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Abstract

Recently a novel method for radar detection was conceived to process the scattered signal parameters and detect through its statistical 

moments. Among the advantages of detection in the moments space stands the opportunity of considering the moments like Gaussian 

random variables, decreasing the uncertainty about the distribution of the variables used by traditional methods. Therefore, it is very 

important to study the conditions for assuming the above within certain level of confidence. This work uses real radar signals in order 

to study the influence of two essential variables for detection in the moments space: the sampling interval and the size of the random 

sample. Average correlation coefficient, hypothesis testing and numerical goodness-of-fit coefficients are used to estimate the values 

of the previous variables that allow to take the joint distribution of moments as close to the multivariate Gaussian. The guidelines 

presented should be taken into account for the proper configuration of detectors in the moments space.
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1 Introduction
Radar processors require a priori knowledge of the inter-
ference distribution in order to establish the threshold that 
guarantees the design probability of false alarm. The vari-
ability of interferences like marine clutter makes it diffi-
cult to properly model the diversity of distributions pre-
sented in practice  [1]. The estimation of the distribution 
that best describes the parameters of the received signal 
is an open issue [2–5], with a high complexity associated. 
The lack of fully satisfactory results in this subject has an 
impact on the detection quality, leading to unacceptable 
increases in false alarms or target losses.

Besides the lack of knowledge about the statistical 
model there is the problem of insufficient discrimination 
ability of the variables used during detection. It is a gen-
eral criterion that the parameters of the eco-signals should 
be processed to increase their possibilities [6–8].

In the last two decades progress has been made in a 
method with the dual purpose of reducing a priori uncer-
tainty about the statistical model and providing features 
to increase the detection quality.  Known by its authors as 
DRACEC, a Spanish acronym for Radar Detection through 

the Analysis and Classification of Cellular Emission, it is 
grounded on [9] and was first presented in [10].

DRACEC accumulates samples of the parameters 
(amplitude, frequency, polarization, etc.) of the received 
radar signal and computes its statistical moments (mean, 
correlation, etc.), so the decision about the existence of 
a target is made in the moments space. The fundamental 
objective of the method is to assign the resolution cells 
that compose the surveillance region to the background or 
anomaly classes. In this way the background will be those 
processes that commonly exist in the whole region, like the 
clutter. On the other hand, the anomaly will correspond to 
any disturbance of the background by the presence of an 
extraneous phenomenon, like the targets to be detected.

Among the advantages of detection in the moments 
space stands the reduction of the a priori uncertainty about 
the statistical model of the random process, by assuming 
that the moments distribution is close to the Gaussian. 
This reasoning is based on the central limit theorem [11] 
and the consideration that moments result from adding up 
a large-size set of decorrelated samples.
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The above discussion arises two worthy questions: what 
sampling interval guarantees that the samples are decor-
related and what would be the random sample size required 
to obtain Gaussian moments? Works related to detection 
through moments can be found in  [9,  12–17] but none of 
them has carried out a study with real radar signals to answer 
the above mentioned questions. Therefore, the objective of 
this research is to select suitable values for the sampling 
interval and the size of random sample to guarantee that the 
joint distribution of the moments is close to the Gaussian.

The following section deals with the main concepts of 
detection in the moments space, hypothesis testing and 
numerical goodness-of-fit coefficients. The selection of 
suitable values for the size of random sample and sampling 
interval is shown in the third section, while the fourth 
verify that using these values, the moments are grouped 
in elliptical clusters as expected for Gaussian random vari-
ables. Finally, the conclusions are presented.

2 Theoretical fundamentals
The conceptual framework proposed by DRACEC [9] was 
the first to consider radar detection with decision making 
in the moments space. The application of this technique to 
a general set of signal parameters and three-dimensional 
surveillance regions is detailed in previous work  [9, 14]. 
In order to facilitate the analysis and notation the method 
is henceforth particularized to the case of a single parame-
ter: the amplitude of the received signal, which is the more 
relevant for most applications.

DRACEC divides the surveillance region into a num-
ber of resolution cells corresponding to various angular 
sectors and ranges  [14]. A change in any cell will cause 
disturbances that affect the statistical moments of the 
underlying random process and therefore can be detected. 
For each cell N values are computed for each moment from 
a random sample of size M through [14]
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   constitutes a sample-element formed 
by the samples of the amplitude x1 , ..., xg raised to the cor-
responding magnitude. The sum k1 + k2 + ... kg represents 
the order of the moment and g = 1,  ..., G is the statistic 
order, linked in this context to the number of time inter-
vals analyzed [11].

Note the difference between the meanings of sample, 
sample-element, and random sample. Each term in the sum-
mation of Eq. (1) constitutes a sample-element composed 

by the samples of the random process grouped, multiplied 
and raised to the corresponding magnitude. The random 
sample is the whole set of M sample-elements that contrib-
ute to the moment computation. The samples might have 
any degree of correlation but the intervals between sam-
ple-elements should ensure decorrelation between them. 
Therefore, the index n should vary with respect to m so 
that no consecutive sample-elements are included in the 
summation until the interval ensuring decorrelation has 
elapsed. Following this procedure, the distribution of the 
N moments might approach the Gaussian behavior.

Each resolution cell will be characterized by a set Φ  
formed by the N vectors (or patterns) whose components 
(or features) are the L selected moments. For the purposes 
of this research L = 3, so the patterns will be tridimensional 
vectors denoted as μ and composed by the well-known 
moments: mean, mean power and correlation. According 
to the notation of Eq.  (1) these would be the first-order 
moment of first-order statistic (ξ1 , k1 = 1, g = 1), the sec-
ond-order moment of first-order statistic (ξ2 , k1 = 2, g = 1) 
and the second-order moment of second-order statistic 
(ξ11 , k1 = 1, k2 = 1, g = 2).

The goal of DRACEC is to use the information con-
tained in Φ to assign each resolution cell to the classes 
background or anomaly, hence the link of the acronym 
with the classification of the cellular emission. The back-
ground is associated with the processes that take place 
"normally" in the searching window, for example, the 
clutter. Likewise, phenomena outside the "normality" 
will be treated as anomalies, which constitute the targets 
to be detected.

The Neyman-Pearson criterion [14] is used to obtain the 
optimal decision rule, which maximize the probability of 
detection for a constant probability of false alarm. Therefore, 
the problem lies in choosing between two hypotheses:

1.	 the cell belongs to the background class and
2.	 the cell belongs to the anomaly class.

If the moments are computed from different groups of 
random samples, it can be assumed that they are indepen-
dent, and their Joint Probability Density Function (JPDF) 
is the multiplication of the particular gaussian densi-
ties [11, 14]. However, this requires to compute only one 
moment for each random sample and increases the com-
plexity of the acquisition algorithm.

On the other hand, if all the moments are computed 
from the same group of samples like in this paper, they are 
said to be correlated and its JPDF takes the form [11, 12]
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where μ represents the pattern as a row vector, μC is the 
mean vector, ΣΣC  is the covariance matrix of the moments, 
while ΣΣC  and ΣΣC

−1  are its determinant and inverse matrix 
respectively. T denotes the transposed and C = B, A for the 
background and the anomaly respectively.

From the statistical theory it is well known that Eq. (2) 
will be valid if and only if the sum of the moments 
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can be considered Gaussian  [11]. The new random vari-
able "sum", denoted as S, will be used as a test to establish 
whether the JPDF of the moments is multivariate Gaussian. 
The formation of the sample-elements in Eq. (1) through the 
process of radar signal acquisition [16] directly affects the 
computation of the moments and S. Hence the interest in 
examining the influence of the sampling interval ( Tm ) and 
size of random sample (M) on the Gaussian behavior of S.

2.1 Correlation coefficient
The correlation coefficient [11] will be used to analyze the 
sampling interval, which offers a measure of the linear 
dependence between x1 and x2 according to

ρ
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The term cov( x1 , x2 ) is the covariance between x1 and 
x2 , which are samples of the received signal separated 
by Tm time units, while σ x1

 and σ x2
 are the standard devi-

ations of the same variables. The correlation coefficient 
takes values between 1 and −1, being zero when x1 and x2 
are decorrelated.

According to Nathanson's criterion  [18] ρ must be 
modularly lower than 0.02 for the samples to be decor-
related. The time interval for achieving this can be from 
milliseconds to seconds [18–20] without agreement about 
the best alternative. Some values are between 10 ms and 
20 ms [18, 21, 22] but this depends on the particular exper-
iment. The values obtained in previous works have a lim-
ited utility because none of them analyses the sampling 
interval for which the moments present a Gaussian JPDF. 
Therefore, in addition to the correlation coefficient other 
tools should be used such as hypothesis tests and numeri-
cal goodness-of-fit coefficients.

2.2 Hypothesis tests and numerical goodness-of-fit 
coefficients
Hypothesis testing is used to determine whether to reject 
or accept the null hypothesis [4, 23] denoted by H0 , which 
in this work will be the hypothesis that N values of the 
random variable S comes from a population with Gaussian 
Cumulative Distribution Function (CDF). To reject or 
accept H0 a test statistics is used, which evaluates some 
characteristic of the samples with respect to its popula-
tion with a significance level (α) of making a type I error 
(rejecting H0 when it is true) [11]. Typical values for α are 
between 0.01 and 0.1. Another parameter of interest for 
hypothesis testing is the p-value [5, 24], when it is small 
there is doubt about the truthfulness of the null hypothesis.

Some hypothesis tests are Chi-Square  [25], 
Lilliefors [26], Jarque-Bera [27], Anderson-Darling [2, 28] 
and Kolmogorov-Smirnov [5, 29–32]. The latter computes 
the statistic [25]

d F S F S
S
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which is the maximum absolute difference between the 
empirical CDF F S( )ˆ  of the observed samples and the 
hypothesized CDF F(S). This test is one of the most clas-
sical and has been widely used in the radar field [29–32], 
therefore will be used hereafter. It also has the advantage 
of being useful for both large and small sample sizes.

Another way to check that the JPDF of the moments 
approaches the multivariate Gaussian is through curve 
fitting  [33, 34]. These goodness-of-fit methods also need 
to know the empirical and hypothesized CDF of the sam-
ples to compute numerical coefficients, which evaluate the 
quality of the fit. Some of these coefficients are the mean 
square error [35]
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and the normalized mean square error [24]
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where F Sn( )  is the mean value of the hypothesized CDF. 
Values close to 1 for the NMSE and close to 0 for the MSE 
indicate an ideal fit.

–
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2.3 Computation of the moments
The moments are computed by adding the new acquired 
sample and discarding the first one from the previous iter-
ation. This is an alternative to Eq. (1) for calculating the 
accumulated sum and is a moving average stated through 
the difference equation [36]

y m y m
M

x m x m M[ ] = −[ ]+ [ ]− −[ ]( )1
1

, 	 (8)

where y[m] represents the output for the current sample 
and is also the value of the moment for the previous M 
samples, y[m − 1] is the previous moment value, x[m] is the 
current sample-element and x[m − M] corresponds to the 
M-th sample-element.

3 Experiments and results
The Kolmogorov-Smirnov test and the numerical good-
ness-of-fit coefficients will be applied to the samples con-
tained in the IPIX database. These signals were acquired 
in February 1998 with the IPIX Radar  [32,  37] from 
McMaster University of Canada, located in Grimsbay 
and overlooking Lake Ontario. The system is a coherent 
experimental radar that works in the X Band, with double 
polarization for transmission-reception: linear horizon-
tal (H) or vertical (V). In this work the signals received 
by the in-phase and quadrature channels are demodulated 
through a quadratic detector [19].

The surveillance region corresponds to the lake sur-
face without a target present and it is divided into 34 range 
cells, so the acquired signal only resembles the marine 
clutter. Each cell has 60 000 samples equivalent to 1 min-
ute of acquisition and the interval between samples is 
1 millisecond, equal to the pulse repetition period (1 kHz 
repetition frequency). The database is divided into three 
datasets identified by the numbers 84, 85 and 86, with res-
olutions of 30 m, 15 m and 3 m respectively, each with the 
four polarizations HH, HV, VH and VV.

3.1 Selection of the sampling interval
The selection of the sampling interval is based on the cor-
relation coefficient of Eq. (4), taking x1 and x2 as the sam-
ples of the signal separated by Tm milliseconds. Figs. 1–3 
show the average correlation coefficient (ρ) for the 34 cells 
and the four polarizations of each dataset.

Figs. 1–3 show that the correlation coefficient is lower 
for cross-polarizations and decreases as the radar res-
olution and sampling interval increases. The condition 
ρ ≤ 0.5 is met from 50 milliseconds for the dataset with 

the critical resolution of 30 m. Here the lowest resolution 
is referred as critical since it takes the largest decorrela-
tion time. Therefore, if a specific requirement is satisfied 
for the 30 m dataset it will be fulfilled more easily for the 
two others datasets.

In order to have some safety margin in terms of the 
decorrelation time, Tm = 100 milliseconds is taken as sam-
pling interval for all datasets. This choice also tries to 
keep the same number of computed patterns and hypothe-
sis tests for all resolutions.

3.2 Selection of the size of random sample
To select the size of random sample, the rejection per-
centage of the null hypothesis (that the variable S has 
a  Gaussian CDF) is analyzed for several values of M. 
The sampling interval Tm designated in the previous sec-
tion is taken in to account. The MATLAB function apply-
ing the Kolmogorov-Smirnov test is kstest with α = 0.05, 
since it is a  typical value  [24]. This function returns the 
rejection ("1") or acceptance ("0") of the null hypothesis 
and the p-value.

Fig. 1 Average correlation coefficient for dataset with resolution of 30 m

Fig. 2 Average correlation coefficient for dataset with resolution of 15 m

Fig. 3 Average correlation coefficient for dataset with resolution of 3 m
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The chosen moments were calculated as well as the ran-
dom variable S, which is applied to the test. Figs. 4–6 plot 
the results for all polarizations of each dataset. It can be 
seen that the percent of rejection and the p-value preserves 
a similar behavior for all resolutions.

As expected, the rejection rate decreases as M increases 
since the approximation of Gaussian moments should be 
more accurate. However, increasing M beyond 60 has gen-
erally little impact or even negative effects for some polar-
izations. The most suitable values for M are around the 
knee of the curves, therefore M between 10 and 30 would 
be appropriate, depending on the resolution.

The analysis of the numerical goodness-of-fit coef-
ficients is also performed for Tm  =  100  milliseconds. 
The  MATLAB function used for this is goodnessOfFit 

[24], which returns the MSE and NMSE. The values of 
these coefficients for all polarizations and resolutions are 
plotted in Figs. 7–9.

Figs. 7–9 show that as M increases, the MSE approaches 
zero and NMSE approaches unity, which indicates a bet-
ter fit to the Gaussian CDF. As in the previous section, 
increasing M above 60 does not bring noticeable bene-
fits to the numerical coefficients. Again, any value of M 
between 10 and 30 could be chosen with similar results, 
therefore M = 20 could be selected.

4 Clusters shape in the moments space
The goal of this section is to illustrate that patterns com-
puted from the values of M = 20 and Tm = 100 milliseconds 
resulting from previous analyses are grouped in elliptical Fig. 4 Percent of rejection and p-value for dataset with resolution of 30 m

Fig. 5 Percent of rejection and p-value for dataset with resolution of 15 m

Fig. 6 Percent of rejection and p-value for dataset with resolution of 3 m

Fig. 7 Goodness-of-fit coefficients for dataset with resolution of 30 m
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clusters. This behavior is the expected for moments that 
follow a multivariate Gaussian JPDF.

Two nearby cells are selected for each resolution and 
in one of them an anomaly is generated, which follows the 
Swerling 2 model of fast fluctuation [19, 38]. Results for all 
polarizations are very similar, so it is only illustrated the 
HH case. This statement also holds for the others Swerling 
models. Table 1 shows the cells taken as background and 
anomaly for each resolution as well as the Signal-to-
Clutter Ratio (SCR) of the synthetic anomaly.

Figs. 10–12 show that the assumption of a multivari-
ate Gaussian JPDF for the moments is satisfactory for the 
chosen M and Tm . The elliptical shape of the clusters 
clearly shows that the JPDF of the moments is multivar-
iate Gaussian. The blue color was used to represent the 
background patterns, while the red ones corresponds to 
the anomaly.

Additionally, the figures show that it is possible to dif-
ferentiate both classes, so the opportunity for detection in 
the moments space is verified. Note from Table 1 that the 
SCRs of the anomalies are low, however their patterns are 
substantially apart from those of the background. This fact 
manifests the detection potential of the moments space, 
which is demonstrated in previous works [14, 17].

Table 1 Cells and SCR used for the example

Dataset Resolution 30 m 15 m 3 m

Background Cell 20 7 14

Anomaly Cell 21 8 15

SCR −3 dB 0 dB −3 dB

Fig. 8 Goodness-of-fit coefficients for dataset with resolution of 15 m

Fig. 9 Goodness-of-fit coefficients for dataset with resolution of 3 m

Fig. 10 Moments space for resolution 30 m. Blue patterns corresponds 
to the background and red ones to the anomaly

Fig. 11 Moments space for resolution 15 m. Blue patterns corresponds 
to the background and red ones to the anomaly

Fig. 12 Moments space for resolution 3 m. Blue patterns corresponds 
to the background and red ones to the anomaly
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5 Conclusion
The influence of the size of the random sample and sam-
pling interval on the condition of Gaussian moments were 
considered. The values chosen for these two design vari-
ables allow proper operation for all available resolutions 
and polarizations.

In case it is required to operate with specific resolution 
and polarization, the curves obtained facilitate the selec-
tion for the particular case of interest. Furthermore, the 

validity of the described tests exceeds any concrete exam-
ple since they could be applied in a general way to any 
other scenario. The guidelines presented should be taken 
into account for the design of radar detectors that intend to 
exploit the advantages of the moments space.
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