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Abstract

In this paper we visit the problem of pursuit and evasion and specifically, the collision avoidance during the problem. Two distinct

tasks are visited: the first is a scenario when the agents can communicate with each other online, meanwhile in the second scenario

they have to only rely on the state information and the knowledge about other agents' actions. We propose a method combining the

already existing Minimax-Q and Nash-Q algorithms to provide a solution that can better take the enemy as well as friendly agents'

actions into consideration. This combination is a simple weighting of the two algorithms with the Minimax-Q algorithm being based

on a linear programming problem.
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1 Introduction

Nowadays newer and newer robotics problems are sur-
facing. One of them is called "pursuit and evasion", when
several robots are chasing another, trying to catch and
stop it. This kind of task has already been researched
called as predator-prey problem, however the only pur-
pose of the previous algorithms, such as [1] and [2] is
to catch a sole (possibly faster) agent by several (slower)
agents, without taking collision into consideration. In our
work we are proposing a solution to collision-free catch-
ing algorithm, and due to the flexibility of the solution,
the possibility of application to greater state-spaces and
the size of the actual problem, a reinforcement learning
solution method was proposed.

Collision avoidance makes the standard predator-prey
problem a lot more difficult. Meanwhile in the common
predator-prey solution it is possible to relentlessly chase
the enemy by all agents, the possibility of collision renders
relentless chasing meaningless, it is better for the agents
to find a solution that is less prone to accidental collisions
and thus, they have to approach the enemy more tactically.
In our experiment, we checked both possibilities for the

agents of being able to communicate with each other or
being only possible to rely on state information without
further online communication.

By the nature of the problem, the agents have to take
each other as well as the enemy agent into consideration,
they cannot act as if other agents would not be present in
the world. Friendly movements have to be taken care of
to try to evade collision, and the enemy movement has to
be watched to be able to take the enemy policy into con-
sideration. This brings us to the problem group of multi-
agent learning, which means learning in the presence of
other agents in the world. This problem group, multi-agent
learning, tries to solve the problems of stochasticity caused
by other agents' actions in the world, mostly by explicitly
taking them into consideration.

Littman [3] utilized the Minimax-Q algorithm first
and applied it to a simplified version of robotic soccer
game. Hu and Wellman [4] created the Nash-Q algo-
rithm and used it on a small gridworld example to show
its results. Bowling and Veloso [5] varied the learning
rate of the training process to speed it up. Lowe et al. [1]
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created a continuous action-space solution for the pred-
ator-prey problem as well, utilizing a Multi-agent Deep
Deterministic Policy Gradient algorithm. The continu-
ous action space has also been researched by Li et al. [2],
in this case in competitive environment via Minimax
Deep Deterministic Policy Gradient.

Apart from gridworld, another usual problem in multi-
agent environment to solve is micromanagement in strat-
egy games, usually done by deep neural networks.
Micromanagement means control of the units individually.
Samvelyan et al. [6] proposed a benchmark for it called
StarCraft Mutli-Agent Challenge. The full StarCraft II
environment is also used for multi-agent learning by cre-
ating a headless version of the well-known game [7].
Foerster et al. [8] developed a counterfactual multi-agent
policy gradient method with centralized critic and decen-
tralized actors. Peng et al. [9] utilized Bidirectionally.
Coordinated nets with a vectorized extension of actor-
critic formulation. Rashid et al. [10] developed a val-
ue-based method that can train decentralized policies in a
centralized way. Foerster et al. [11] tried to achieve better
performance of deep reinforcement learning by stabiliz-
ing the experience replay part. There are some other types
of multi-agent testbeds and solutions worth mentioning.
Bard et al. [12] proposed the game of Hanabi, a cooperative
and partially observable card game as a multi-agent testbed.
For the Hanabi game, Foerster et al. [13] created a state-of-
art solution called Bayesian Action Decoder. A first-person
multiplayer shooter game was used by Jaderberg et al. [14]
as a testbed, where human-level performance was reached
by population-based deep reinforcement learning.

Unlike previous literature, our paper proposes a method
with collision as a focus point of the training process.
With that, we also propose an algorithm based on the
weightning of the Minimax-Q and the Nash-Q algorithms.

First, we introduce the theoretical background of our
solution in Section 2. Afterwards, we show the formu-
lated problem as well as the results of our experiments in
Section 3. Finally, we discuss our results, conclude our
work and signal some directions for future possibilities of
improvement to our solution in Section 4.

2 Theoretical background

2.1 Markov decision processes

A Markov Decision Process is a mathematical framework
for modeling of decision making. In a Markov Decision
Process there are states, selectable actions, transition
probabilities and rewards. At each timestep the process
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starts at a state s, and it selects an action a from the avail-
able action space. Then, it gets a corresponding reward 7,
and then finds itself in a state s’ given by the probability of
P(s,s"). A process is said to be Markovian if

P(a’:a|s’,a”1,...,s°,a0)=P(at=a|St), M

which means that a state is transitioning only on the pre-
vious state and the current action. Thus, only the last state
and action are interesting regarding the decision for the
next state. The notation ¢’ means the action taken at time ¢,
while s means the state at time .

In a Markov Decision Process, the agents are trying
to find a policy which maximizes the sum of discounted
expected rewards. The standard solution for this is through
iterative search method which searches for a fixed point of
the Bellman equation:

v(s,7")=max, (r(s, a)+y Y. (ps'ls,a)v(s’,n” )], )

where v(s,7") is the value function for the optimal 7" pol-
icy, r(s,a) is the reward taking action « at state s, and
p(s’|s,a) is the state transition probability from state s
to state s' taking action a.

2.2 Reinforcement learning
When the state transition probabilities or the rewards are
unknown, the problem of the Markov Decision Process
becomes a problem of Reinforcement learning. In this group
of problem the agent tries to make a model of the world
around itself by trial and error. In most reinforcement learn-
ing methods, the agent tries to learn a value function that
renders a value to the states or to the actions from states.
These values correspond to the achievable reward from
reaching a state or from taking a specific action from a state.
The most commonly used type of reinforcement learn-
ing is Q-learning, when the so-called Q-values are esti-
mated for each of the state-action pairs of the world.
These Q-values represent the value of choosing a specific
action in a state, meaning how much reward could the
agent possibly get by taking that action. The basic idea
for Q-learning is that we can define a function Q such that

o (S,a):r(s,a)+yZ(ps'|s,a)v(s',7r*). 3)
By Eq. (2) we can deduce
v(s,7")=max Q" (s,a). )

The equation for Q-learning for updating the Q-values
of a state is:
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O(s'ya)« (1-a)-O(s,a)+a ~(r+y-ma}xQ(s',a')), %)

where a is the learning rate and y is the discount for the
reward.The agent always selects an action that maximizes
the O-function for the state that the agent is in.

2.3 Matrix and Markov games

A Matrix game is a stochastic framework where each
player selects an action and gets their immediate reward
based on its and all other agents' action. They are called as
Matrix games due to the fact that the games can be writ-
ten as a matrix, with the first two player selecting action
in the row and the column of the matrix. Unlike Markov
Decision Processes, these games have no state.

One famous Matrix game is Matching Pennies. This game
is played between two players, Even and Odd. Both players
have a penny in their hand, which is secretly turned to Heads
or Tails. Then, these pennies are shown to the other as well.
If the pennies match, Even keeps all pennies, if they do not
match, so one is Heads and the other is Tails, Odd keeps
them. As one player wins when the other loses, and wins or
loses the same amount as the other one loses or wins, this
game is called zero-sum.

A famous example of non-zero-sum Matrix game is
Prisoners' dilemma. In this game, two prisoners are kept
away from each other and have the possible actions of
remaining silent or betraying the other one. If they both
remain silent, they become sentenced to a short period.
If one betrays the other meanwhile the other one remains
silent, one is set free and the other is sentenced for a long
period. If they both try to betray the other one, they are
sentenced to an even longer period. This example has been
analyzed by game theory to show why two rational indi-
viduals might not cooperate.

Markov games, or Stochastic games are an extension of
Markov Decision Processes with multiple agents. Also, it
can be thought of as an extension to Matrix games with
multiple states. In a Markov game, each state has a payoff
matrix for all of the states. The next state is determined by
the joint action of the agents and fixed transition probabil-
ities. The probabilities mus satisfy the constraint

Z(ps'|s,al,...,a”)=l. 6)
S A game is Markovian if
P(al.’ =a, |s’,al.(”1),...,s°,a?)=P(af =aq, |s’), 7

so the next state depends only on the current state and the
current actions taken by all agents. We can define Nash

equilibria for a Markov game, which is a joint policy 7"
such that for all s and i

V”’ - (s)> V”’ - (s) forall 7', (8)

so the value for the optimal joint policy is higher or equal
to all other policies in all states.

2.4 Multi-agent learning methods

In Subsection 2.4 we go through some of the methods
for learning the agents with several other agents pres-
ent in Markov games with the agents being either strictly
enemy or friendly.

The easiest method to solve a world with several agents
is the consideration of other agents as if they were part
of the environment, this is called Independent Q-learning.
In this case, the environment is considered to be stochas-
tic. Although this method is a very coarse simplification,
many times it still performs well enough to evade using
more complex algorithms.

One subgroup of multi-agent learning reflects to zero-
sum games. In this case, the reward of one agent equals
to the penalty of the other one, the sum of their reward
is always equal to zero, hence the name zero-sum.
From game theory, zero-sum games have a solution called
Minimax:

\Ti = minmax v, (a,.,a_l-), ©)
a.

—i (l,

which means the action taken should be the one that max-
imize the reward when the other agent is trying to maxi-
mize its own reward, and with that, it is trying to minimize
ours. This method is utilized in Minimax Q-learning,
where each state contains a payoff matrix which is then
solved by the minimax method [3].

When the sum of the rewards is not strictly zero, this
type of game is called general-sum game. In this case,
agents are not strictly competitive, cooperative behavior is
also allowed. In general-sum games the minimax strategy
does not work due to the agents not seeking the worst strat-
egy for the other one(in strictly competitive scenarios, their
reward function is even the same as the other agents' reward
function. In general-sum games, the best strategy for all
agents is to follow a Nash-equilibrium strategy, which is the
best response. In a multiagent scenario, the optimal O-value
is based on the current reward and future rewards when all
agents play specified Nash equilibrium from the next period
instead of single-agent scenarios, where the optimal value is
from current reward and future rewards by playing the opti-
mal strategy from nex period by the single agent.



The nash equilibrium is used by Nash-Q learning,
where the payoff matrix is searched for Nash equilib-
rium to determine the policy. The Nash-Q algorithm uti-
lizes a distinct O-table for all agents, with separate entries
for all states and all actions taken by all agents [4].

3 Experiments and results

The testbed was an 5 x 5 grid, where the agents were able
to only move one step horizontally or vertically. As shown
in Fig. 1, the gridworld contained three catchers and one
fleeing agent, with the formers placed in the corners of the
grid and the latter positioned in the center. The catchers,
depending on the problem, were either able to communi-
cate with each other or not. The number of the states were
25% even in this smaller world, this explains the size of the
gridworld as well as the limited number of agents.

The enemy had several distinct strategies: either it was
moving randomly, or it was fleeing from the other agents
with special attention not to get stuck in the corners of
the field. When the agent would get stuck in the corner,
it would select an action randomly instead.

In our first experiment, all three agents were able to
communicate with each other, realizing a centralized
communication. In this case, a centralized minimax con-
troller controlled the movement of all three agents concur-
rently. in this realization the action space grew to 4°, with

the action space of the enemy staying at 4.

Fig. 1 The simulation environment. The squares the controlled agents,

meanwhile the circle represents the fleeing enemy. The goal is to catch
the enemy by moving horizontally or vertically.
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In the second experiment the agents were unable to
communicate with each other during the iteration, but the
training was processed in a centralized way - a centralized
training and decentralized execution was implemented.

During the second experiment, a mixture of the
Minimax-Q and Nash-Q algorithms was implemented.
The algorithm can be seen in Algorithm 1. All agents are
playing a zero-sum game against the enemy agent, as well
as all agents are playing a general-sum game with all
other agents for collision avoidance, but also considering
the enemy player's actions - regarding the enemy actions,
the reward was always considered to be equal to the neg-
ative of the sum of other agents' rewards. The mixure of
the two algorithm was created in such a way due to the
fact that in this case, the algorithm shows a two-level hier-
archy with a higher-level game against the enemy. In the
Nash-Q part of the algorithm, the policy to the Nash equi-
librium was selected by the following process: A multi-di-
mensional array was constructed for all of the states of the
gridworld space, so the sum of the dimensions for each
state in the gridworld space was equal to N x A¥"!, where
A is the number of possible actions that can be taken
by the agents, and N is the number of the friendly agents.
The N+ 1 number is due to our consideration of the enemy
agent in the Nash-Q algorithm.

In the Nash-Q algorithm, the NashQ value was calcu-
lated as the following:

NashQ' =7, -...-.m, - O". (10)

In our work, the scalar product was carried out by outer
products of the policies with an element-wise product of
the Q-table for the specific state-agent pair.

The Minimax part of the algorithm utilized two steps to
find the required value and Q-values. The value of a state
in a Markov game is

V(s)= max min» O(s,a,0)x, 11

nePD(4) 0O

and the quality of an action against action in state is
Q(s,a,o):R(s,a,0)+yZT(s,a,o,s')V(s'). (12)

As noted in Algorithm 1, the Minimax part of the algo-
rithm used linear programming to find values for the
value function and the policy. The linear programming
part is further explained in Algorithm 2. In that case,
x, ... x, are the unknown variables, and Q(s,a,0) are the
elements of the O-table.
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Algorithm 1 Combination of the Minimax-Q and the Nash-Q algorithm for the decentralized version of the solution

Initialize values:
0y, (s,a,.a,) <1
0y (s,a,..a,)«0

V (s,x) <1 Where x is the agent

while Not end of all iterations do

Select actions with € -greedy policy:

with e probability, return an action uniformly at random,

otherwise, return an action with probability =
Run environment, get rewards ,..r, as result

for all agents x do

0 (s,x,a,.a,) < (1-a)-O, (s,x,a,..a ) + o -(r, + B - NashQ* (5))

where NashQ is defined in Eq. (10) 07, (s,x,a,0) < (1-a)-0,, (s,x,a,0) + o - (r; +7 -V (s',x))

Update 7 (s,x) < (1=8) -7y (s,x)+8 -7, (s,x)

Update ¥(s,x)

Where 7, (s,x) and V(s,x) are calculated by linear programming

end for

end while

Algorithm 2 Linear programming for the Minimax-Q algorithm

Maximize x, such that

X, —Q(s,al,ol)—...—Q(s,an,ol)S 0

Xy _Q(S’anom)_
X +...+x, =1

0<x <1

...—Q(s,a",om)SO

0<x, <1

V(s)ex, m<x.n,

To ensure convergence, f and y were selected as 0.1,
meanwhile a was selected as 0.5. These values were
selected via empirical observation. It is important to note
that convergence was achieved when a collision only pro-
vided a penalty and did not terminate the iteration, prob-
ably due to the fact that without it, there were a very
small amount of samples where the agents did not collide
with each other while reaching the enemy correctly.

Rewards had to be also carefully picked, because if the
reward for successfully reaching the enemy was significantly
higher than the penalty for each timestep (to make sure that
the agents are trying to reach the enemy as fast as they
can), the algorithm did not converge. Eventually, the reward
for completing the scenario was set to zero and only penal-
ties were given to the agents for the timesteps as well as a big
penalty on collision to ensure future collision avoidance.

It is important to take the problem group of explora-
tion and exploitation into consideration. When the agent
is following the optimal policy, it is called exploitation,
meanwhile differing from the optimal policy is called
exploration. Exploration is required to have the agent
visit all the states and not getting stuck in a local max-
imum. To evade the problem of getting stuck at a local
maximum, an e -greedy strategy was used. In this case,
the agent "exploits", follows the optimal policy by 1 — €
chance. or "explores", selects its action from a uniform
random distribution with chance.

As shown on Fig. 2, in the centralized task, the agent
was able to decrease the number of steps taken until find-
ing the enemy agent. In the decentralized task the number
of steps did not reduce significantly during training due to
the required extra steps for collision evasion, but the num-
ber of collisions was reduced by learning (by at least 50 %)).

Fig. 3 and Fig. 4 show the results of the testing for flee-
ing and random opponents, respectively. These steps are
the last four steps of two distinct games. It can be seen
on the aforementioned figures that the agents are trying
to "exploit" the fleeing agent by having one agent chas-
ing it up until the wall (in the upper left corner), paying
attention to the policy of the fleeing enemy, meanwhile
when the agent is random, the agents are more agressive
at catching and are utilizing another approach by having
more agents chasing the opponent near each other.
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Fig. 2 Number of steps taken to find the enemy per iteration.
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Fig. 3 An example of catching the opponent with fleeing policy.
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Fig. 4 An example of catching the opponent when its polciy is random.
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4 Conclusion

The learned model of the scenario was able to chase the
adversary correctly, with only small chance of collision
with other friendly agents.

To speed up the training process, a variable learning
rate can be used, for example with the "Win or Learn Fast"
(WoLF) method [5]. This method varies the learning rate
based on heuristics that decide whether the agent is per-
forming well in a specific situation, and if it performs well,
the learning rate is smaller. In situations where the agent
is performing relatively badly, the learning rate is taken
higher to ditch the actual policy and learn a newer one.

The problem can be extended to greater scenes as well
as a real-world scenario by the utilization of function
approximation, for example, the utilization of neural net-
works. Deep neural networks, however, tend to diverge for
multi-agent scenarios, thus it should be stabilized to be
able to learn the scenario properly.
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