measurement of Voltage Responses both switcheas are
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Fig. 3 The timing diagram of Extended Voltage Response measurement
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in "OFF" position. The decay and return voltages are charac-
terized by their intital slopes namely S (¢,)and S (¢ ,, ¢, . ),
repectively (see Fig. 3). Obviously these values are depen-
dent on the charging (¢,,) af discharging times (¢, ).

The values of Debye branches can be calculated by the
initial slopes of return voltages. The voltage of a CP,.
capacitor (V. ) after tch charging and tdchn discharging
times can be ;alculated by the multiplication of the expo-

nential functions.
V. =V, (1 e j o 1)

Where V, is the charging voltage and = R, Cp,-- The slope

of return voltage St t

one Rﬁi—Cpi branch) can be calculated by

1= e

RpiCO

) of one Debye element (i.e.

Sri (tch > tdchn ) = (2)

If the equivalent circuit contains N Debye element, the
total slope of return voltage can be cvalculated by using a
superposition of return voltage slopes of each Debye element:

N
Sr (tch > tdz‘hn ) = Z Sri (tch > tdchn ) (3)
i=1
The determination of the values of Debye elements is
based on the calculations above.

3 Nonlinear curve fitting with Artap

Curve fitting is a very general and important problem in sci-
ence and industry. According to the type of the fitted func-
tion it can be categorized as a linear and non-linear optimi-
zation task. The literature contains a lot of different methods
to solve this problem with the required accuracy [15-26].
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Most of these measurements use the gradient-based
solvers, the Gauss-Newton Algorithm or the Levenberg-
Marquardt Algorithm, which use the fact that these prob-
lems can be expressed by the rules of the Quadratic
Programming (QP) [27, 28].

These methods use the fact that after the measurements,
we have m data points 7, € R"xIR, where the least-squares
fitting objective is

mﬁin;(f(xi;ﬂ)—y?)=ﬁ+r§+~~~+r,5, @

where f is an instance of a convex function, feR" is
a vector, which contains the optimized parameters for the
chosen function and Y is a vector, which represents the
measured values. The vector of the residuals r(f) can be
defined in the following way:

r(B)=7s(X:p)-7Y, ®)

where the task is to minimize the r(f)” r(f). Let the initial
parameter is 3, the value of the corresponding residual is
r(p,) and 6 represent a small change in the input parame-
ters, the new residual is

r(B,+8)=r(B,)+J3, ©6)

where J (e R™") is the Jacobian of f(df/0f) . From this,
the problem can be expressed by its first order quadratic
form in the following convex, quadratic form [26, 28]:

mﬁin5TJTJ5+25TJTr+rTr (7)
subject to
S eA, 8)

where A is the trust region.

This task has a solution, when r(8)" r(ff) = 0. The opti-
mal step of the solution can be calculated by Gauss-Newton
methods, which finds the ¢ that minimizes the quadratic
objective, but with no trust-region bounds:

J'Is=-J"r. )

The Levenberg-Marquardt algorithms can be used to
solve this problem with trust regions:

J' T+ Adiag(JT )8 =J"r, (10)

where 4 controls the magnitude of the quadratic penalty on o.

This methodology is widely used for linear and non-lin-
ear data-fitting. However, these algorithms are highly
dependent on proper initial values, in the case of model-
ing engineering problems, correctly specifying the initial

values is a hard task in the case of a practical problem [24].
Moreover, this approximated or interpolated functions
have to be fitted on a noisy measurement data. One of the
most widely used functions is the b-splines to describe
a mathematical connection on the measured data [21].
Where the placement of the knots has to be optimized
to minimize the error. This problem is a multi-modal and
multi-variate nonlinear optimization problem with many
local optima. Where the above mentioned gradient-based
optimization methods can easily be trapped in a local opti-
mum, because the optimization task cannot formulated
as a convex optimization task. To overcome this problem
there are many heuristics and metaheuristics developed
for engineering applications. These methods are usually
mixing some convex or mathematical optimization with a
method of a branch and bound, genetic algorithms, neural
networks or other meta-heuristics [17-20, 22-26, 29-34].

In this paper, a sum of exponentials has to be fitted.
This task is highly non-linear, which complexity growth
with the number of degrees of freedom (n is high).
The size of the search space of the optimization task is
large. Besides, the data is generally scattered and con-
tains some noise from the measurement. A simple genetic
algorithm-based fitting approach is used in this paper,
via the Artap framework [9-12]. The main advantage of
using this framework is the simplicity of the interface,
which provides automatic parallelization and enables
to exchange the applied genetic algorithm with another
one. It is an important feature, because of the "no free
lunch" theorem of optimization [34], which says that
non-exists of an evolutionary methodology, which can
overturn any other one. The pseudo-code of the NSGA-II
algorithm is shown in Algorithm 1. NSGA-II is one of the
most popularly used, a genetic algorithm-based, multi-ob-
jective optimization techniques [35-37]. Due to its three
advantageous characteristics, which were outperformed
the existing algorithms when it was published [38].
These properties are the elitism, the small computational
complexity, which is almost O(M N?) and the explicit
diversity preservation mechanism, which ensures good
convergence and stability.

The object function can be defined in several ways, this
type of optimization functions [19]:

FLS :Z(Pi_Mi)z

i=1



Algorithm 1 NSGA 11 [12, 38]

1:  function NSGA Il(n, g, /) — fmeans our unique function which
calculates TOC and the key design-parameters for an individual

2:  initialize parent population (P)

3:  generate random population (R)

4:  run ffor every individual

5: Sorting, Assign Rank — Pareto dominance —

6:  Generate Offsprings (O) — next generation

7 Binary Tournament Selector

&: Recombination and Mutation

9: for i: =1 to g do — g: max number of generations

10: for on each P and O in a population do

11: Sorting, Assign Rank — Pareto dominance —

12: Generate sets of non-dominated vectors

13: Loop — evaluates the user-defined
ffunction — and add solutions to next-
generation starting from the first front
until » determine crowding distance
between points on each front

14:  end for

15: Select individuals (elitist) with lower rank and are

outside a crowding distance

16: Generate Offsprings (O) — next generation

17 Binary Tournament Selector

18: Recombination and Mutation

19: end for

20: end function

. F,=nxlog((P-M,))+2k

where P,, M, and 4, are the predicted, measured and the
averaged values, n denote the sample size and & is the num-
ber of the fittest parameters. There is some advice in the lit-
erature that if the parameters remain unchanged after the
last 5 iterations, the iteration should be stopped [21, 24].
Algorithm 1 is used in this paper.

4 Results and discussion
To benchmark the measurement methodology, three mea-
surements were made with three realized insulation model
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circuits. These models were made from precious resistors
and capacitors, with N =1, 2 and 3 branches, respectively.
The values of the R and C parameters are shown in Table 1.

These values were measured by Agilent 4339B high
resistance meter and Wayne Kerr 6430A component ana-
lyzer. Then, the Voltage Responses of model circuits were
measured by the EVR equipment, which was developed at
the Deapartment. The charging voltage and the charging
time were 1000 V and 4000 s, respectively. Due to the
measurement uncertainty, the Quadratic Programming
based methodology provides different values for R —C
elements of the Debye model. To prove the existence of
one global optimum of the problem the ideal voltage slope
parameters were calculated by analytical method based
on Egs. (1)-(3). These values provided a good benchmark
to make the optimization on a data set without measure-
ment error and uncertainties. The optimal parameters of
the searched R and C values were calculated by two differ-
ent methods. The first of them used the Artap and a built-in
NSGA-II function. The used code and the project file can be
downloaded from the project page of Artap, it is included
in the package of [39]. The other calculation was made by
the built-in optimizer of MATLAB, the GlobalSearch func-
tion [29]. This optimizer uses a Quadratic Programming
solver, which starts from multiple points. The results of
return voltage slopes are presented in Tables 2—4. Due to
these properties, this metaheuristic solver is a very strong
tool for this type of problem. The optimized parameters
approximate well the original curvature. The fitted and the
measured curves of slopes of return voltages as a function
of shorting time are plotted in Fig. 4 in case of N =3.

In the case of N = 1, both the NSGA-II and the
GlobalSearch based calculations gave back the expected
values with minimal calculation error. It can be seen that
both solutions approximated well in the case of N = 2
branches. The calculated values of each R and C param-
eters by NSGA-II and the GlobalSearch are significantly
different in the N = 3 case (case 3). This happened because

Table 1 The measured values of the R and C parameters.

Parameter N=1 N=2 N=3
R, [GQ] 5.87 5.87 5.87
R, [GQ] 2.1663 2.1663 2.1663
R, [GQ] - 1.7806 1.7806
R, [GQ] - - 3.0078
C, [nF] 9.627 9.627 9.627
C, [nF] 19.589 10.236 10.236
C, [nF] - 9.4081 9.4081
C, [nF] 46.2880
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Table 2 The calculated voltage slopes based on analytical (¢) and
optimised values of R C parameters by GlobalSearch (g) and
NSGA-II (n) in the case of N=1

Table 4 The calculated voltage slopes based on analytical (¢) and
optimised values of R C parameters by GlobalSearch (g) and
NSGA-II (n) in the case of N=13

Shorting time Slopes of return voltages (V/s)

Shorting time Slopes of return voltages (V/s)

t (sec) s, S i t (sec) s, S :
1 46.83347 46.83346 47.76 1 135.0715 135.0709 133.529
2 4574274 4574273 46.458 2 129.6215 129.6213 128.043
4 43.6369 43.6369 43.153 4 119.5329 119.5332 117.659
6 41.62801 41.628 41.717 6 110.4325 110.433 108.684
8 39.7116 39.7116 39.697 8 102.2183 102.2187 100.426
10 37.88341 37.88341 37.662 10 94.79905 94.79937 92.752
15 33.67273 33.67274 33.207 15 79.21414 79.21396 76.645
20 29.93007 29.93008 29.496 20 67.05153 67.05094 65.032
30 23.64647 23.64648 23.241 30 49.96951 49.96882 48.625
50 14.75991 14.75992 14.522 50 32.09568 32.09618 31.257
75 8.188986 8.188999 8.029 75 22.44427 22.44511 21.111
100 4.543356 4.543365 4.479 100 17.51621 17.51614 16.426
150 1.398524 1.398528 1.429 150 11.8215 11.82052 11.051
200 0.43049 0.430492 0.454 200 8.217025 8.216676 7.65
300 0.04079 0.04079 0.073 300 4.003668 4.004454 3.718
500 0.000366 0.000366 0.001 500 0.951871 0.952578 0.89
Table 3 The calculated voltage slopes based on analytical (a) and 120 -
optimised values of R C parameters by GlobalSearch (g) and
NSGA-II (1) in the case of N =2 g
Shorting time Slopes of return voltages (V/s) gp 80
t (sec) S S S g
a z n g 60
1 100.7923 100.7923 98.786 T
2 95.58673 95.58672 94.485 i
4 85.98188 85.98188 84.833 iﬁl 20
6 77.35857 77.35858 75.677
8 69.6149 69.61492 68.024 ’ 1 10 100
10 62.65971 62.65974 60.888 discharging times [5]
15 4820685 4820688 46.472 T Analvtical —Globaearch NSGA
20 37.13707 37.13709 35.956 Fig. 4 The comparison of the model results and the fitted parameters
30 22.12758 22.12759 21.456 in the case of N=3.
50 7.979435 7.979439 7912
75 2.29236 2.292368 2.318 C,, values can be in range 1...30 G and nF, repsctively
100 0.676797 0.676805 0.72 (Fig. 5). The optimal values are represented by the darkest
150 0.062897 0.0629 0.069 red region in the figure.
200 0.006189 0.006189 0.014 As the figures shows relative high variation in pareme-
300 6.49E-05 6.49E-05 0.026 ters results in small change in error function therefore, the
500 7.75E-09 7.75E-09 0.001 optimizated parameters of Debye elements are subject to

of the optimized parameters are in the exponent of the
objective function. Hence the objective function is rela-
tive flat consequently a small error in the precision of the
parameter determination can produce a significantly high
error. To present the problem difficulty the error function
of objective function is calculated assuming the R, and

high uncertainty.

The Quadratic Programming based methodology provides
better results because it uses a Newton solver or a Levenberg-
Marquardt based solver to find the exact function parame-
ters. The solution of the NSGA-II based methodology can be
improved similarly if a Newton-solver started from the found
parameters and then they are refined similarly [23].
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