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Abstract

This paper reviews the applied Deep Learning (DL) practices in the field of Speaker Recognition (SR), both in verification and 

identification. Speaker Recognition has been a widely used topic of speech technology. Many research works have been carried out 

and little progress has been achieved in the past 5–6 years. However, as Deep Learning techniques do advance in most machine 

learning fields, the former state-of-the-art methods are getting replaced by them in Speaker Recognition too. It seems that Deep 

Learning becomes the now state-of-the-art solution for both Speaker Verification (SV) and identification. The standard x-vectors, 

additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory 

to Deep Learning, where they are the most effective.
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1 Introduction
Speaker Identification (SI) and Verification (SV) have a still 
growing literature, due to their importance in speech tech-
nology. It is a popular research topic with various applica-
tions, such as security, forensics, biometric authentication, 
speech recognition and speaker diarization [1]. Due to the 
high number of studies in the field, a lot of methods have 
come up, so state-of-the-art in the field is quite mature, but 
also versatile, hence hard to overview.

Nowadays, as the popularity of Deep Learning (DL) 
is constantly rising due to easy accessible software and 
affordable hardware solutions, it began to infiltrate every 
topic, where machine learning is applicable. So, it is only 
natural that experts and scientists began to use Deep 
Learning in Speaker Recognition (SR). The aim of this 
study is to review the Deep Learning methods that are 
applied in  Speaker Identification and verification tasks 
from the earliest to the latest solutions.

First, it is necessary to clarify the definition of Speaker 
Identification and verification, since these tasks are gener-
ally referred to when performing Speaker Recognition [1]. 
Speaker Identification is the task to identify an unknown 
speaker from a set of already known speakers: find the 
speaker who sounds closest to the test sample. When 
all speakers within a given set are known, it is called 

closed-set (or in-set) scenario. Alternatively, if the set of 
known speakers may not contain the potential test subject, 
it is called open-set (or out-of-set) Speaker Identification.

In Speaker Verification (SV), the task is to verify if a 
speaker, who claims to be of an identity, really is of the 
identity. In other words, we have to verify if the subject is 
really who he or she says to be. This means comparing two 
speech samples/utterances and deciding if they are spo-
ken by the same speakers. This is usually done - in gen-
eral Speaker Verification practice - by comparing the test 
sample to a sample of the given speaker and a Universal 
Background Model (UBM) [2].

Both Speaker Identification and Verification have their 
portfolio of use-cases and they also share their methodolog-
ical and algorithmic inventory. Therefore, in this review, 
we examine the DNN methods for both tasks, always indi-
cating the given task in every mentioned literature.

We focus only on DL methods in the field, as current 
state-of-the-art builds almost exclusively on top of neu-
ral architectures. For a Speaker Recognition tutorial, we 
recommend the work of Hansen and Hasan [1]. Due to the 
extensive nature of the field of Deep Learning, it is beyond 
the scope of this paper to give a detailed introduction 
about it. The methods are discussed with the assumption 
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that the reader has usable knowledge about the basic con-
cepts associated with the field.

The paper is structured as follows: in Section  2, 
databases are described that are used in the stud-
ies. In Section 3, we give a short history about the out-
dated (but still used) GMM-UBM and i-vector systems. 
In Section  4, the commonly used evaluation metrics 
are described. After that, the DNN based solutions are 
detailed divided into different approaches according to 
how Deep Learning is used (such as feature extraction, 
classification). The Appendices contain large tables and 
a list of abbreviations used throughout the paper.

2 Databases
Like in many speech technology (and other machine learn-
ing) related topics, the used database is crucial. Developed 
methods can be evaluated and compared only if the same 
testing circumstances (from a machine learning point 
of view) are used. It is hard to say that an approach per-
forms better, if it is evaluated on a different set or cor-
pus. Therefore, the selection of the training and evalua-
tion datasets require taking different considerations into 
account. There are numerous databases that are created 
and used in the field of Speaker Recognition, identifica-
tion and verification. Table 1 in Appendix A shows all the 
corpuses that are used in the literature that is reviewed 
throughout the present paper. Presently available corpuses 
are listed along with their different properties that are 
found publicly. There are some datasets that are free, some 
are freely available for non-commercial purposes only.

Corpuses that are created mainly for Automatic Speech 
Recognition (ASR) can also be used to train (and evalu-
ate) SR methods, however, most researches use datasets 
that focus especially the field of Speaker Identification and 
Verification. The main difference is the number of speak-
ers contained in the database. Databases made for speech 
recognition typically contain less speakers. Speech rec-
ognition needs much more speech data in order to train 
phoneme models, but it often comes with lower speaker 
number. In contrast, Speaker Recognition needs as many 
speakers as possible, with less needed recorded mate-
rial from each speaker. Also, recruiting many speakers 
is a more challenging job that requires more effort and is 
time consuming. The most often used corpuses for speech 
recognition (such as TIMIT  [3], WSJ  [4], RSR2015  [5], 
CHiME 2013 [6], VCTK [7]) have a few hundred speakers, 
whereas Librispeech  [8], VoxCeleb  [9], NIST SRE  [10] 

datasets contain thousands of speakers. Of course, these 
large corpuses likely contain audio samples with vari-
ous background noises, signal-to-noise ratios, recording 
setups and equipment. Therefore, they are suitable for 
machine learning aspects, but may not for linguistic anal-
ysis, in which case a more homogenous and a clean record-
ing quality is necessary.

The largest corpus especially made for SR tasks is 
VoxCeleb2  [11]. It is a recent extension to its previ-
ous version (VoxCeleb). It contains samples from more 
than 6000  speakers that are downloaded from Youtube. 
Thus,  its sound quality varies largely. In contrast, 
LibriSpeech is mostly a clean, good quality corpus. It is 
created from audiobooks, therefore maybe less suitable 
from real-world usage point of view, but appropriate for 
evaluating SR methods and features. NIST SRE datasets 
are also a huge collection of speaker samples, but recorded 
through telephone line quality. Thus, suitable for evalua-
tions in yet another usage environment. A noisy and band 
limited quality makes the SR task harder, therefore it is 
more suitable to make a comparison between SR methods.

Although most corpuses contain English speech mate-
rial, there are also other languages available. Some even 
contain multilingual content (see Table 1 in Appendix A). 
Another important aspect is if the given corpus has any 
additional segmentation or transcription included. If so, 
a more subtle analysis can be carried out (for example, 
using only given phonemes or partitioning the corpus into 
chunks with different sizes).

3 Classic state-of-the-art methods: GMM-UBM and 
i-vector
3.1 GMM-UBM
One of the first automatic Speaker Identification methods 
was based on Gaussian Mixture Models (GMM)  [1,  2]. 
GMM is a combination of Gaussian probability density 
functions (PDFs) that are commonly used to model mul-
tivariate data. It does not only cluster data in an unsu-
pervised way, but also gives its PDF. Applying GMM to 
speaker modelling provides the speaker specific PDF, from 
which probability score can be obtained. Thus, testing 
a sample with an unknown label, based on the probabil-
ity scores of the speaker GMMs, a decision can be made.

A GMM is a mixture of Gaussian PDFs parameterized by 
a number of mean vectors, covariance matrices and weights:
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where πg , μg and Σg indicate the weight, mean vector and 
covariance matrix of the gth mixture component. For a 
sequence of acoustic features X xn= ∈ …{ }( )n T1 , the 
probability of observing these features is computed as:

p p
n

T

X xnλλ λλ( ) = ( )
=
∏
1

.  

For Speaker Verification scheme, a slightly different 
approach was developed [1]. Beside the claimed speaker's 
model, an alternate model is necessary, which represents 
an "opposing" model. This alternate model is called the 
Universal Background Model (GMM-UBM). The GMM-
UBM represents all others than the target speaker and it 
is trained on a large number of speaker samples. It was 
first used in [12]. Later, UBM was used as an initial model 
to the speaker models: rather than training GMMs on 
speaker data directly, the specific speaker models were 
created by adapting a prior UBM [13]. In the GMM-UBM 
scheme, H0 and H1 in Eq. (1) (see in Subsection 3.4 about 
LR test) are represented by speaker dependent GMM and 
the GMM-UBM, respectively.

3.2 GMM supervectors
Because speech samples could have different durations, 
much effort was put into developing methods that can 
obtain a fixed number of features from samples with vari-
able lengths. One of the methods that performed the best in 
Speaker Recognition is forming GMM supervectors [14]. 
Supervectors are created by concatenating the parameters 
of the GMM (the mean vectors). This fixed length "super-
vector" is than fed to an applicable machine learning tech-
nique. Before Deep Neural Networks began to take much 
attention, Support Vector Machines (SVM)  [15] were 
found to be the best performing technique.

3.3 The i-vector
Also, before the Deep Neural Networks era, the state-
of-the-art Speaker Recognition method was the i-vector 
approach [16–18]. In this model, Factor Analysis (FA) was 
used to compute a speaker- and session-dependent GMM 
supervector:

m m ws h s h, 0 ,= +T ,  

where m0 is the GMM-UBM supervector, T is the speaker and 
channel factor, called total variability space and ws,h ~ N(0,1) 
are hidden variables, called total factors. The total factors are 
not observable, but can be estimated using FA. These total 
factors can be used as features to a classifier afterwards, and 

came to be known as i-vectors (short for identity vector). 
The i-vector approach can be considered as a dimensionality 
reduction technique of the GMM supervector.

3.4 LR test
In Speaker Verification, the decision if a test sample 
belongs to a certain speaker is generally given by the 
Likelihood Ratio test (LR test) [1]. There are two hypoth-
eses for an observation O:

•	 H0 : O is from speaker s
•	 H1 : O is not from speaker s.

In most of the approaches these cases are represented by 
a certain model parameterized by λs and λ1 , respectively. 
For a given set of observations X xn= ∈ …{ }n T1 , the LR 
test is applied by evaluating the following ratio:
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where τ is the threshold of the decision. Commonly, the 
LR test is computed by using logarithmic probabilities 
(log-LR):

Λ X X Xs
( ) = ( ) − ( )log log .p pλλ λλ1 	 (1)

4 Speaker Verification (SV) measurements
In Speaker Recognition (especially in verification) there are 
two kinds of similarity measures that are commonly used 
to compute the probabilities if a test observation is from 
the target speaker or not. Almost all novel DL approaches 
use these measures (in Speaker Verification schemes): 
cosine distance of vectors and PLDA (Probabilistic Linear 
Discriminant Analysis).

4.1 Cosine Distance Score (CDS)
The cosine distance is simply computing the normalized 
dot product of target and test i-vectors ( wtarget and wtest ), 
which provides a match score:

CDS w w
w w

w wtarget test
target test

target test

, .( ) =
×

×
 

4.2 PLDA
LDA (Linear Discriminant Analysis) [19] is used to find 
orthogonal axes for minimizing within-class variation 
and maximizing between-class variation. PLDA, as an 
extension of LDA [20, 21], is a probabilistic approach to 
the same method.
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Generally, PLDA was applied to compare i-vectors. 
Of course, PLDA is capable to be applied to any vectors. 
Therefore, it can be used in new DL approaches, where 
i-vectors are replaced with their Deep Learning alterna-
tives. Here, we give a brief description using the tradi-
tional i-vector approach.

Given a set of d dimensional length-normalized i-vec-
tors X xij= = … = …{ }; , , ; , ,i N j Hi1 1  obtained from N 
training speakers (each has Hi i-vectors), i-vectors can be 
written in the following form:

x zij i ij= + +µµ W   

x zij i ij, , , , ,µµ∈ ∈ ∈ ∈×R W R R RD D M M D  

where Z i N= ={ }zi ; , ,1  are latent variables, 
ω = { }µµ, ,W Σ  are model parameters, W is a D × M matrix 
(called factor loading matrix), μ is the global mean of X, 
zi 's are called the speaker factors and ij 's are Gaussian 
distributed noise with zero mean and Σ covariance.

Given a test i-vector xt and a target-speaker i-vector xs , 
the LR score can be computed:
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where W W WT T T= [ ]ˆ  and Σ Σ Σ= { }diag ,ˆ . Using Eq.  (2) 
and the standard formula for the inverse of block matri-
ces [22], the log-likelihood LR score is given by [21]:
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5 Deep Learning (DL) in Speaker Recognition (SR)
Generally, Deep Learning in Speaker Recognition has 
two major directions. One approach is to replace the i-vec-
tor calculation mechanism with a Deep Learning method 
as feature extraction. These works train a network on 
speaker samples using acoustic features (such as MFCCs 
or spectra) as inputs and speaker IDs as target variable and 

commonly use the output of an internal hidden layer as 
i-vector alternative and apply cosine distance or PLDA as 
decision making. The other main strategy is to use Deep 
Learning for classification and decision making, like 
replacing the cosine distance and PLDA with a discrim-
inating deep network.

The performance of automatic Speaker Recognition 
systems is commonly evaluated by Equal Error Rate (EER) 
and Decision Cost Function (DCF). Equal Error Rate 
(EER) is a biometric security system algorithm used to pre-
determine the threshold values for its false acceptance rate 
and its false rejection rate [1, 23]. When the rates are equal, 
the common value is referred to as the Equal Error Rate. 
The value indicates that the proportion of false acceptances 
is equal to the proportion of false rejections. The lower the 
Equal Error Rate value, the higher the accuracy of the bio-
metric system. Alternatively, the Decision Cost Function 
takes the prior probabilities of the target speaker occur-
rences, the proportion of target and non-target speakers 
into consideration. The detection cost function is a simul-
taneous measure of discrimination and calibration. Often, 
the minimum value of the DCF curve is called minDCF.

In Subsections 5.1–5.3, we give a detailed overview of the 
related works. The summary of the filtered essential cita-
tions is shown in Table 2 in Appendix B. An overview on 
how the reviewed methods relate to each other is depicted 
in Fig. 1. Abbreviations and details can be found in the text.

5.1 Deep Learning (DL) for feature extraction
The paper of Chen and Salman [24] is a relatively early work 
in deep feature extraction, in which bottleneck features 
(speaker models) are created using a Deep Neural Network 
with multiple subsets. Each subset is a deep autoencoder 
originally proposed in  [25]. A hybrid learning strategy is 
proposed: the weights of the middle layer are shared across 
multiple inputs (adjacent frames) by a cost function:

L L L LR R Ex x x x x x1 2 1 2 1 2, ; ; ; , ; ,θ θ θ θ( ) = ( ) + ( )  + ( )  

Fig. 1 Overview of how reviewed methods relate to each other
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where LR (xi ; θ) is the loss of the network for input i, and 
LE (x1 , x2 ; θ) is a loss function optimized for learning the 
same speaker representation (model) at the layer, from 
which the speaker model features are extracted. For the 
experiments TIMIT, NTIMIT, KING, NKING, CHN and 
RUS dataset are used. According to the results, the pro-
posed method outperformed the GMM-UBM baseline 
system in the case of all datasets.

5.1.1 The d-vector
There are numerous works that are aimed at extracting 
hidden layers of a DNN as features (substituting i-vectors). 
In [26] averaged activations of the last hidden layer of a 
network with multiple fully connected layers are selected 
as features, called as "d-vector" (Fig.  2). These vectors 
are later used in the same manner as i-vectors. Speaker 
Verification is done by cosine distance comparison. 
First, the network is trained in supervised manner, using 
13-dimensional Perceptual Linear Predictive (PLP) fea-
tures with Δ and ΔΔ values appended as frame-level fea-
ture vectors. After the training, the output layer is removed 
and the activations from the last hidden layers are used 
as features. The experiments were performed on a small 
footprint text-dependent corpus: 646 speakers speaking 
the same phrase: "ok google" multiple times. It was found 
that the general i-vector system mainly outperforms the 
newly proposed d-vector. The EERs (score normalized 
with t-norm) of the best performing setups were 1.21 % 
and 2.00 % for i-vector and d-vector, respectively.

5.1.2 The j-vector
The d-vector method was extended in [27] by a multi-task 
learning approach. The authors state that the intuition is 
that directly recognizing speaker seems to be hard but in 
reality, different speakers have their own style on each syl-
lable or word. Therefore, using not only the speaker ids, 
but texts also as targets in a multi-learning setup, may 
increase the Speaker Verification performance. The used 
network is shown in Fig. 3. The applied cost function is the 
sum of the original loss functions:

C y y y y C y y C y y
1 2 1 2 1 1 1 2 2 2
, , , , , ,[ ] ′ ′[ ]( ) = ′( ) + ′( )  

where C1 and C2 are two cross-entropy criteria for speak-
ers and texts, y1 ,  y2 indicate the true labels for speakers 
and texts individually and ′ ′y y

1 2
,  are the outputs of the two 

targets. As in the case of the original d-vector, after the 
supervised training phase, the output layer is removed and 
the output of the last hidden layer is used as a feature vec-
tor, defined as j-vector (joint vector). The experiments were 
done on the RSR2015 database [5]. The results show that 
the j-vector outperformed the d-vector approach. The EERs 
are 21.05 % and 9.85 % for d- and j-vector, respectively.

5.1.3 The x-vector
Another hidden layer extracted feature vector is called 
x-vector [28, 29]. It is based on DNN embeddings, based 
on a multiple layered DNN architecture (with fully con-
nected layers) with different temporal context at each layer 
(which they call "frames"). Due to the wider temporal 

Fig. 2 DNN model in [26]
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context, the architecture is called Time-delay Deep NN 
(TDNN). The TDNN embedding architecture can be seen 
in Fig. 4. The first five layers operate on speech frames, 
with small temporal context centered at the current 
frame t. For example, the frame indexed as "3" sees a total 
of 15 frames, due to the temporal context of the earlier lay-
ers. After training with speaker ids as target vectors, the 
output of layer segment6 ("x-vector") is used as input to a 
PLDA classifier. The input acoustic features are 24 dimen-
sional filterbanks with 25  ms frame size, mean-normal-
ized over a sliding window of up to 3 seconds. The used 
databases for evaluation include SWBD, NIST SRE 2016 
and VoxCeleb. Data augmentation (increasing the amount 
of samples by adding babble noise, background music 
and reverb) was applied to various experimental setups. 
The main results show that x-vector outperforms the gen-
eral i-vector based system (EERs are 9.23 % and 8.00 % 
for i-vector and x-vector, respectively). Using data aug-
mentation, the difference is larger (EERs are 8.95 % and 
5.86 % for i-vector and x-vector, respectively). The paper 
of Jiang et al. [30] extends the x-vector framework by so 
called dilated dense blocks, gate blocks and transition 
blocks. These blocks use convolutional layers to cover 
local features of different spans. On VoxCeleb, the exten-
sion results in 0.86  % EER decrease in absolute value 
(from 3.17 % to 2.31 %). Speaker representations can also 
be used to change the identity of the speaker. In [29] x-vec-
tors are used for speaker anonymization. The  extracted 

vector values are modified in order to change the speaker 
characterization and the speech is then re-synthetized, 
generating anonymized speech.

For short speech utterances, Kanagasundaram and col-
leagues [31] changed the dimension of the sixth and seventh 
layer ("segment6" and "segment7") to 150 in order to adapt 
to the shorter duration. It was found that the lower dimen-
sion of segment 6 and 7 helped in Speaker Verification in 
the case of 5-second-long utterances, but achieved higher 
EER on the original long utterances on the NIST SRE 2010 
dataset. On the other hand, Garcia-Romero et al. [32] tried 
to optimize the x-vector system for long utterances (with 
2–4 seconds duration) by a DNN refinement approach that 
updates a subset of the DNN parameters with full record-
ings and modifies the DNN architecture to produce embed-
dings optimized for cosine distance scoring. The results 
show that the method produces lower minDCF (minimum 
Decision Cost Function), but slightly higher EER than the 
baseline x-vector approach.

The x-vector was also applied in a multi-task learning 
scenario  [33]. Beside the primary task (learning speaker 
identities), a second task was introduced: learning high-
er-order statistics of the input vector. By doing so, the sys-
tem achieved slightly lower EER than the standard x-vec-
tor on the NIST SRE16 dataset: 7.79  % and 8.03  % for 
multi-task and baseline, respectively.

The x-vectors, in general, are incapable of leveraging 
unlabeled utterances, due to the classification loss over 

Fig. 3 Multi-task DNN in [27]
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training speakers. The work of Stafylakis et al. [34] offers 
an alternative strategy based on x-vectors to train speaker 
embedding extractors via reconstructing the frames of a 
target speech segment, given the inferred embedding of 
another speech segment of the same utterance. They use 
a decoder network, to which the embedding vector is 
attached and by which the network serves as an autoen-
coder. The proposed decoder loss combined with the stan-
dard x-vector architecture and loss (i.e., crossentropy over 
training speakers) yielded improvement both on SITW 
and VoxCeleb datasets: ~0.4 % improvement in absolute 
EER compared to the standard x-vector system.

5.1.4 End-to-end systems
In order to do Speaker Verification, the embeddings are 
extracted and used in a standard backend, e.g., PLDA. 
Ideally the NNs should however be trained directly for the 
Speaker Verification task [35–38].

Instead of using cosine distance or PLDA classifi-
cation,  [35] apply an end-to-end solution for Speaker 
Verification with deep networks to obtain speaker rep-
resentation vectors, estimation of a speaker model based 

on up to N enrollment utterances and also for verification 
(cosine similarity/logistic regression). The architecture is 
shown in Fig. 5. Both DNN (the same as the network used 
in d-vector extraction) and LSTMs are applied for speaker 
representation computation. The network is optimized 
using the end-to-end loss:

l pe e2 = − ( )log target  

Fig. 4 The x-vector DNN embedding architecture in [28]. The features of the of the individual layers (top) and the structure of the network (bottom).

Fig. 5 End-to-end architecture used in [35]
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with the binary variable target accept reject accept∈{ } ( ), , p
= +( )− ( )− −
1

1

e wS bX spk,  and p preject accept( ) = − ( )1 . The 
value −b/w corresponds to the verification threshold. 
S(X, spk) is the cosine similarity between the speaker repre-
sentation and the speaker model. The methods were tested 
on the "ok, google" dataset with more than 73 M utterances 
and 80 000 speakers. The results show that the end-to-end 
architecture performs similar to the d-vector approach if 
the same feature extractor (DNN) is used. However, LSTM 
lowered the EERs compared to the DNN solution: EERs 
are 2.04 % and 1.36 % for DNN and LSTM, respectively.

Another end-to-end system is proposed in [38], where the 
training was done by triplet loss aided by cosine similarity. 
A speaker embedding network is fed with raw speech wave-
form, which produces embedding vectors. This network 
is pre-trained with LibriSpeech by 1.5–2.0  sec uttarance 
chunks. Then the CHiME 2013 database [6] was used for 
Speaker Verification evaluation using specific 2 to 4 key-
words only. The keywords were determined by an ASR, 
which was used in the training of the speaker embedding 
system in an adversarial way, forcing the embedding vec-
tors to be speaker independent. Results show partial suc-
cess: the triplet loss and ASR adversarial training did not 
improve the EER in the 2 keywords case, but it did if 3 or 
4 keywords were examined.

5.1.5 Deep Belief Networks (DBN)
Deep Belief Networks (DBN) are another type of 
Deep Learning networks that are used in Speaker 
Recognition [39, 40]. Deep Belief Networks are generative 

models with numerous layers of latent variables, which are 
typically binary. Neurons in the same layers are not con-
nected and connection between adjacent layers are undi-
rected. Training of DBNs are hard due to the intractabil-
ity of inferring the posterior distribution from the hidden 
(latent) layers. Stacked Restricted Boltzmann Machines 
(RBMs) can be applied as a DBN architecture (Fig.  6). 
For  more details, see  [41]. The objective of DBN is to 
learn abstract hierarchical representations of unlabeled 
input data. In  [40], spectrograms (25  ms window size, 
10 ms timestep) have been fed as input speech data after 
applying PCA transformation to reduce dimensionality. 
Activations of first and second layers of the RBM were 
used as features (both separately and together) appended 
to common MFCC features. After feature extraction, 
GMM-UBM was used to perform Speaker Recognition. 
The authors used the ELSDSR dataset with 22  speak-
ers. Based on the results, the features extracted from the 
RBM helped the recognition: 90 % and 95 % final accu-
racies were obtained by using separate MFCC and mixed 
MFCC+RBM features, respectively.

Ali  et  al.  [39] also use the same acoustic feature 
extraction method, but they add a Bag of Words method in 
order to convert the data with different lengths into vec-
tors of the same dimensionality (using a k-means cluster-
ing technique). SVM is applied as a classifier. The experi-
ments were done on the Urdu dataset [42] with ten speakers. 
Here, also hybrid (MFCC+DBN) features performed the 
best: 88.6  % and 92.60  % accuracies were obtained for 
MFCC and MFCC+DBN features, respectively.

Fig. 6 Structure of the DBN used for extraction of short-term spectral features, with two hidden layers, can be visualized as a stack of 2 RBMs [40]
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In  [43], a widespread evaluation of multiple DNN 
methods for deep feature extraction are given using deep 
Restricted Boltzmann Machines (RBMs), speech-dis-
criminant Deep Neural Network, speaker-discriminant 
Neural Network and multi-task joint-learned Deep Neural 
Networks. RBMs are used in the same way as in the pre-
vious Subsubsection 5.1.4 [39, 40]. A speech discriminant 
DNN was applied with text labels as training data and tri-
phone states as target. This scenario can be useful in a 
text-dependent Speaker Verification task. The outputs of 
the last hidden layer are used as features. In the case of 
speaker discriminant DNN, the outputs of the speech dis-
criminant network are changed to speaker IDs. This way, 
a more speaker specific feature set can be obtained and it 
is a more natural choice for Speaker Verification. In  the 
multi-task setup, both previously mentioned (speaker IDs 
and triphones) outputs are used as targets. A standard 
i-vector system trained with PLP features was used as 
baseline (GMM-UBM with cosine similarity). The newly 
proposed deep features were tested separately and by com-
bining them in various ways on the RSR2015 dataset [5]. 
Compared to the baseline result (1.5 % EER), the speaker 
discriminant and multi-task DNNs achieved the best per-
formances (1.06 % and 0.80 % EER respectively). The best 
combination of deep features (concatenating RBM and 
multi-task features) gave 0.73 % EER. Also, with PLDA 
performed after deep feature extraction, 0.20 % EER was 
achieved for speaker discriminant features.

5.1.6 CLNets
In  [44] a deep Corrective Learning Network (CLNet) is 
proposed to analyze independent samples by a recurrent 
formalism. Each new instance makes a corrective pre-
diction to update the predictions made from prior data. 
This means that instead of averaging the results for seg-
ments of a speaker, an incremental strategy is used. 
CLNets are applied using convolution layers for Speaker 
Verification. NIST SRE 2004-2010 corpora are used for 
the experiments. By using cosine similarity, ~2.5 % lower 
EER was obtained compared to the standard i-vector sys-
tem (7.3 %, 5.18 % and 4.87 % EERs for i-vector, standard 
CNN and CLNets, respectively). However, using PLDA, 
i-vector performed better.

5.1.7 Text dependency
Still, i-vector systems outperform the DNN ones in a text 
independent scenario [45]. So, taking the standard i-vec-
tor PLDA system as basis,  [36] proposed an end-to-end 
DNN that learns sufficient statistics of GMM-UBM and 

provides i-vectors. In the first part of the network, GMM 
posteriors are learned by a multiple layered architecture, 
then the standard i-vectors are used as targets with cosine 
distance as loss function.

5.2 Deep Learning (DL) for classification
Rather than applying deep feature extraction to exchange 
the common i-vectors for a more robust and better per-
forming speaker representation, DNNs can also be used to 
replace the backend systems for scoring and comparison 
(like PLDA and cosine distance). Such works are sparser 
in literature than those related to feature extraction.

5.2.1 Variational Autoencoder (VAE)
Variational Autoencoder (VAE)  [46,  47] is a generative 
model for signal (and speech) modelling. It is used in 
voice conversion [48–50], speech recognition and also for 
Speaker Recognition [51, 52]. Instead of using just deter-
ministic layers, a VAE consists of stochastic neurons also. 
The LR scoring is made by:
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where Htar , Himp are the hypotheses about the facts that 
x1 , x2 are related to the same or different speakers respec-
tively and θ is the parameters of the speaker model. 
The results showed that VAEs don't seem to be superior 
to PLDA scoring.

5.2.2 Multi-domain features
Text dependent data were also used for classification in a 
Speaker Recognition task to help learning speaker IDs. 
Tang et al.  [53] used the output of an ASR to improve 
the performance of Speaker Recognition. Fig.  7 shows 
the proposed multi-task learning scheme. The output of 

Fig. 7 Multi-task recurrent learning in [53] for ASR and SRE. 
F(t) denotes primary features, P(t) denotes phone identities, 

S(t) denotes speaker identities.
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the ASR (phone-posteriors) is fed into the SRE system, 
and vice versa. The input of each task is formed from the 
extracted frame-level spectra (filterbanks and MFCCs for 
ASR and SRE, respectively). The experiments were done 
on the WSJ dataset. Based on the results, the proposed 
method achieved equal or slightly better EERs, than the 
i-vector baseline (0.57  % and 0.55  % for i-vector and 
multi-task method, respectively).

5.2.3 Replacing UBM with DNN
DNNs can be used to replace the UBM also. Universal 
Deep Belief Networks (UDBN) [54] are used as backend, 
in which a two-class hybrid DBN-DNN is trained for each 
target speaker to increase the discrimination between target 
i-vectors and the i-vectors of the other speakers (non-targets/
impostors). First, an unsupervised universal DBN is trained, 
which is then adapted to the target speakers by a special 
balanced training process. In the test phase, an unknown 
i-vector is matched to the adapted target i-vectors. Based on 
evaluation done on NIST SRE 2006 and 2014 datasets, the 
proposed algorithm did not achieve better performance than 
the i-vector PLDA baseline method. However, fusing the 
DNN approach with the PLDA (i-vector) method, revealed 
better performance than the i-vector alone.

5.2.4 Using contrastive loss for vector comparison
Since Speaker Identification is treated as a simple classifi-
cation task, softmax layers can be applied to create a DNN 
backend system. However, in Speaker Verification, the 
comparison of two (speaker modelling) vectors is neces-
sary. In a DNN, a way to achieved this is using contrastive 
loss  [55] as loss function on deep features. Convolutional 
networks (namely VGG [56, 57]) [9] and ResNets [11, 58] can 
be trained this way to perform Speaker Verification tasks. 
On VoxCeleb and VoxCeleb2 datasets, lower EERs were 
obtained than in the case of standard i-vector PLDA sys-
tems: 8.8 %, 7.8 % and 3.95 % EERs for i-vector, CNN and 
ResNet, respectively. However, in [11] ResNet and the base-
line system were not trained on the same dataset (RestNet: 
VoxCeleb2, i-vector: VexCeleb1), therefore this increase 
could come from the effect of the larger audio material.

5.2.5 SincNet
Convolutional Neural Networks (CNNs) are also used in 
Speaker Recognition, using spectrograms [9, 59, 60] or raw 
speech waveform as input  [61, 62]. SincNet  [61] is a spe-
cial CNN architecture that gets raw waveforms as inputs. 
Before applying standard CNN/DNN layers it learns high 

and low cut-off frequencies of band-pass filters by a con-
volutional layer (Fig.  8). In Speaker Identification task, 
compared to MFCC-fed DNN, the SincNet achieved better 
performance on TIMIT and LibriSpeech: 0.99 %, 2.02 % 
Classification Error Rate (CER) for TIMIT and LibriSpeech 
with DNN, and 0.85   % and 0.96  % CER for SincNet, 
respectively. SincNet was also compared to CNN with 
filterbank energies as inputs. The conclusion was that on 
smaller dataset (such as TIMIT), the filter learning was not 
as effective as on a large dataset (LibriSpeech). On TIMIT, 
the results were comparable. On LibriSpeech, however, 
SincNet outperformed the CNN architecture (1.55 % and 
0.96 % CER for CNN and SincNet, respectively). It was 
found that SincNet also outperformed the other DNN solu-
tions (and the standard i-vector PLDA system) in a Speaker 
Verification setup. Both d-vector (used with cosine dis-
tance) and speaker class posteriors were applied.

SincNet was extended in  [63] for an unsupervised 
speaker embedding learning by using mutual information 
as objective function for embedding vector comparison. 
An additional decrease in EER was examined: from 7.2 to 
5.8 % on the VoxCeleb corpus.

Fig. 8 Architecture of SincNet in [61]
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5.2.6 Unlabeled data
When doing Speaker Recognition, labeled data is not always 
present. There are some approaches that take advantage of 
large scale unlabeled training data. Curriculum learning 
is one of them [64–66]. It starts by learning a DNN model 
using a labeled corpus and continuously introduces unla-
beled, out-of-domain text independent speaker samples. 
Both LSTM [64] and TDNN [66] based systems are pro-
posed that outperform baseline methods.

5.3 Other usage of DNN in Speaker Recognition (SR)
In [67] DNN is used in a non-common way to aid Speaker 
Recognition. The extraction of sufficient statistics for the 
general i-vector model is driven by a Deep Neural Network 
trained for Automatic Speech Recognition. This DNN is 
used to produce frame alignments, specifically provid-
ing posteriors of semitones. First, DNN is trained for seg-
menting the speech into senones, using a pre-trained gen-
eral HMM-GMM ASR system. The i-vector training is 
done on the semitone-level segmented speech. The final 
flow diagram of the proposed method is shown in Fig. 9. 
The experiments were done using the two extended 
NIST SRE'12 conditions: clean and slightly noisy tele-
phone speech. The pre-trained HMM-GMM system used 
a 39 dimensional MFCC vector, including 13 MFCC and 
their first and second order derivatives. The input of the 
DNN in the HMM-DNN was composed of 15  frames, 
using 40  log Mel-filterbank for each. The results of the 
proposed method was compared to a standard i-vector sys-
tem (GMM-UBM and i-vector). The HMM-DNN method 
achieved a slightly lower EER: 1.39  % and 1.81  % for 
DNN and UBM, respectively for clean speech; 1.92 % and 
2.55 % for DNN and UBM, respectively for noisy speech.

Yet another topic of Speaker Recognition is forensic 
sciences and applications. In forensics, all the above men-
tioned methods and technologies must be applied through 
the LR framework, in order to get evidence based and 

jurisdiction compliance decision making. For this kind of 
examinations, usually specific datasets are needed that are 
consistent with the given evidences and use-case scenar-
ios. For a very good review and more details on forensics 
based on speech, see [68–71].

6 Conclusions
In this paper we summarized the applied Deep Learning 
practices in the field of Speaker Recognition, both for 
verification and identification. The early DL solutions 
to replace feature extraction (such as i-vectors) provided 
comparable but not higher performance than the previous 
state-of-the-art i-vector PLDA systems. Although newer 
DL architectures led to increasing classification accura-
cies, it is well-known in the literature that i-vectors pro-
vide competitive performance, when more training mate-
rial is used for each speaker and when longer test sentences 
are employed  [72–74]. However, the latest works offer 
superior results. In some cases, the reported results show 
significantly lower EERs, but mostly the achieved per-
formances are only a little better than the previous ones. 
Nonetheless, it seems that DL becomes the now state-of-
the-art solution for both Speaker Verification and identifi-
cation. The standard x-vectors, additional to i-vectors, are 
used as baseline in most of the novel works. The increas-
ing amount of gathered data opens up the territory to DL, 
where they are the most effective. Additionally, newer 
and newer DL architectures are developed, that can lead 
to a breakthrough in Speaker Recognition too. Based on 
the literature, it is hard to derive a final conclusion about 
the "best" method for sSpeaker Recognition. The x-vector 
became the de facto standard, used in practical applica-
tions and as baseline method to beat.
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Nomenclature
SI Speaker Identification
SV Speaker Verification
DL Deep Learning
SR Speaker Recognition
DNN Deep Neural Networks
GMM Gaussian Mixture Model
UBM Universal Background ModelFig. 9 Flow diagram of the DNN/i-vector hybrid framework in [67]
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ASR Automatic Speech Recognition
PDF Probability Distribution Function
LR Likelihood Ratio
FA Factor Analysis
CDS Cosine Distance Score
PLDA Probabilistic Linear Discriminant Analysis
LDA Linear Discriminant Analysis
DCF Decision Cost Function
EER Equal Error Rate
PLP Perceptual Linear Predictive
TDNN Time-delay Deep Neural Network

NN Neural Network
LSTM Long Short-Term Memory
DBN Deep Belief Networks
RBM Restricted Bolzmann Machines
MFCC Mel Frequency Cepstral Coefficient
SVM Support Vector Machines
CLNet Corrective Learning Network
VAE Variational Autoencoder
UDBN Universal Deep Belief Networks
CNN Convolutional Neural Network
CER Classification Error Rate
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