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Abstract

Proper timeliness is vital for a lot of real-world computing systems. Understanding the phenomena of extreme workloads is essential 

because unhandled, extreme workloads could cause violation of timeliness requirements, service degradation, and even downtime. 

Extremity can have multiple roots: (1) service requests can naturally produce extreme workloads; (2) bursts could randomly occur on a 

probabilistic basis in case of a mixed workload in multiservice systems; (3) workload spikes typically happen in deadline bound tasks.

Extreme Value Analysis (EVA) is a statistical method for modeling the extremely deviant values corresponding to the largest values. 

The foundation mathematics of EVA, the Extreme Value Theorem, requires the dataset to be independent and identically distributed. 

However, this is not generally true in practice because, usually, real-life processes are a mixture of sources with identifiable patterns. 

For example, seasonality and periodic fluctuations are regularly occurring patterns. Deadlines can be purely periodic, e.g., monthly tax 

submissions, or time variable, e.g., university homework submission with variable semester time schedules.

We propose to preprocess the data using time series decomposition to separate the stochastic process causing extreme values. 

Moreover, we focus on the case where the root cause of the extreme values is the same mechanism: a deadline. We exploit known 

deadlines using dynamic time warp to search for the recurring similar workload peak patterns varying in time and amplitude.
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1 Introduction
An extreme event occurs when interrelationships between 
complex and coinciding circumstances cause considerable 
deviations from the usual behavior.

However, extreme events (workload spikes and result-
ing abnormally long service times) are generally present in 
real-world computer systems where the correlated work-
load sources sharing computing resources result in occa-
sional workload spikes [1]. For example, a seasonal pro-
motion in a webshop can incur an extreme workload. 
Moreover, many humans triggered deadline-bound tasks, 
and as late as possible (ALAP) scheduling may also lead to 
such workload profiles.

In real-life computing systems, extreme values are usu-
ally rare; thus, in this case, rarity and being an outlier coin-
cide. However, for critical applications, even a low rate of 
timeliness violations is usually unacceptable. Rarity makes 
statistical modeling (parameter identification, parametri-
zation) difficult due to the moderate size of the data repre-
senting the extreme values. Moreover, traditional statistics 

usually suppress values significantly larger or smaller in 
amplitude than the majority of the dataset as outliers, lead-
ing to ill dimensioned systems.

Overall, we aim to provide a method for real-life com-
puting systems with mixed workloads to meet their tempo-
ral and high availability (HA) requirements by adequately 
dimensioning for extreme workloads.

We focus on cases where extreme workload occurrences 
have a single root cause: a time-varying recurring dead-
line. We will use it to identify the extreme component and 
compensate for its time variance.

2 Modeling workloads with time-varying peaks
In Section 2, we present Extreme Value Analysis (EVA) 
and some of the issues and solutions of not perfectly inde-
pendent and identically distributed (iid) datasets. Such 
datasets are typical in real life [1]. Examples are the ser-
vice sector, banking, power grid, and transportation, 
where there are peak operating hours.
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2.1 Extreme Value Analysis
EVA is a particular area of statistics aimed at modelling 
extremely deviating, far from average values. The classic 
use case of EVA is in hydrology:

• Analysis: What is the probability of a given embank-
ment surviving the floods of the next time period (for 
example 100 years)?

• Dimensioning: How tall embankment is needed to 
survive the floods of the next time-period (for exam-
ple 100 years) of a given probability?

EVA has two main methods:
• the block-maxima method (aka Annual Maxima Series, 

AMS) based on the Fisher-Tippett-Gnedenko theorem,
• the peak-over threshold (POT) method based on the 

Pickands-Balkema-de Haan theorem.

The block maxima method searches the dataset for 
large representative values by slicing the dataset into 
equal length blocks, selecting only the maximum value 
from each block, and discarding all the other values. The 
block maxima method uses Gumbel, Frechet, or Weibull 
distribution to fit.

The peak-over-threshold method selects all the values 
above a threshold and discards the rest, and uses Generalized 
Pareto Distribution (GPD) to fit (Fig. 1).

2.1.1 Extreme Value Analysis background
The EVA mathematics is summarised based on [2–4].

Let χ = X X Xn1 2, ,...,  be a sequence of iid random 
variables with cumulative distribution function (cdf ) 
F(x) and let M X X Xn n= …( )max 1 2, ,  denote their max-
ima. If F(x) is known and variables Xi are still assumed to 
be iid, then the exact cdf of the maxima can be computed 
as the product of the cdfs.
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If F(x) is unknown, then a simple solution could be 
using a direct estimator of F̂ (x) out of a sample sequence. 
However, when computing [F̂ (x)]n, even small estimation 
errors in F̂ (x) can cumulatively distort [F̂ (x)]n.

Instead of using an estimator F̂ (x), EVA approximates 
directly [F(x)]n. Hence, the core mathematical question is: 
How does the "n-th power" of cdfs behave? Are there any 
requirements? Does it converge? How, where?

Intuitively, if F(x) has an upper bound and the number of 
random variables n goes to infinity, then P(Mn ≤ x) = [F(x)]n 

converges to the upper endpoint with a probability of 1, 
which makes the converging cdf degenerate.

A degenerate cdf has all the weight concentrated in a 
single point at its probability density function (pdf ), which 
renders associated random variables constant (producing 
the same constant value).

Moreover, a prerequisite of analytical EVA is a "con-
nection" between F(x) and P(Mn ≤ x) = [F(x)]n regardless 
of the number of random variables n. Several ideas revolve 
around the issue of "connection".

A stochastic process is ergodic if a statistical prop-
erty can be deduced from a single, sufficiently long, ran-
dom sample of the process. For EVA, the stochastic pro-
cess needs to be tail-distribution-type-ergodic, because if 
[F(x)]n was a randomly changing distribution type while n 
goes to infinity, then making an inference based on [F(x)]n 
would be random and impractical.

A distribution is stable if a linear combination of inde-
pendent random variables copies has the same distribu-
tion up to location and scale (the result distribution is of 
the same type). If X is a non-degenerate random variable, 
and there exists a bn n> ∈0, R� constant series such that 
X1 + X2 + … + Xn has the same distribution as anX + bn for all 
n > 1, then X and its cdf are stable.

The location parameter shifts the pdf along the X axis. 
The scale parameter controls how spread out the pdf is 
along the X axis. Larger scale means the pdf is more 
spread out along the X axis. As the integral of pdf over 
the entire space is equal to 1, a larger X axis spread means 
a smaller Y axis spread on average.

A distribution is max-stable if the maximum value of 
independent random variables copies has the same distri-
bution up to location and scale (the result distribution is 
of the same type). If X is a non-degenerate random vari-
able, and there exists a bn n> ∈0, R� constant series such 
that M X X Xn n= …( )max , , ,1 2  has the same distribution 
as anX + bn for all n > 1, then X and its cdf are max-stable. 
As EVA is concerned with taking the maximum value of Fig. 1 EVA methods compared. Left: AMS Right: POT
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random variables, max-stability is a prerequisite property 
of EVA for the cdf under investigation.

Also, owing to the iid requirement, the stochastic pro-
cess must be stationary: its unconditional joint cdf must 
not change when shifted in time.

Normalization can make [F(x)]n converge to a non-degen- 
erate distribution function if possible:

M
M a
bn
n n

n

normalised =
−

, (2)
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> ∈  approriately selected constants.  (3)

F(x) belongs to the Maximum Domain of Attraction 
(MDA) of H(x) only if normalizing constant sequences of 
a bn n> ∈0, R� exist such that [F(x)]n converges to H(x):
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where H(x) is a non-degenerate cdf and the normalized 
maxima Mn

normalised  converges in distribution to a random 
variable with distribution function H.

The maximum domain of attraction is unique con-
cerning location and scale: If K(X) ∈ MDA [L(X)] and 
K(X) ∈ MDA [J(X)] then L(X) and J(X) are necessarily 
from the same type of distributions, meaning there exists 
a b> ∈0, R� that L(X) = J(aX + b).

2.1.2 Annual Maxima Series
The Fisher–Tippett–Gnedenko theorem states that if the 
probability distribution function of the maximum value 
with the increasing number of observations converges to 
a non-degenerate distribution function after normaliz-
ing, then it always belongs to one of the three Extreme 
Value Distribution (EVD) classes of Gumbel, Fréchet, and 
Weibull (Table 1). If normalization is impossible and [F(x)]n 

 diverges, then that means that the systematic extremity 
of the random variables is beyond the modeling power of 
EVA. The class of the extreme value distributions and the 
max-stable distributions coincide.

The standard EVDs differ by the convergence rate 
(speed) of their respective tail distributions. The MDA 
binds the class members: the EVD class members can be 
different while retaining the same asymptotic tail behavior.

The reference rate of convergence is the exponential- 
tailed Gumbel distribution family. Example class mem-
bers are: normal, gamma, log-normal, exponential.

The slowest is the Fréchet family; these distributions 
have heavy-fat tails, where the complementary cumula-
tive distribution function decreases as a power function. 
Example class members are Pareto, Student, Cauchy, Burr.

The Weibull distribution family has the fastest tail con-
vergence with a finite right endpoint (thin tail). Example 
class members are: uniform, beta and reverse Burr.

2.1.3 Threshold exceedance
The threshold exceedance model separates the "normal" 
and extreme values by their respective amplitude with a 
threshold u. Selecting a proper threshold is cumbersome. 
However, several alternative methods are helping the 
threshold selection [5, 6].

The Pickands–Balkema–de Haan theorem states that for 
the approximation of the conditional distribution function 
Fu, with a large enough threshold u, the Generalized Pareto 
Distribution (GPD) is a right candidate if the unknown F is 
within the MDA of EVDs [2]. The conditional excess dis-
tribution Fu over the threshold u is:
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where: F: unknown distribution function of random vari-
able X; xf: either the finite or infinite right endpoint of the 
underlying distribution.

As the threshold u converges to the right endpoint of the 
underlying distribution F, Fu converges to GPD if the nor-
malized maxima of F converges to an EVD, which essen-
tially links the two EVA methods together.

For reference, the GPD has the following CDF:
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Parameter ξ is named "shape" while β is named "scale".

Table 1 Extreme Value Distribution classes

Name CDF Formula Params distribution of 

Weibull
Ψ

Ψ

α
α

α

x x

x

( ) = − −( )( )
( ) =

exp

1

x ≤ 0, α > 0
x > 0, α > 0

short tail with 
finite upper bound

Gumbel Λ x x( ) = − −( )( )exp exp x ∈ 
light tail 

(exponential tail)

Fréchet
Φ

Φ

α

α
α

x

x x

( ) =

( ) = −( )−

0

exp

x ≤ 0, α > 0
x > 0, α > 0

heavy tail (incl. 
polynomial decay)
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2.2 Local correlation and de-clustering
The locality is a particular case of correlation when a vari-
able correlates with itself over short to medium ranges. For 
example, if a message is sent to a destination in a network 
application, it is more likely that follow-up messages will 
be sent there shortly [1].

When a time series (TS) is created, the real-world data 
is periodically sampled, for example, daily, monthly, and 
quarterly data. However, generally speaking, EVA mod-
els the amplitude domain (Y-axis) and does not consider 
the length of a peak (X-axis). Thus, if the duration of the 
peaks and the time series sampling period are ill aligned, 
then the longer peaks are at risk of being over-represented 
with multiple locally correlated values. This local correla-
tion can distort the peak distribution and violate the iid 
assumption, and invalidate EVA results (Fig. 2).

For block maxima, if the data shows a significant auto-
correlation with small lags, a standard way of handling 
this problem is selecting a larger block size, effectively 
suppressing bursts of locally correlated data.

For POT, a standard way of handling this problem is 
de-clustering around the following idea: non-extreme val-
ues must separate extremes. Extreme values that are not 
separated by at least N under the threshold values are clus-
tered. Then from each cluster, the largest value is selected 
while the rest is moved under the threshold. This de-clus-
tering uses that the under the threshold values are not used 
for fitting GPD. N is an input of the de-clustering. The 
de-clustering threshold can differ from the POT threshold, 
ideally, with the former being smaller (Fig. 3).

2.3 Global correlation and Time Series Decomposition
Real-world time series data usually contain regular iden-
tifiable patterns, which can distort the analysis. Although 
both AMS and POT can tolerate some level of correlation, 

as previously discussed, further investigation is advised 
for global/long-term correlation.

Traditionally, time series decomposition is aimed at 
modeling the time series by extracting identifiable patterns 
using statistical methods. Usually, the following high-level 
components are used for time series analysis:

• Trend: long-term increase or decrease [T];
• Seasonality: periodicity with a fixed, known period 

length [S];
• Cycles: periodicity without a fixed, known period 

length [C];
• Residual / Error Term / Irregular Component / Noise: 

the remainder data that is not extracted by the other 
components [R].

While these components are typical for numerous real-
world processes (natural, business, human, etc.), other 
ones could be used by using other apriori knowledge.

For EVA, the residual component with the random 
data is relevant because the data in the other compo-
nents are dependent according to their respective mod-
els. Consequently, the more the non-random components 
model the data, the less correlation remains in the residual.

Time series decomposition has two often used models:
• Additive model: Y = T + S + C + R; R = Y – T – S – C;

• Multiplicative model: Y T S C R R Y
T S C

= =* * * ;
* *

.

The additive model is preferred when the seasonal fluc-
tuations are independent of the trend level, or the data 
tends to shows a linear trend. In the opposite case, the 
multiplicative model is preferred.

The multiplicative decomposition can be deduced to an 
additive one by using a log transformation:

log log log log logY T S C R( ) = ( ) + ( ) + ( ) + ( ) . (7)

There are several decomposition techniques: classical, 
X11, SEATS, and STL, just to name a few.

2.3.1 Classical decomposition
Classical decomposition is based on averages. For the 
trend line, a moving average is calculated with a fixed 
window length, e.g., seven days moving average. For the 
seasonal/cyclical component, first, the trend is removed 
from the data (de-trending), then the average is calcu-
lated for each season. For example, the seasonal effect for 
February is the average of all the February data. There 

Fig. 2 Sampling issues due to the sampling interval

Fig. 3 De-clustering
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are several issues with the classical decomposition, which 
newer methods improve upon:

• The smoothing effect of averaging makes the clas-
sical decomposition method unable to capture rapid 
changes, especially if the moving average window is 
large, which can lead to a significant underestimation 
of extreme values.

• The methods assume constant seasonal effects; thus, 
they cannot correctly capture non-constant seasonal-
ity, making the technique inaccurate with real-world 
dynamically changing systems.

• Vulnerability to a burst of outliers if the burst size is 
comparable to the averaging window size.

2.3.2 STL
Seasonal Trend decomposition using Loess (STL) uses 
loess regression for modeling the trend and seasonal com-
ponents [7]. Loess regression is a nonparametric technique 
that is a generalization of moving average and polynomial 
regression: loess uses locally weighted regressions to fit 
a smooth curve to points. Loess curves can reveal trends 
and cycles in data that might be difficult to model with a 
parametric curve, allowing non-linear relationships to be 
estimated [8]. Consequently, STL is:

• an additive decomposition method;
• able to handle any type of seasonality;
• can capture rapid changes because the smoothness of 

the trend can be controlled;
• able to model changes in seasonality, where the rate 

of change can be controlled;
• robust to outliers via parameter tuning.

There are various methods to forecast the remainder 
component when using STL. We will use Autoregressive 
integrated moving average (ARIMA) [9].

2.3.3 Facebook Prophet
Facebook Prophet is an open-source time-series analysis 
tool with an additive model at its core describing user-ini-
tiated workloads with main influence factors correspond-
ing to trends (like the growing popularity of a service), 
typical periodicity, and social factors [10].

y t g t s t h t t( ) = ( ) + ( ) + ( ) +� � � � � � � � ϵ , (8)

where:
y(t): the predicted (forecasted) load at time t,
g(t): the trend component,

s(t): the seasonality component,
h(t): the holiday component,
ϵt: is the error term.
The original aim of Prophet was resource utilization 

optimization of a vast infrastructure running a non-crit-
ical service that serves hundreds of thousands of users 
around the globe simultaneously.

Prophet offers two different trend models g(t): limited 
and unlimited. The limited trend model applies an option-
ally time-dependent logistic growth model.

g t C
k t m

( ) =
+ − −( )( )1 exp

, (9)

where:
C: the constant carrying capacity (upper limit of the trend),
k: growth rate,
m: an offset parameter.
The unlimited trend model applies a piecewise linear 

regression model. The growth rate is the base rate and the 
sum of all the past rate changes.

g t k t t m tT T( ) = + ( )( ) + + ( )( )� � � � � � �a aδδ γγ , (10)

where:
k: growth rate;
S: number of rate change points;
sj: the change in the rate occurring at time sj; j = 1… S;
a t a t a tS

S( ) = ( )… ( )  ∈1   is a selector vector of all 
change points before the actual time instance;

a t
t s

j
j( ) =
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if

otherwise
;

δδ = …[ ]∈δ δ1 S
S : vector of rate adjustments;

γ: vector makes the function continuous. The offset 
parameter is needed to connect the segments at the point of 
rate change (to make the change more continuous), γ ∈S.

Prophet uses Fourier series for seasonality modelling:
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where:
P: period time;
M: number of components in the decomposition;
am and bm: the estimated parameters.
In short, Prophet focuses on the typical and average 

cases; thus, it mainly suppresses extreme values (outliers) 
because dimensioning for outliers is contra-productive for 
utilization, and availability is not a primary concern.
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2.4 Dynamic time warping
Uneven peak intervals can make the seasonality inference 
difficult. If the unevenly occurring peaks could be aligned 
to the same peak intervals without affecting EVA, then the 
accuracy of the seasonality could be enhanced.

POT is insensitive to the ordering of the data. Thus the 
precise location of the peaks is irrelevant, and accordingly, 
moving the peaks does not distort the GPD. We will exploit 
this insensitivity to ordering for time series preprocessing.

Contrarily, the order of data influences the way blocks 
are created in AMS. Hence, block maxima can change if 
peak values are moved between blocks (Fig. 4).

To better assure the representativeness of the peak val-
ues and the iid property, the peaks must be transformed 
(warped) to a more predictable periodical phenomenon.

When comparing two time series, an initial approach 
could be orderly matching (mapping) the elements and 
summing up the point-to-point distances. This pointwise 
orderly matching is also known as linear (Euclidean) 
matching. The problem with linear matching is that it does 
not exploit a set/cluster of very close points and cannot 
handle uneven random intervals (Fig. 5).

Non-linear matching allows the matching of non-or-
derly elements. Consequently, it can handle unevenness 
and potentially reduce the overall distance by exploiting 
data points where point-to-point distance is small (Fig. 5).

For point-to-point distance calculation, various func-
tions can be used, with Euclidean being the usual.

Dynamic time warping (DTW) compares two time 
series, which may vary in speed, and measures their simi-
larity by optimally matching the two time series [11]. The 
similarity is the minimum distance between the two time 
series given a set of constraints. The original use case 

for DTW is speech recognition, where the speaker might 
speak faster/slower than the comparison data. In other 
words, the matching problem is analogous to data cluster-
ing. Thus DTW resembles a form of clustering.

The core of DTW is an N × M matrix called the distance 
matrix. N and M are the numbers of elements in the com-
pared time series. The distance matrix represents all the 
possible matchings between the time series (Fig. 6).

• The cell (i, j) represents that the j-th element is 
matched to the i-th element.

• The value in cell (i, j) is the sub-total minimum dis-
tance of the matching until elements i and j starting 
from the beginning.

• The sub-total is the point to point distance between 
i and j plus the sum of the distance from previous 
matchings on the optimal path to (i, j)

• The DTW algorithm starts at the bottom left (1, 1), 
fills the first row, then first column, then goes row by 
row, left to right until the top right (N, M) cell.

The path that minimizes the total distance is the warp-
ing function. Constraints can modify the warping function:

• monotonicity: the alignment cannot go back
• continuity: the alignment cannot skip elements
• boundary conditions: the alignment starts at the bot-

tom left and ends at the top right to cover both time 
series entirely

• warping window: how far the warping path can go 
from the X-Y diagonal

• slope constraint: what is the maximum number of 
consecutive steps in the same direction before a step 
in the other direction must be taken

Additionally, the step patterns govern the traversal of 
the matrix: what are the allowed steps and their costs. The 
cost of stepping is added to the distance (Fig. 7).

DTW can be fine-tuned by configuring the step pat-
terns, point-to-point distance functions, and constraints, 
making DTW a flexible, general-purpose tool.

Fig. 4 Variable peak intervals and temporal regularization

Fig. 5 Orderly one-to-one mapping and non-linear mapping Fig. 6 Distance Matrix
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3 A method for variable peak workload modeling
As mentioned before, EVA necessitates peak representa-
tive and iid data. Accordingly, the combined algorithm 
performs temporal regularization of peak periodicity, time 
series decomposition, and POT de-clustering in the fol-
lowing way:

1. Slice size determination based on the observed high-
level seasonality. A slice is a fixed number of consec-
utive points, similar to AMS blocks.

2. Slicing: divide the dataset into equal length blocks.
3. Master slice selection: the other slices will be com-

pared to the master slice and transformed.
4. Warping: compare the master slice to all the other 

slices using DTW.
5. Temporal regularization: based on the warping func-

tions, re-align (transform) the slices to regularize the 
peak periodicity. When a single point is matched to 
multiple points, take the maximum value and discard 
the rest.

6. Reassembly: orderly combine the slices to recreate 
the full-length time series.

7. Time Series decomposition of the combined dataset 
to identifiable time-series patterns.

8. Separation of the extreme component: extract the 
residual component to eliminate patterns (and 

correlation) that can be modeled using the time 
series decomposition technique of the previous step.

9. POT De-cluster the residual component to compen-
sate for local correlation.

10. EVA: execute POT on the residual component.
11. Quantitative aggregation: combine the POT esti-

mate of the residual component with the other 
components.

3.1 The applicability of the proposed method
The proposed method does not guarantee results. However, 
there are numerous ways to improve the results via tuning 
DTW and time series decomposition steps.

Since the proposed method uses the visible peak pat-
terns for DTW-clustering-based temporal regulation, the 
method works if slicing makes sense: the recurring peak 
patterns vary in speed/time but otherwise similar.

Additionally, DTW can be omitted if the used time 
series decomposition method can accurately model the 
temporal variation of the peaks.

4 Case study
The pilot dataset originates in the workload records of 
a university virtual computing lab (VCL). The resultant 
workload comprised different non-iid workload sources: 
the students driven by homework submission deadlines 
and researchers conducting computation tasks (Fig. 8).

There is apparent seasonality between different semes-
ters due to the yearly changing homework submission dead-
lines. Moreover, in each semester, there are high bursts of 
recurring workload peaks before the deadlines (Fig. 9).

A non-EVA approach, like Prophet, could underesti-
mate the peaks by suppressing the extremes as outliers. 

Fig. 7 Example step patterns

Fig. 8 The Original dataset with Prophet and a Naïve EVA prediction
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Meanwhile, an EVA-only approach could lead to wasteful 
overprovisioning by neglecting time series patterns: quasi 
periodicity, local correlation, and trend [12].

4.1 Peak re-alignment via DTW
There is a similarity in the semester workloads: varying 
peaks in the first half of the semester, a low workload sec-
tion, and some peaks at the end of the semester (Fig. 9).

One of the significant problems in finding a proper 
master slice ("etalon" sample) is the appearance of bursty 
background noise like workload. Appropriate separation 
of their impact is a research task itself [13, 14].

Engineering background knowledge helped us to 
select the first semester as a master slice, because it had a 
cleaner waveform. The VCL was primarily introduced to 

serve the preparation of homework. Initially, other tasks 
were rare, which resulted in a cleaner waveform in the 
first semester. In the subsequent semesters, spare capacity 
usage became more popular, which led to increased utili-
zation in the quiet period and relatively near the peak peri-
ods, resulting in an unclean, mixed waveform. However, 
the effect of other usage was limited near to the peaks, so 
no superposition-like interferences occurred. This way, 
the fundamental similarity of the waveforms around the 
peak loads remained highly undistorted. Only their tem-
poral position did change according to the deadlines in 
the individual semesters.

DTW visibly improved the similarity of the slices for the 
high peaks, and distortions of the original values occurred 
primarily at low levels irrelevant for POT (Fig. 10).

Fig. 10 All the slices and the whole dataset after DTW alignment, original dataset: black line, DTW re-aligned dataset: redline

Fig. 9 The master slice, and all the slices compared
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4.2 Analyzing the results of DTW: (auto) correlation
Considering the Autocorrelation Function (ACF), Partial 
Autocorrelation Function (PACF), Periodogram and the 
greatly increased slice correlations, it can be concluded 
that DTW had the desired effect of aligning the peaks. 
Moreover, the correlation between the different slice 
pairs, 1–to–2, 2–to–3, …, 7–to–8 increased as expected 
(Figs. 11 to 14).

4.3 Discussion
We analyzed the dataset in different ways (Table 2). The 
100 year return level is the level that is exceeded on aver-
age every 100 years, in our case, every 100 days. We cal-
culated 95% confidence intervals (CI).

The maximum in the test dataset was 250 concurrent 
VCL sessions. As a reference, the mean of the naïve EVA 
estimation was 502. Compared to this, the closest mean esti-
mate was 258 with DTW, Log transformation, and Prophet. 
The second closest mean estimate was 270 using STL with 
and without DTW, which shows the robustness of STL to 
the uneven peak intervals. For the DTW+LOG+STL case, 
we had outlier results because a proper threshold could not 
be selected. The threshold was either too low (GPD not fit-
ting) or too large (too few data points).

5 Conclusions
Generally speaking, based on our results, we conclude 
that time series decomposition and DTW can increase the 

Fig. 11 ACF plot for the original and DTW aligned data

Fig. 12 PACF plot for the original and DTW aligned data
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Table 2 100 year return level of aggregated results

Ideas used Method LO CI Mean HI CI

NONE Naïve EVA (reference) 16 502 988

TS STL+ARIMA 23 270 517

TS LOG+STL+ARIMA 227 497 767

TS Prophet -168 394 956

TS Log Prophet -1 299 599

DTW+TS STL+ARIMA 14 270 525

DTW+TS LOG+STL+ARIMA -17711 6502 30714

DTW+TS Prophet -129 338 805

DTW+TS Log Prophet 43 258 474

accuracy of POT in various cases. Time series decompo-
sition was more effective when it could tolerate uneven 
peak intervals, such as STL. Meanwhile, DTW was more 
effective when the used decomposition method did not 

tolerate uneven peak intervals. Meanwhile, there are still 
open research questions:

1. how to select or artificially create the master slice,
2. how to tune DTW.

Fig. 13 Periodogram for the original and DTW aligned data

Fig. 14 Correlation between the slices for the original and the warped
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