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Abstract

This paper reviews the applied Deep Learning (DL) practices in the field of Speaker Recognition (SR), both in verification and
identification. Speaker Recognition has been a widely used topic of speech technology. Many research works have been carried out
and little progress has been achieved in the past 5-6 years. However, as Deep Learning techniques do advance in most machine
learning fields, the former state-of-the-art methods are getting replaced by them in Speaker Recognition too. It seems that Deep
Learning becomes the now state-of-the-art solution for both Speaker Verification (SV) and identification. The standard x-vectors,
additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory

to Deep Learning, where they are the most effective.
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1 Introduction

Speaker Identification (SI) and Verification (SV) have a still
growing literature, due to their importance in speech tech-
nology. It is a popular research topic with various applica-
tions, such as security, forensics, biometric authentication,
speech recognition and speaker diarization [1]. Due to the
high number of studies in the field, a lot of methods have
come up, so state-of-the-art in the field is quite mature, but
also versatile, hence hard to overview.

Nowadays, as the popularity of Deep Learning (DL)
is constantly rising due to easy accessible software and
affordable hardware solutions, it began to infiltrate every
topic, where machine learning is applicable. So, it is only
natural that experts and scientists began to use Deep
Learning in Speaker Recognition (SR). The aim of this
study is to review the Deep Learning methods that are
applied in Speaker Identification and verification tasks
from the earliest to the latest solutions.

First, it is necessary to clarify the definition of Speaker
Identification and verification, since these tasks are gener-
ally referred to when performing Speaker Recognition [1].
Speaker Identification is the task to identify an unknown
speaker from a set of already known speakers: find the
speaker who sounds closest to the test sample. When
all speakers within a given set are known, it is called

closed-set (or in-set) scenario. Alternatively, if the set of
known speakers may not contain the potential test subject,
it is called open-set (or out-of-set) Speaker Identification.

In Speaker Verification (SV), the task is to verify if a
speaker, who claims to be of an identity, really is of the
identity. In other words, we have to verify if the subject is
really who he or she says to be. This means comparing two
speech samples/utterances and deciding if they are spo-
ken by the same speakers. This is usually done - in gen-
eral Speaker Verification practice - by comparing the test
sample to a sample of the given speaker and a Universal
Background Model (UBM) [2].

Both Speaker Identification and Verification have their
portfolio of use-cases and they also share their methodolog-
ical and algorithmic inventory. Therefore, in this review,
we examine the DNN methods for both tasks, always indi-
cating the given task in every mentioned literature.

We focus only on DL methods in the field, as current
state-of-the-art builds almost exclusively on top of neu-
ral architectures. For a Speaker Recognition tutorial, we
recommend the work of Hansen and Hasan [1]. Due to the
extensive nature of the field of Deep Learning, it is beyond
the scope of this paper to give a detailed introduction
about it. The methods are discussed with the assumption
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that the reader has usable knowledge about the basic con-
cepts associated with the field.

The paper is structured as follows: in Section 2,
databases are described that are used in the stud-
ies. In Section 3, we give a short history about the out-
dated (but still used) GMM-UBM and i-vector systems.
In Section 4, the commonly used evaluation metrics
are described. After that, the DNN based solutions are
detailed divided into different approaches according to
how Deep Learning is used (such as feature extraction,
classification). The Appendices contain large tables and
a list of abbreviations used throughout the paper.

2 Databases
Like in many speech technology (and other machine learn-
ing) related topics, the used database is crucial. Developed
methods can be evaluated and compared only if the same
testing circumstances (from a machine learning point
of view) are used. It is hard to say that an approach per-
forms better, if it is evaluated on a different set or cor-
pus. Therefore, the selection of the training and evalua-
tion datasets require taking different considerations into
account. There are numerous databases that are created
and used in the field of Speaker Recognition, identifica-
tion and verification. Table 1 in Appendix A shows all the
corpuses that are used in the literature that is reviewed
throughout the present paper. Presently available corpuses
are listed along with their different properties that are
found publicly. There are some datasets that are free, some
are freely available for non-commercial purposes only.
Corpuses that are created mainly for Automatic Speech
Recognition (ASR) can also be used to train (and evalu-
ate) SR methods, however, most researches use datasets
that focus especially the field of Speaker Identification and
Verification. The main difference is the number of speak-
ers contained in the database. Databases made for speech
recognition typically contain less speakers. Speech rec-
ognition needs much more speech data in order to train
phoneme models, but it often comes with lower speaker
number. In contrast, Speaker Recognition needs as many
speakers as possible, with less needed recorded mate-
rial from each speaker. Also, recruiting many speakers
is a more challenging job that requires more effort and is
time consuming. The most often used corpuses for speech
recognition (such as TIMIT [3], WSJ [4], RSR2015 [5],
CHiME 2013 [6], VCTK [7]) have a few hundred speakers,
whereas Librispeech [8], VoxCeleb [9], NIST SRE [10]
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datasets contain thousands of speakers. Of course, these
large corpuses likely contain audio samples with vari-
ous background noises, signal-to-noise ratios, recording
setups and equipment. Therefore, they are suitable for
machine learning aspects, but may not for linguistic anal-
ysis, in which case a more homogenous and a clean record-
ing quality is necessary.

The largest corpus especially made for SR tasks is
VoxCeleb2 [11]. It is a recent extension to its previ-
ous version (VoxCeleb). It contains samples from more
than 6000 speakers that are downloaded from Youtube.
Thus, its sound quality varies largely. In contrast,
LibriSpeech is mostly a clean, good quality corpus. It is
created from audiobooks, therefore maybe less suitable
from real-world usage point of view, but appropriate for
evaluating SR methods and features. NIST SRE datasets
are also a huge collection of speaker samples, but recorded
through telephone line quality. Thus, suitable for evalua-
tions in yet another usage environment. A noisy and band
limited quality makes the SR task harder, therefore it is
more suitable to make a comparison between SR methods.

Although most corpuses contain English speech mate-
rial, there are also other languages available. Some even
contain multilingual content (see Table 1 in Appendix A).
Another important aspect is if the given corpus has any
additional segmentation or transcription included. If so,
a more subtle analysis can be carried out (for example,
using only given phonemes or partitioning the corpus into
chunks with different sizes).

3 Classic state-of-the-art methods: GMM-UBM and
i-vector
3.1 GMM-UBM
One of the first automatic Speaker Identification methods
was based on Gaussian Mixture Models (GMM) [1, 2].
GMM is a combination of Gaussian probability density
functions (PDFs) that are commonly used to model mul-
tivariate data. It does not only cluster data in an unsu-
pervised way, but also gives its PDF. Applying GMM to
speaker modelling provides the speaker specific PDF, from
which probability score can be obtained. Thus, testing
a sample with an unknown label, based on the probabil-
ity scores of the speaker GMMs, a decision can be made.
A GMM is a mixture of Gaussian PDFs parameterized by
anumber of mean vectors, covariance matrices and weights:



312 | Sztaho et al.
Period. Polytech. Elec. Eng. Comp. Sci., 65(4), pp. 310-328, 2021

where T, H, and z, indicate the weight, mean vector and
covariance matrix of the g mixture component. For a
sequence of acoustic features (X :{x,,|n el...T}), the
probability of observing these features is computed as:

p(XM):f[p(x”M).

For Speaker Verification scheme, a slightly different
approach was developed [1]. Beside the claimed speaker's
model, an alternate model is necessary, which represents
an "opposing" model. This alternate model is called the
Universal Background Model (GMM-UBM). The GMM-
UBM represents all others than the target speaker and it
is trained on a large number of speaker samples. It was
first used in [12]. Later, UBM was used as an initial model
to the speaker models: rather than training GMMs on
speaker data directly, the specific speaker models were
created by adapting a prior UBM [13]. In the GMM-UBM
scheme, H and H, in Eq. (1) (see in Subsection 3.4 about
LR test) are represented by speaker dependent GMM and
the GMM-UBM, respectively.

3.2 GMM supervectors

Because speech samples could have different durations,
much effort was put into developing methods that can
obtain a fixed number of features from samples with vari-
able lengths. One of the methods that performed the best in
Speaker Recognition is forming GMM supervectors [14].
Supervectors are created by concatenating the parameters
of the GMM (the mean vectors). This fixed length "super-
vector" is than fed to an applicable machine learning tech-
nique. Before Deep Neural Networks began to take much
attention, Support Vector Machines (SVM) [15] were
found to be the best performing technique.

3.3 The i-vector

Also, before the Deep Neural Networks era, the state-
of-the-art Speaker Recognition method was the i-vector
approach [16—18]. In this model, Factor Analysis (FA) was
used to compute a speaker- and session-dependent GMM
supervector:

mg, =m, +Tws,h,

where m is the GMM-UBM supervector, 7'is the speaker and
channel factor, called total variability space and w_, ~ N(0,1)
are hidden variables, called total factors. The total factors are
not observable, but can be estimated using FA. These total
factors can be used as features to a classifier afterwards, and

came to be known as i-vectors (short for identity vector).
The i-vector approach can be considered as a dimensionality
reduction technique of the GMM supervector.

3.4 LR test
In Speaker Verification, the decision if a test sample
belongs to a certain speaker is generally given by the
Likelihood Ratio test (LR test) [1]. There are two hypoth-
eses for an observation O:

* H,: Ois from speaker s

* H,: Ois not from speaker s.

In most of the approaches these cases are represented by
a certain model parameterized by 4_and 4,, respectively.
For a given set of observations X = {xn|n el.. .T} ,the LR
test is applied by evaluating the following ratio:

p(XI2,) =1 accept H,
p(XIA) > reject H,,

where 7 is the threshold of the decision. Commonly, the
LR test is computed by using logarithmic probabilities
(log-LR):

A(X)=log p(XI4,)-log p(XI4,). (1)

4 Speaker Verification (SV) measurements

In Speaker Recognition (especially in verification) there are
two kinds of similarity measures that are commonly used
to compute the probabilities if a test observation is from
the target speaker or not. Almost all novel DL approaches
use these measures (in Speaker Verification schemes):
cosine distance of vectors and PLDA (Probabilistic Linear
Discriminant Analysis).

4.1 Cosine Distance Score (CDS)

The cosine distance is simply computing the normalized
dot product of target and test i-vectors (wtarget and w,_),
which provides a match score:

w XwW

target test

CDS(wtarget > wtest ) =

||W x ||wtest .

target

4.2 PLDA

LDA (Linear Discriminant Analysis) [19] is used to find
orthogonal axes for minimizing within-class variation
and maximizing between-class variation. PLDA, as an
extension of LDA [20, 21], is a probabilistic approach to
the same method.



Generally, PLDA was applied to compare i-vectors.
Of course, PLDA is capable to be applied to any vectors.
Therefore, it can be used in new DL approaches, where
i-vectors are replaced with their Deep Learning alterna-
tives. Here, we give a brief description using the tradi-
tional i-vector approach.

Given a set of d dimensional length-normalized i-vec-
tors X:{xij;izl,...,N;j:1,...,HI.} obtained from N
training speakers (each has H, i-vectors), i-vectors can be
written in the following form:

x; :/,t+Wz,.+e,.j
x,.j,,ueRD,WeRDXM,zi eRM,e,.j eR”,

Z={z;i=1..,N} are
o ={p,W,2} are model parameters, ¥ is a D x M matrix

where latent  variables,

(called factor loading matrix), g is the global mean of X,
z's are called the speaker factors and €;'s are Gaussian
distributed noise with zero mean and X covariance.

Given a test i-vector x, and a target-speaker i-vector x_,
the LR score can be computed:

s

P(x,.x,
[ P %,2]0)ds
J.p(xs,z|a) dz,jp x,.z|w)dz,
[ (% x]z.0)p(z)dz
) dz ,[p |z,,w) zl)dzt
N([x:x,r ][,uTuT ], ww'’ +Z)

N([l ! " " L diag {ww” + = ww" +5})

where W =[W'W"]" and £ = diag {2,%}. Using Eq. (2)
and the standard formula for the inverse of block matri-
ces [22], the log-likelihood LR score is given by [21]:

| same speaker)

_s’t

S =
LR {x, > X }‘ | different speaker)

@

) [p(x,

Six (x,,x,) = const + x] Ox, +x, Ox" +2x] Px,,
where

P=A'T(A-TA'T) ;A =WW" +3
QO=A"—(A-TA'T) ;T =",

5 Deep Learning (DL) in Speaker Recognition (SR)

Generally, Deep Learning in Speaker Recognition has
two major directions. One approach is to replace the i-vec-
tor calculation mechanism with a Deep Learning method
as feature extraction. These works train a network on
speaker samples using acoustic features (such as MFCCs
or spectra) as inputs and speaker IDs as target variable and
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commonly use the output of an internal hidden layer as
i-vector alternative and apply cosine distance or PLDA as
decision making. The other main strategy is to use Deep
Learning for classification and decision making, like
replacing the cosine distance and PLDA with a discrim-
inating deep network.

The performance of automatic Speaker Recognition
systems is commonly evaluated by Equal Error Rate (EER)
and Decision Cost Function (DCF). Equal Error Rate
(EER) is a biometric security system algorithm used to pre-
determine the threshold values for its false acceptance rate
and its false rejection rate [1, 23]. When the rates are equal,
the common value is referred to as the Equal Error Rate.
The value indicates that the proportion of false acceptances
is equal to the proportion of false rejections. The lower the
Equal Error Rate value, the higher the accuracy of the bio-
metric system. Alternatively, the Decision Cost Function
takes the prior probabilities of the target speaker occur-
rences, the proportion of target and non-target speakers
into consideration. The detection cost function is a simul-
taneous measure of discrimination and calibration. Often,
the minimum value of the DCF curve is called minDCF.

In Subsections 5.1-5.3, we give a detailed overview of the
related works. The summary of the filtered essential cita-
tions is shown in Table 2 in Appendix B. An overview on
how the reviewed methods relate to each other is depicted
in Fig. 1. Abbreviations and details can be found in the text.

5.1 Deep Learning (DL) for feature extraction

The paper of Chen and Salman [24] is a relatively early work
in deep feature extraction, in which bottleneck features
(speaker models) are created using a Deep Neural Network
with multiple subsets. Each subset is a deep autoencoder
originally proposed in [25]. A hybrid learning strategy is
proposed: the weights of the middle layer are shared across
multiple inputs (adjacent frames) by a cost function:

L(xl,xz;Q):[LR (x,;60)+L, (x2;0)]+LE (x;.x,:0),

end-to-end
systems

ASR domam
features

deep
feature
learning

Fig. 1 Overview of how reviewed methods relate to each other
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where L,(x;; 0) is the loss of the network for input i, and
L, (x,, x,; 0) is a loss function optimized for learning the
same speaker representation (model) at the layer, from
which the speaker model features are extracted. For the
experiments TIMIT, NTIMIT, KING, NKING, CHN and
RUS dataset are used. According to the results, the pro-
posed method outperformed the GMM-UBM baseline
system in the case of all datasets.

5.1.1 The d-vector

There are numerous works that are aimed at extracting
hidden layers of a DNN as features (substituting i-vectors).
In [26] averaged activations of the last hidden layer of a
network with multiple fully connected layers are selected
as features, called as "d-vector" (Fig. 2). These vectors
are later used in the same manner as i-vectors. Speaker
Verification is done by cosine distance comparison.
First, the network is trained in supervised manner, using
13-dimensional Perceptual Linear Predictive (PLP) fea-
tures with A and AA values appended as frame-level fea-
ture vectors. After the training, the output layer is removed
and the activations from the last hidden layers are used
as features. The experiments were performed on a small
footprint text-dependent corpus: 646 speakers speaking
the same phrase: "ok google" multiple times. It was found
that the general i-vector system mainly outperforms the
newly proposed d-vector. The EERs (score normalized
with t-norm) of the best performing setups were 1.21 %
and 2.00 % for i-vector and d-vector, respectively.

stacked filterbank
energy features

5.1.2 The j-vector

The d-vector method was extended in [27] by a multi-task
learning approach. The authors state that the intuition is
that directly recognizing speaker seems to be hard but in
reality, different speakers have their own style on each syl-
lable or word. Therefore, using not only the speaker ids,
but texts also as targets in a multi-learning setup, may
increase the Speaker Verification performance. The used
network is shown in Fig. 3. The applied cost function is the
sum of the original loss functions:

C([ynyz]a[y{ayz']) =C (y1ay1,)+C2 (.y27y;)7

where C| and C, are two cross-entropy criteria for speak-
ers and texts, y,, y, indicate the true labels for speakers
and texts individually and y/,y, are the outputs of the two
targets. As in the case of the original d-vector, after the
supervised training phase, the output layer is removed and
the output of the last hidden layer is used as a feature vec-
tor, defined as j-vector (joint vector). The experiments were
done on the RSR2015 database [5]. The results show that
the j-vector outperformed the d-vector approach. The EERs
are 21.05 % and 9.85 % for d- and j-vector, respectively.

5.1.3 The x-vector

Another hidden layer extracted feature vector is called
x-vector [28, 29]. It is based on DNN embeddings, based
on a multiple layered DNN architecture (with fully con-
nected layers) with different temporal context at each layer
(which they call "frames"). Due to the wider temporal

d-vector is the averaged activations
from the last hidden layer

O
O
O

O
O
O

O
O
O O

O

O OOF

O

J

OO0 OO0

fully-connected maxout hidden layers

output layer is the
probability of speakers,
it is removed in
enrollment and
evaluation

Fig. 2 DNN model in [26]



speakers

Sztah¢ et al. | 31 5
Period. Polytech. Elec. Eng. Comp. Sci., 65(4), pp. 310-328, 2021

phrases

mean: j-vector

Fig. 3 Multi-task DNN in [27]

context, the architecture is called Time-delay Deep NN
(TDNN). The TDNN embedding architecture can be seen
in Fig. 4. The first five layers operate on speech frames,
with small temporal context centered at the current
frame ¢. For example, the frame indexed as "3" sees a total
of 15 frames, due to the temporal context of the earlier lay-
ers. After training with speaker ids as target vectors, the
output of layer segment6 ("x-vector") is used as input to a
PLDA classifier. The input acoustic features are 24 dimen-
sional filterbanks with 25 ms frame size, mean-normal-
ized over a sliding window of up to 3 seconds. The used
databases for evaluation include SWBD, NIST SRE 2016
and VoxCeleb. Data augmentation (increasing the amount
of samples by adding babble noise, background music
and reverb) was applied to various experimental setups.
The main results show that x-vector outperforms the gen-
eral i-vector based system (EERs are 9.23 % and 8.00 %
for i-vector and x-vector, respectively). Using data aug-
mentation, the difference is larger (EERs are 8.95 % and
5.86 % for i-vector and x-vector, respectively). The paper
of Jiang et al. [30] extends the x-vector framework by so
called dilated dense blocks, gate blocks and transition
blocks. These blocks use convolutional layers to cover
local features of different spans. On VoxCeleb, the exten-
sion results in 0.86 % EER decrease in absolute value
(from 3.17 % to 2.31 %). Speaker representations can also
be used to change the identity of the speaker. In [29] x-vec-
tors are used for speaker anonymization. The extracted

vector values are modified in order to change the speaker
characterization and the speech is then re-synthetized,
generating anonymized speech.

For short speech utterances, Kanagasundaram and col-
leagues [31] changed the dimension of the sixth and seventh
layer ("segment6" and "segment7") to 150 in order to adapt
to the shorter duration. It was found that the lower dimen-
sion of segment 6 and 7 helped in Speaker Verification in
the case of 5-second-long utterances, but achieved higher
EER on the original long utterances on the NIST SRE 2010
dataset. On the other hand, Garcia-Romero et al. [32] tried
to optimize the x-vector system for long utterances (with
2—4 seconds duration) by a DNN refinement approach that
updates a subset of the DNN parameters with full record-
ings and modifies the DNN architecture to produce embed-
dings optimized for cosine distance scoring. The results
show that the method produces lower minDCF (minimum
Decision Cost Function), but slightly higher EER than the
baseline x-vector approach.

The x-vector was also applied in a multi-task learning
scenario [33]. Beside the primary task (learning speaker
identities), a second task was introduced: learning high-
er-order statistics of the input vector. By doing so, the sys-
tem achieved slightly lower EER than the standard x-vec-
tor on the NIST SRE16 dataset: 7.79 % and 8.03 % for
multi-task and baseline, respectively.

The x-vectors, in general, are incapable of leveraging
unlabeled utterances, due to the classification loss over
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output: speaker probabilities
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—embedding b
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—embedding a
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frame level
A
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input: x

Fig. 4 The x-vector DNN embedding architecture in [28]. The features of the of the individual layers (top) and the structure of the network (bottom).

training speakers. The work of Stafylakis et al. [34] offers
an alternative strategy based on x-vectors to train speaker
embedding extractors via reconstructing the frames of a
target speech segment, given the inferred embedding of
another speech segment of the same utterance. They use
a decoder network, to which the embedding vector is
attached and by which the network serves as an autoen-
coder. The proposed decoder loss combined with the stan-
dard x-vector architecture and loss (i.e., crossentropy over
training speakers) yielded improvement both on SITW
and VoxCeleb datasets: ~0.4 % improvement in absolute
EER compared to the standard x-vector system.

5.1.4 End-to-end systems

In order to do Speaker Verification, the embeddings are
extracted and used in a standard backend, e.g., PLDA.
Ideally the NNs should however be trained directly for the
Speaker Verification task [35-38].

Instead of using cosine distance or PLDA classifi-
cation, [35] apply an end-to-end solution for Speaker
Verification with deep networks to obtain speaker rep-
resentation vectors, estimation of a speaker model based

on up to N enrollment utterances and also for verification
(cosine similarity/logistic regression). The architecture is
shown in Fig. 5. Both DNN (the same as the network used
in d-vector extraction) and LSTMs are applied for speaker
representation computation. The network is optimized
using the end-to-end loss:

l,,, =—log p(target)

Sg
[} —_—
2|88
enroliment S s [EF [ S
utterances o T » E |o 7]
£ 3£ |4
— o c
Q —
s E |5 o 2
%] > O > i
= = 3
] qc') [S] ©°
- = g=
> »| @2 0
Z > o o
: Z speaker o o
evaluation O | representation =
utterance

Fig. 5 End-to-end architecture used in [35]



with the binary variable target € {accept, reject}, p (accept)
= (14 ook )_1 and p(reject) =1- p(accept). The
value —b/w corresponds to the verification threshold.
S(X, spk) is the cosine similarity between the speaker repre-
sentation and the speaker model. The methods were tested
on the "ok, google" dataset with more than 73 M utterances
and 80 000 speakers. The results show that the end-to-end
architecture performs similar to the d-vector approach if
the same feature extractor (DNN) is used. However, LSTM
lowered the EERs compared to the DNN solution: EERs
are 2.04 % and 1.36 % for DNN and LSTM, respectively.

Another end-to-end system is proposed in [38], where the
training was done by triplet loss aided by cosine similarity.
A speaker embedding network is fed with raw speech wave-
form, which produces embedding vectors. This network
is pre-trained with LibriSpeech by 1.5-2.0 sec uttarance
chunks. Then the CHiME 2013 database [6] was used for
Speaker Verification evaluation using specific 2 to 4 key-
words only. The keywords were determined by an ASR,
which was used in the training of the speaker embedding
system in an adversarial way, forcing the embedding vec-
tors to be speaker independent. Results show partial suc-
cess: the triplet loss and ASR adversarial training did not
improve the EER in the 2 keywords case, but it did if 3 or
4 keywords were examined.

5.1.5 Deep Belief Networks (DBN)

Deep Belief Networks (DBN) are another type of
Deep Learning networks that are used in Speaker
Recognition [39, 40]. Deep Belief Networks are generative
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models with numerous layers of latent variables, which are
typically binary. Neurons in the same layers are not con-
nected and connection between adjacent layers are undi-
rected. Training of DBNs are hard due to the intractabil-
ity of inferring the posterior distribution from the hidden
(latent) layers. Stacked Restricted Boltzmann Machines
(RBMs) can be applied as a DBN architecture (Fig. 6).
For more details, see [41]. The objective of DBN is to
learn abstract hierarchical representations of unlabeled
input data. In [40], spectrograms (25 ms window size,
10 ms timestep) have been fed as input speech data after
applying PCA transformation to reduce dimensionality.
Activations of first and second layers of the RBM were
used as features (both separately and together) appended
to common MFCC features. After feature extraction,
GMM-UBM was used to perform Speaker Recognition.
The authors used the ELSDSR dataset with 22 speak-
ers. Based on the results, the features extracted from the
RBM helped the recognition: 90 % and 95 % final accu-
racies were obtained by using separate MFCC and mixed
MFCC+RBM features, respectively.

Ali et al. [39] also use the same acoustic feature
extraction method, but they add a Bag of Words method in
order to convert the data with different lengths into vec-
tors of the same dimensionality (using a k-means cluster-
ing technique). SVM is applied as a classifier. The experi-
ments were done on the Urdu dataset [42] with ten speakers.
Here, also hybrid (MFCC+DBN) features performed the
best: 88.6 % and 92.60 % accuracies were obtained for
MFCC and MFCC+DBN features, respectively.

Hidden units

Weights

RBM model 2

A

Hidden units

RBM model 2

Hidden units

Fig. 6 Structure of the DBN used for extraction of short-term spectral features, with two hidden layers, can be visualized as a stack of 2 RBMs [40]
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In [43], a widespread evaluation of multiple DNN
methods for deep feature extraction are given using deep
Restricted Boltzmann Machines (RBMs), speech-dis-
criminant Deep Neural Network, speaker-discriminant
Neural Network and multi-task joint-learned Deep Neural
Networks. RBMs are used in the same way as in the pre-
vious Subsubsection 5.1.4 [39, 40]. A speech discriminant
DNN was applied with text labels as training data and tri-
phone states as target. This scenario can be useful in a
text-dependent Speaker Verification task. The outputs of
the last hidden layer are used as features. In the case of
speaker discriminant DNN, the outputs of the speech dis-
criminant network are changed to speaker IDs. This way,
a more speaker specific feature set can be obtained and it
is a more natural choice for Speaker Verification. In the
multi-task setup, both previously mentioned (speaker IDs
and triphones) outputs are used as targets. A standard
i-vector system trained with PLP features was used as
baseline (GMM-UBM with cosine similarity). The newly
proposed deep features were tested separately and by com-
bining them in various ways on the RSR2015 dataset [5].
Compared to the baseline result (1.5 % EER), the speaker
discriminant and multi-task DNNs achieved the best per-
formances (1.06 % and 0.80 % EER respectively). The best
combination of deep features (concatenating RBM and
multi-task features) gave 0.73 % EER. Also, with PLDA
performed after deep feature extraction, 0.20 % EER was
achieved for speaker discriminant features.

5.1.6 CLNets

In [44] a deep Corrective Learning Network (CLNet) is
proposed to analyze independent samples by a recurrent
formalism. Each new instance makes a corrective pre-
diction to update the predictions made from prior data.
This means that instead of averaging the results for seg-
ments of a speaker, an incremental strategy is used.
CLNets are applied using convolution layers for Speaker
Verification. NIST SRE 2004-2010 corpora are used for
the experiments. By using cosine similarity, ~2.5 % lower
EER was obtained compared to the standard i-vector sys-
tem (7.3 %, 5.18 % and 4.87 % EERs for i-vector, standard
CNN and CLNets, respectively). However, using PLDA,
i-vector performed better.

5.1.7 Text dependency

Still, i-vector systems outperform the DNN ones in a text
independent scenario [45]. So, taking the standard i-vec-
tor PLDA system as basis, [36] proposed an end-to-end
DNN that learns sufficient statistics of GMM-UBM and

provides i-vectors. In the first part of the network, GMM
posteriors are learned by a multiple layered architecture,
then the standard i-vectors are used as targets with cosine
distance as loss function.

5.2 Deep Learning (DL) for classification

Rather than applying deep feature extraction to exchange
the common i-vectors for a more robust and better per-
forming speaker representation, DNNs can also be used to
replace the backend systems for scoring and comparison
(like PLDA and cosine distance). Such works are sparser
in literature than those related to feature extraction.

5.2.1 Variational Autoencoder (VAE)

Variational Autoencoder (VAE) [46, 47] is a generative
model for signal (and speech) modelling. It is used in
voice conversion [48—50], speech recognition and also for
Speaker Recognition [51, 52]. Instead of using just deter-
ministic layers, a VAE consists of stochastic neurons also.

The LR scoring is made by:
LR(xl,xz)zp(x”leH’”): P(xl,x2|9) ’
P(x,x,|H,,) P(x|60)P(x,|6)

where H,, H,  are the hypotheses about the facts that
Xx,, x, are related to the same or different speakers respec-
tively and € is the parameters of the speaker model.
The results showed that VAEs don't seem to be superior
to PLDA scoring.

5.2.2 Multi-domain features

Text dependent data were also used for classification in a
Speaker Recognition task to help learning speaker IDs.
Tang et al. [53] used the output of an ASR to improve
the performance of Speaker Recognition. Fig. 7 shows
the proposed multi-task learning scheme. The output of

/ e \
Speaker
recognition DN,\?OSrF\;NN
DNN or RNN

S(t) /s(t1) Pe1)\ P

Fig. 7 Multi-task recurrent learning in [53] for ASR and SRE.
F(¢) denotes primary features, P(f) denotes phone identities,
S(t) denotes speaker identities.



the ASR (phone-posteriors) is fed into the SRE system,
and vice versa. The input of each task is formed from the
extracted frame-level spectra (filterbanks and MFCCs for
ASR and SRE, respectively). The experiments were done
on the WSJ dataset. Based on the results, the proposed
method achieved equal or slightly better EERs, than the
i-vector baseline (0.57 % and 0.55 % for i-vector and
multi-task method, respectively).

5.2.3 Replacing UBM with DNN

DNNs can be used to replace the UBM also. Universal
Deep Belief Networks (UDBN) [54] are used as backend,
in which a two-class hybrid DBN-DNN is trained for each
target speaker to increase the discrimination between target
i-vectors and the i-vectors of the other speakers (non-targets/
impostors). First, an unsupervised universal DBN is trained,
which is then adapted to the target speakers by a special
balanced training process. In the test phase, an unknown
i-vector is matched to the adapted target i-vectors. Based on
evaluation done on NIST SRE 2006 and 2014 datasets, the
proposed algorithm did not achieve better performance than
the i-vector PLDA baseline method. However, fusing the
DNN approach with the PLDA (i-vector) method, revealed
better performance than the i-vector alone.

5.2.4 Using contrastive loss for vector comparison

Since Speaker Identification is treated as a simple classifi-
cation task, softmax layers can be applied to create a DNN
backend system. However, in Speaker Verification, the
comparison of two (speaker modelling) vectors is neces-
sary. In a DNN, a way to achieved this is using contrastive
loss [55] as loss function on deep features. Convolutional
networks (namely VGG [56, 57]) [9] and ResNets [11, 58] can
be trained this way to perform Speaker Verification tasks.
On VoxCeleb and VoxCeleb2 datasets, lower EERs were
obtained than in the case of standard i-vector PLDA sys-
tems: 8.8 %, 7.8 % and 3.95 % EERs for i-vector, CNN and
ResNet, respectively. However, in [11] ResNet and the base-
line system were not trained on the same dataset (RestNet:
VoxCeleb2, i-vector: VexCelebl), therefore this increase
could come from the effect of the larger audio material.

5.2.5 SincNet

Convolutional Neural Networks (CNNs) are also used in
Speaker Recognition, using spectrograms [9, 59, 60] or raw
speech waveform as input [61, 62]. SincNet [61] is a spe-
cial CNN architecture that gets raw waveforms as inputs.
Before applying standard CNN/DNN layers it learns high
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and low cut-off frequencies of band-pass filters by a con-
volutional layer (Fig. 8). In Speaker Identification task,
compared to MFCC-fed DNN, the SincNet achieved better
performance on TIMIT and LibriSpeech: 0.99 %, 2.02 %
Classification Error Rate (CER) for TIMIT and LibriSpeech
with DNN, and 0.85 % and 0.96 % CER for SincNet,
respectively. SincNet was also compared to CNN with
filterbank energies as inputs. The conclusion was that on
smaller dataset (such as TIMIT), the filter learning was not
as effective as on a large dataset (LibriSpeech). On TIMIT,
the results were comparable. On LibriSpeech, however,
SincNet outperformed the CNN architecture (1.55 % and
0.96 % CER for CNN and SincNet, respectively). It was
found that SincNet also outperformed the other DNN solu-
tions (and the standard i-vector PLDA system) in a Speaker
Verification setup. Both d-vector (used with cosine dis-
tance) and speaker class posteriors were applied.

SincNet was extended in [63] for an unsupervised
speaker embedding learning by using mutual information
as objective function for embedding vector comparison.
An additional decrease in EER was examined: from 7.2 to
5.8 % on the VoxCeleb corpus.

speech waveform

1
1
SincNet filters

v

[ pooling ]
v

[ layer normalization ]
v

[ leaky ReLU ]
v

[ dropout ]
v

[ CNN/DNN layers ]
v

[ softmax ]

!

speaker classification

Fig. 8 Architecture of SincNet in [61]
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5.2.6 Unlabeled data

Whendoing Speaker Recognition, labeled datais notalways
present. There are some approaches that take advantage of
large scale unlabeled training data. Curriculum learning
is one of them [64—66]. It starts by learning a DNN model
using a labeled corpus and continuously introduces unla-
beled, out-of-domain text independent speaker samples.
Both LSTM [64] and TDNN [66] based systems are pro-
posed that outperform baseline methods.

5.3 Other usage of DNN in Speaker Recognition (SR)
In [67] DNN is used in a non-common way to aid Speaker
Recognition. The extraction of sufficient statistics for the
general i-vector model is driven by a Deep Neural Network
trained for Automatic Speech Recognition. This DNN is
used to produce frame alignments, specifically provid-
ing posteriors of semitones. First, DNN is trained for seg-
menting the speech into senones, using a pre-trained gen-
eral HMM-GMM ASR system. The i-vector training is
done on the semitone-level segmented speech. The final
flow diagram of the proposed method is shown in Fig. 9.
The experiments were done using the two extended
NIST SRE'I2 conditions: clean and slightly noisy tele-
phone speech. The pre-trained HMM-GMM system used
a 39 dimensional MFCC vector, including 13 MFCC and
their first and second order derivatives. The input of the
DNN in the HMM-DNN was composed of 15 frames,
using 40 log Mel-filterbank for each. The results of the
proposed method was compared to a standard i-vector sys-
tem (GMM-UBM and i-vector). The HMM-DNN method
achieved a slightly lower EER: 1.39 % and 1.81 % for
DNN and UBM, respectively for clean speech; 1.92 % and
2.55 % for DNN and UBM, respectively for noisy speech.
Yet another topic of Speaker Recognition is forensic
sciences and applications. In forensics, all the above men-
tioned methods and technologies must be applied through
the LR framework, in order to get evidence based and

speech features
fiterbank

A

frame
deep neural posteriors | speaker features
network mfccs+deltas
zero-order first- and second-
y statistics order statistics y

standard i-vector model

Fig. 9 Flow diagram of the DNN/i-vector hybrid framework in [67]

jurisdiction compliance decision making. For this kind of
examinations, usually specific datasets are needed that are
consistent with the given evidences and use-case scenar-
ios. For a very good review and more details on forensics
based on speech, see [68—71].

6 Conclusions

In this paper we summarized the applied Deep Learning
practices in the field of Speaker Recognition, both for
verification and identification. The early DL solutions
to replace feature extraction (such as i-vectors) provided
comparable but not higher performance than the previous
state-of-the-art i-vector PLDA systems. Although newer
DL architectures led to increasing classification accura-
cies, it is well-known in the literature that i-vectors pro-
vide competitive performance, when more training mate-
rial is used for each speaker and when longer test sentences
are employed [72—74]. However, the latest works offer
superior results. In some cases, the reported results show
significantly lower EERs, but mostly the achieved per-
formances are only a little better than the previous ones.
Nonetheless, it seems that DL becomes the now state-of-
the-art solution for both Speaker Verification and identifi-
cation. The standard x-vectors, additional to i-vectors, are
used as baseline in most of the novel works. The increas-
ing amount of gathered data opens up the territory to DL,
where they are the most effective. Additionally, newer
and newer DL architectures are developed, that can lead
to a breakthrough in Speaker Recognition too. Based on
the literature, it is hard to derive a final conclusion about
the "best" method for sSpeaker Recognition. The x-vector
became the de facto standard, used in practical applica-
tions and as baseline method to beat.
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Nomenclature
SI Speaker Identification
SV Speaker Verification
DL Deep Learning
SR Speaker Recognition
DNN Deep Neural Networks
GMM  Gaussian Mixture Model

UBM Universal Background Model



ASR Automatic Speech Recognition

PDF Probability Distribution Function

LR Likelihood Ratio

FA Factor Analysis

CDS Cosine Distance Score

PLDA  Probabilistic Linear Discriminant Analysis

LDA Linear Discriminant Analysis

DCF Decision Cost Function

EER Equal Error Rate

PLP Perceptual Linear Predictive

TDNN  Time-delay Deep Neural Network
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