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Abstract

In this paper, a particular type of dispersion is further investigated, which is called Filling. In this problem, robots are injected one 

by one into an a priori not known area and have to travel across until the whole area is covered. The coverage is achieved by a 

robotic team whose hardware capabilities are restricted in order to maintain low production costs. This includes limited viewing 

and communication ranges. In this work, we present an algorithm solving the synchronous Filling problem in O((k + ∆)·n) time steps 

by n robots with a viewing range of 1 hop, where k is the number of doors, n is the number of vertices of the graph, and ∆ is the 

maximum degree of the graph. This improves the best previously known running time bound of O(k · ∆ · n). Furthermore, we remove 

the constraint from the previous algorithm that the door vertices need to have a degree of 1.
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1 Introduction
We consider a multi-robot system consisting of a team of 
homogenous robots. The robots are simple, cheap, and 
the team members collaboratively solve a common prob-
lem. The design and control of multi-robot systems are 
more complicated than a single robot system. However, 
multi-robot systems have several advantages over single 
robot systems. These advantages become apparent when 
they have to solve problems that can be fulfilled by mul- 
tiple robots acting at the same time in the same area. 
Typical problems that these systems have to solve are 
exploration and coverage of an area, foraging, search and 
rescue, collaborative task planning and execution, etc…. 
They could also be used in dangerous environments for 
human health, such as environments contaminated by 
nuclear waste or toxic gases.

The concept for artificial swarms, coming from the 
wildlife, means several entities belonging to the same 
group. Such as bees or birds, members of a swarm belong 
together and do the same thing; for example, flocking, the 
collective movement of the entities. Reynolds [1] inves-
tigated the possibilities of nature-inspired algorithms. 
The paper described a simple algorithm for the flocking, 
and since its publication, artificial swarms have gained 
more and more attention.

Our previous work examined a particular dispersion 
problem called the Filling, which required robots to cover 
a previously unknown area represented by a graph. In [2], 
an algorithm called the Virtual Chain Method (VCM) was 
presented. In this paper, we further improve this algorithm, 
namely, we have made improvements in two specific ways. 
First, we modify the VCM algorithm, significantly improv-
ing the running time. 

Furthermore, we remove a constraint of the graph 
(namely, the door degree having to be 1 is not required any-
more; further explained in Section 2. As a result, the VCM 
algorithm could work in more areas than before.

2 Background and related work
The area where the robots operate is decomposed into small 
regions. These regions are connected to each other and can 
contain at most one robot. The area will be represented by an 
arbitrary graph whose vertices correspond to these regions, 
and the edges will be between neighboring regions (regions 
sharing a side). There are special vertices, called Doors, 
which will be the entry points for the robots, where they start 
exploring the area. We assume that the adjacent vertices are 
arranged in a fixed cyclic order for each vertex, which does not 
change during the dispersion (an example is shown in Fig. 1).
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The robots are small agents capable of moving and 
sensing their surroundings. Their hardware is kept simple 
to maintain their cost-efficiency. The reason for this is that 
for the robots to be able to sense and communicate, addi-
tional resources have to be built into them. However, the 
lack of expensive hardware restricts their perception and 
communication. The communication and sensing range 
will be measured in hops (in the graph). Another typical 
restricting aspect is the size of their persistent memory, 
measured in bits, which is highly limited.

The robots act according to the Look-Compute-Move 
(LCM) model. This means the actions of the robots are 
decomposed into the following three phases: in the Look 
phase, they take a snapshot with their sensors, in the 
Compute phase, they perform their computations, and in 
the Move phase, they perform their actions (in this case, 
their movements). After the movement, the previous posi-
tion of the robot will be referred to as its Entry.

The Filling problem, which is investigated in this paper, 
was introduced by Hsiang et al. [3]. This is a special type 
of dispersion where robots are placed at the door vertex 
one by one, and by the time the algorithm terminates, each 
of the vertices has to be occupied by a robot. When there 
is more than one door, the problem is called multi-door 
Filling or k-door Filling (where k is the number of doors). 
The algorithm terminates when each vertex of the graph is 
occupied by exactly one robot. I.e., n robots are required 
to fill a graph consisting of n vertices. In the Multiple 
Door Filling, it is assumed that there are enough robots to 
allow the placement of a new one whenever a Door vertex 
becomes empty.

Barrameda et al. [4] investigated the hardware require-
ments of the robots, searching for the lowest possible hard-
ware requirement while still being able to solve the Filling 
problem. They presented a method for the standard and 
multi-door Filling with the goal of solving it by robots 
with constant visibility and communication range. In [5], 
they presented a method TALK, which required 1 hop 
visibility and 1 hop communication range, while MUTE 
required 6 hops visibility range and no communication. 
Both algorithms worked in orthogonal areas (i.e., grid-like 
areas where each cell had at most 4 neighbors).

The authors presented an algorithm further improved 
in [6] where they required 1 hop visibility and no com-
munication. This method worked in orthogonal areas and 
required a shared knowledge of directions (North, East, 
South, West). In [2], it was further improved to remove the 
requirement of orthogonal areas: it could solve the Filling 
in arbitrary areas at the cost of runtime and memory.

Recently, several versions of the Filling problem have 
been studied regarding the capabilities of the robots, e.g., 
allowing or forbidding collision, communication, having 
various visibility ranges, using whiteboards at the vertices 
of the graph.

Augustine and Moses [7] introduced a version of the 
dispersion problem, where more than one robot can be at 
the same vertex (collision is allowed). The robots can only 
see the robots at the same vertex and are able to communi-
cate with them. In [7], they presented two algorithms, one 
with a running time of O(m · n) rounds and O(log n) mem-
ory size of the robots, where m is the number of edges in 
the graph; and another algorithm with O(m) running time 
and O(n · log n) memory. Kshemkalyani et al. [8] allowed 
global communication between the robots and they pre-
sented an algorithm with O(log(max(k, ∆))) bits of memory 
and O(min(m, k∆))) running time, where ∆ is the maximum 
degree of the graph. They also presented another algo-
rithm with O(max(D, ∆  log k)) bits memory requirement 
and O(max(∆, k)∆(D + ∆)) runtime, where D is the diame-
ter of the graph. In [9], the authors solve this problem with-
out global communication with O(k,  log ∆) bits memory 
and O(m) running time. In [10], these bounds are improved 
to O(log n) bits memory and O(min(m, k∆) · log k) running 
time. They also provided a lower bound of O(log n) for the 
memory requirement in this model.

Dereniowski et al. [11] investigated the memory and time 
requirements for the exploration problem, where the robots 
need to visit each vertex but do not need to settle there. Their 
synchronous algorithm required O(k · log ∆) bits of memory 

Fig. 1 Cyclic order of the nodes. Robot r (in the center) has several 
neighbors (v1, v2, v3, v4). The order depends on the Entry, which will be 

used as a pivot. Then the order will be in clockwise order
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and O(D) runtime, however, they required nD robots. They 
also investigated the trade-off between exploration time 
and team size. Czyzowicz et al. [12] studied the complex-
ity of exploration algorithms in the continuous Euclidean 
space in both the bound and the unbound visibility model.

Amir and Bruckstein [13] considered the single Door 
case of the Filling problem in orthogonal areas using robots 
with a visibility range of 2 hops. The aim was to mini-
mize the travel of the individual robots. They presented 
an algorithm of O(n) running time. In scenarios where the 
movement uses much more energy than staying in place, 
this minimizes the energy requirements. However, there 
are certain scenarios where this is not the case, e.g., flying 
drones use nearly the same energy for hovering and mov-
ing as in [14]. In [15], scenarios with crash-prone robots 
were also considered.

2.1 Virtual Chain Method
The Virtual Chain Method presented in [2] was designed 
to minimize the hardware requirements to 1 hop visibil-
ity, O(∆ · log k) bits of memory, and no communication or 
other hardware (e.g., global or local positioning hardware). 
A short description of the algorithm:

Among the robots, there was a distinct one, which was 
the leader robot. Its main task was to go to vertices that 
were never occupied by a robot (named unvisited vertices). 
The rest of the robots had follower roles and followed that 
leader robot. This way, a non-visible chain was formed, 
with the leader in the front, hence the name virtual chain 
method. However, several tasks had to be solved. First, the 
robots had to cover the whole area, i.e., when the leader 
stuck, the next robot had to become the new leader and 
move in a different direction. Second, the robots had to 
follow the robot which has been previously placed (called 
their predecessor), even when those robots were outside of 
their visibility range (as they had a 1 hop visibility). Third, 
the robots had to avoid collisions.

These were addressed by introducing a unique round 
structure: an LCM-cycle was called a step, and a round 
consisted of ∆ steps (see Fig. 2.). There were two differ-
ent rounds: odd and even. The robots started with an odd 
round, and then the even and odd rounds were alternat-
ing during the algorithm. In its odd round, a robot is only 
allowed to observe its surroundings, while in the even 
round, it was allowed to move. The robots had to time 
their movement in this round structure, i.e., the step they 
utilized to move had a meaning. In their even round, they 
moved to the ith neighbor (in the cyclic order) in the ith step. 

Therefore, the robot observing it knows which direction it 
went. When a robot is in its odd round, it counts the num-
ber of steps to know which direction the predecessor goes.

The round structure solves all problems in the follow-
ing way:

•	 The first issue is solved by using the timing of the 
movement. If the predecessor robot did not move, it 
implied that it could not move. Therefore, the robot 
whose predecessor did not move became the new 
leader and moved to a different direction.

•	 The second issue (namely, to follow the predecessor 
even when it moves out of visibility range) is pos-
sible as the predecessor robot implicitly signals its 
movement direction by timing its movement. 

•	 The third issue (collision avoidance) was avoided by 
the alternating rounds. If a vertex is not unvisited, then 
there was a robot who occupied it. When that robot left 
it in its even round, the next robot has its odd round. 
In the next round, that robot will have its even round 
and move there. Therefore, the robots knew which cells 
are not unvisited by observing them for two rounds.

However, there were two constraints:
•	 First, the robots have to know the cyclic order. This 

was implicitly the same as they entered from the same 
direction (same vertex) in each movement. However, 
at the first vertex (the door vertex), depending on 
the direction they were facing during the placement, 
it might be a different order (i.e., the robots had no 
means to know which neighbor is the first in the 
cyclic order). This was addressed by having the door 
vertex only 1 degree (as a door-step). Then from that 
point, they knew which was their entry vertex, which 
was the basis of the cyclic order.

•	 Secondly, when there were multiple chains (in the 
multiple door case), the two chains could have col-
lided. This was addressed by having distinct steps 
for each chain (see Fig. 3). However, having k doors 
meant that the runtime was increased by a factor of k. 
This can be 'perceived' as the overhead coming from 
the coordination of the chains.

Fig. 2 The structure of the rounds. The rounds (denoted by Rodd, Reven) 
consist of ∆ consecutive steps in a fixed order
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More details and proof of correctness can be found in [2].
In this paper, these constraints are removed by intro-

ducing a novel method.

3 Method
There are two modifications in the VCM method, which 
is based on the same principle to improve the algorithm in 
two ways: first, the runtime factor of O(k · ∆ · n) is reduced 
to O((k + ∆) · n), where n is the size of the area; then, the 
constraint of having 1-degree doors is removed.

A new rule is introduced, which is called back and forth 
movement. This is a complex movement with two phases:

•	 the robot moves from its vertex v to a neighbor v' in 
step si.

•	 the robot moves from its new position v' to v (its orig-
inal one) in step si+1.

During this movement, it is important to 'save' their state 
before the movement and restore it afterward. The back 
and forth movement is still simple enough to be performed 
by the cheap robots with low computational capabilities; 
moreover, it does not increase the hardware requirements.

3.1 Fast Virtual Chain Method
The factor of k in the O(k · ∆ · n) runtime comes from the 
added steps for collision avoidance. The followers would not 
collide with other robots as each follower only follows its 
predecessor, and the predecessor is unique among follow-
ers; followers cannot collide with each other. The only col-
lision can happen if a Leader robot would move to a vertex 
simultaneously with another robot. The leader only moves to 
unvisited vertices, therefore, the other robot cannot be a fol-
lower, i.e., only two leaders can collide. This could happen if 
two leaders would move to the same vertex, and to prevent 
their collision, the chains had different timeslots (see Fig. 3).

The new method, called Fast Virtual Chain Method 
(FVCM), will utilize the back and forth movement in the 
following way: each leader will perform a back and forth 
movement first to 'reserve' its target vertex (before show-
ing which way to go), then each chain simultaneously 
perform their movements. This significantly reduces the 
runtime, as instead of k · ∆ steps, only k + 1 + ∆ will be 
required for a round. The following paragraph contains 
a detailed description.

Label the doors Di and let Li be the current leader from Di. 
The new rule for a leader Li will be to perform a back and 
forth movement in step si towards its first unvisited neigh-
bor. E.g., in s1, L1 will move to v and moves back in s2 to its 
original position. During the Look phase of s2, each robot 
neighboring to v will remove v from their list of unvisited 
neighbors. This will prevent their collision with L1. In s2, 
L2 will move to its current first unvisited neighbor (which 
must be other than v). This is repeated until Lk performs its 
back and forth movement in sk (and moves back in sk+1). 
Afterward, in the next ∆ steps, the robots perform their orig-
inal VCM algorithms as if there would be only a single door.

The labeling of the steps will be: SLi(i ≤ k + 1) for the 
back and forth steps, and sj ( j ≤ ∆) for the movement steps 
(see Fig. 4).

3.2 Analysis
Lemma 1. In the Fast Virtual Chain Method, there are no 
collisions.

Proof. The robots would collide if they moved to the 
same vertex v at the same time. The possible states of those 
two robots can be one of the following: both are followers, 
both are leaders, or one of them is a follower, and the other 
one is a leader.

In the first case, when both are followers, the collision 
is not possible as the followers follow a different robot. 
Therefore, when they move, they choose a distinct vertex 
as their target.

In the second case, as the leader can only move to an 
unvisited vertex, it cannot move to one which had been 
occupied before. However, the vertices where the follow-
ers move were occupied previously (by their predecessor) 
and are not unvisited vertices. Therefore, the leader cannot 
move there and cannot collide with a follower.

The third case, when two leaders would move to the 
same target vertex, had the potential to cause a collision. 
This is solved by forcing the leaders to 'reserve' their target 
before the actual movement (which includes the direction 
signaling). Let Li and Lj(i < j) be two leaders who would 

Fig. 4 New rounds structure for the FVCM. In the first k + 1 steps (SLi 
the leaders perform a back and forth movement. In the next ∆ steps (Sj) 

they perform their original movements

Fig. 3 Round structure for the multiple door filling. In sj
i the robots 

from the ith Door perform their jth step
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collide by both choosing v as their target vertex. However, 
the two leaders Li and Lj would move to v in different steps 
(SLi and SLj). After the former step SLi the vertex v has 
already been removed from the list of unvisited vertices.

An example can be seen in Fig. 5 (a), where two robots,  
L1 and L2 could potentially collide if both would go to v at 
the same time. However, L1 moves to v and 'reserves' it in SL1 
(see Fig. 5 (b)). When L2 detects L1, it will remove v from its 
list of unvisited vertices. Therefore, collisions are not possi-
ble. In the next step SL2, L1 performs its backward movement 
while L2 chooses another vertex as its target (Fig. 5 (c)). 

Theorem 1. The FVCM algorithm fills an arbitrary con-
nected graph in  rounds by silent robots with a visibility 
range of 1 hop and  bits of memory.

Proof. The visibility and communication requirements 
are the same as in [2]. However, the back and forth move-
ment modifies the memory requirements. The robots must 
store the round length, which is reduced from ∆  ·  k to 
∆ + k + 1. Therefore, the memory requirement of the robots 
is decreased from O(∆ · log k) to O(∆ + log k) bits. There is 
a requirement of 1 additional bit in order to store when it 
has to perform a back movement (during its back and forth 
movement). This does not change the O(∆ + log k) memory 
requirement.

The runtime improvement follows from the new length 
of the rounds. Each round consists of k + 1 + ∆ steps, and 
the robots move in every second round (their even round), 

and a new robot is placed at the door in every third 
round. As each round consists of k + 1 + ∆ steps, it takes 
O((k + + ∆) · n) steps to place n robots.

3.3 Higher degree doors
The second improvement of the VCM eliminates the con-
straint of having 1-degree door vertices in [2]. This was to 
ensure that the robots know the first direction they are going, 
and then the cyclic order is known. Thus, to have higher 
degree door vertices, the only task to be solved is to make 
sure newly placed robots know where their predecessor is.

For the newly placed robot, the back and forth move-
ment will be utilized to find its predecessor. Similarly to 
the improved runtime, k + 1 additional steps will be added. 
In these steps, for each door Di, i = 1…k, and step SLi the 
predecessor of the robot in Di will signal its position by 
performing a back and forth movement. The robot of the ith 
chain (chain originating form Di) uses SLi for forward and 
SLi+1 for backward movement. No other robots can move in 
these k + 1 steps. This can happen in the round the predeces-
sor would move to its next vertex (when it is unoccupied).

With this extension, the robot on Di will learn where its 
predecessor is, as in SLi the only robot allowed to move is 
that predecessor.

3.3.1 Combination with the faster runtime
The two improvements (faster runtime and higher degree 
doors) can be combined by simply allocating 2 steps to 
each chain (SLi and SLi').

•	 In the first step (SLi), the robot, which is showing 
the direction to the robot at the door vertex, moves 
(starts a back and forth movement).

•	 In the second step (SLi') the robot moves back, and in 
the same step, the leader of that chain starts to per-
form its back and forth movement (which is finished 
in the third step but that does not interfere with the 
other chains).

Note that after the first 2k steps, an additional step is 
required for the kth leader to perform the return step of its 
back and forth movement. This will yield a round length of 
2k + 1 +∆ steps. The runtime is still O((k + ∆) · n).

4 Simulation
To validate the presented algorithms, simulations were 
carried out to verify both the correctness of the algorithms 
and the runtime improvement. The graphs were created 
using the following method:

Fig. 5 An example for the back and forth movements of two leaders, L1 
and L2 . In (a) they do not see each other but select v as their target. In (b) 

L1 moves to v, 'reserving', then in (c) L2 must go to a different target.

(a)

(c)

(b)
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•	 Graph with 1-degree doors: for a graph with n verti-
ces and k doors, n-k points were randomly placed, and 
using these points, a Delaunay triangulation is cre-
ated. Then, k vertices were randomly selected from 
them, then the door vertices were added to them.

•	 Graph with multiple degree doors: for a graph with n 
vertices and k doors, n points were randomly placed, 
and using these points, a Delaunay triangulation is 
created. Then, k vertices were randomly selected to 
become doors.

4.1 Validation of runtime
The first set of simulations validated the theoretical results, 
namely that the presented methods cover the whole area, 
and there are no collisions. The simulations measured the 
runtime of these algorithms in the 1, 2, and 3-door cases. 
The graphs were created using the previously described 
methods with sizes from 1 to 200.

The simulation results can be seen in Fig. 6. The ver-
tical axis shows the number of LCM-cycles (or steps) to 
fill the area completely, and the horizontal axis shows the 
number of doors (k).

The runtime was within the O((k + ∆) · n) bound. The 
lines are not straight, which is caused by the slight varia-
tion in ∆ (the maximum degree ∆ was between 8 and 12).

4.2 Runtime improvement
The second sets of simulations tested the runtime improve-
ment of the FVCM (compared to the original VCM) for the 
multiple Door case. The same graphs were created with 
200 vertices and k doors, from k = 1 to 99, and both the 
VCM and the FVMC were executed on them. (for k > 100, 
the runtime will become constant, since when half of the 
vertices are door vertices, after moving from those in the 

first round, the other vertices will become occupied, and 
as soon as a new robot is placed at the doors, the graph 
will be filled)

Fig. 7 shows the results (again, the vertical axis shows 
the number of steps; the horizontal axis shows the number 
of doors).

An interesting result is that in the original VCM, add-
ing doors increases the runtime. This might be the result 
of the increased round length. To further investigate this, 
the number of required rounds as we assume that the total 
rounds are decreasing but their length increase causing the 
increased total runtime.

In Fig. 8, it is clearly visible that the rounds are decreas-
ing as expected in both cases. (Note that the algorithms are 
based on the same principle, the robots move in every sec-
ond round; therefore, the number of rounds are the same). 
However, the length of the rounds is decreased from ∆ · k 
to ∆ + k + 1.

Fig. 6 FVCM performance for the 1, 2, and 3-Door cases

Fig. 7 Comparison of the runtime of the VCM and FVCM

Fig. 8 Comparison of the number of Rounds for the VCM and FVCM
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Table 1 shows the number of rounds and steps for the 
VCM and FVCM for several k and ∆ parameters.

5 Summary
In this paper, we improved our previous solutions for 
the Filling problem. We proposed an extension of the 

algorithm, which was simple enough to be performed by 
cheap robots with low computational power. Utilizing 
this rule, we significantly lowered the running time of 
the algorithm without additional hardware requirements. 
Furthermore, we removed the constraint of our previous 
algorithm in [2], namely that the Door vertices needed to 
have a degree of 1, causing the algorithm to be able to 
operate in more general types of areas immediately. We 
backed these results with simulations. It remains an open 
question if the running time can be further improved.
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Table 1 The round lengths, number of rounds, and number of steps 
during the simulation for k ϵ {1,2,3,4,5,10,20} and ∆ = 10.

k ∆
VCM 
round 
length

VCM 
number 

of rounds

VCM 
number 
of steps

FVCM 
round 
length

FVCM 
number 

of rounds

FVCM 
number 
of steps

1 10 10 596 5960 12 596 7152

2 10 20 333 6660 13 333 4329

3 10 30 245 7350 14 245 3430

4 10 40 197 7880 15 197 2955

5 10 50 167 8350 16 167 2672

10 10 100 100 10000 21 100 2100

20 10 200 52 10400 31 52 1612
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