
12|https://doi.org/10.3311/PPee.17853
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 66(1), pp. 12–19, 2022

Cite this article as: Hideg, A., Lukovszki, T., Forstner, B. "Improved Runtime for the Synchronous Multi-Door Filling", Periodica Polytechnica Electrical
Engineering and Computer Science, 66(1), pp. 12–19, 2022. https://doi.org/10.3311/PPee.17853

Improved Runtime for the Synchronous Multi-door Filling

Attila Hideg1*, Tamás Lukovszki2, Bertalan Forstner1

1	Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of
Technology and Economics, H-1117 Budapest, Magyar tudósok krt. 2., Hungary

2	Faculty of Informatics, H-1117 Budapest, Eötvös Loránd University, Pázmány Péter sétány 1/C., Hungary
*	Corresponding author, e-mail: Attila.Hideg@aut.bme.hu

Received: 14 January 2021, Accepted: 14 June 2021, Published online: 30 November 2021

Abstract

In this paper, a particular type of dispersion is further investigated, which is called Filling. In this problem, robots are injected one

by one into an a priori not known area and have to travel across until the whole area is covered. The coverage is achieved by a

robotic team whose hardware capabilities are restricted in order to maintain low production costs. This includes limited viewing

and communication ranges. In this work, we present an algorithm solving the synchronous Filling problem in O((k + ∆)·n) time steps

by n robots with a viewing range of 1 hop, where k is the number of doors, n is the number of vertices of the graph, and ∆ is the

maximum degree of the graph. This improves the best previously known running time bound of O(k · ∆ · n). Furthermore, we remove

the constraint from the previous algorithm that the door vertices need to have a degree of 1.

Keywords

filling, uniform dispersal, multi-robot system

1 Introduction
We consider a multi-robot system consisting of a team of
homogenous robots. The robots are simple, cheap, and
the team members collaboratively solve a common prob-
lem. The design and control of multi-robot systems are
more complicated than a single robot system. However,
multi-robot systems have several advantages over single
robot systems. These advantages become apparent when
they have to solve problems that can be fulfilled by mul-
tiple robots acting at the same time in the same area.
Typical problems that these systems have to solve are
exploration and coverage of an area, foraging, search and
rescue, collaborative task planning and execution, etc….
They could also be used in dangerous environments for
human health, such as environments contaminated by
nuclear waste or toxic gases.

The concept for artificial swarms, coming from the
wildlife, means several entities belonging to the same
group. Such as bees or birds, members of a swarm belong
together and do the same thing; for example, flocking, the
collective movement of the entities. Reynolds [1] inves-
tigated the possibilities of nature-inspired algorithms.
The paper described a simple algorithm for the flocking,
and since its publication, artificial swarms have gained
more and more attention.

Our previous work examined a particular dispersion
problem called the Filling, which required robots to cover
a previously unknown area represented by a graph. In [2],
an algorithm called the Virtual Chain Method (VCM) was
presented. In this paper, we further improve this algorithm,
namely, we have made improvements in two specific ways.
First, we modify the VCM algorithm, significantly improv-
ing the running time.

Furthermore, we remove a constraint of the graph
(namely, the door degree having to be 1 is not required any-
more; further explained in Section 2. As a result, the VCM
algorithm could work in more areas than before.

2 Background and related work
The area where the robots operate is decomposed into small
regions. These regions are connected to each other and can
contain at most one robot. The area will be represented by an
arbitrary graph whose vertices correspond to these regions,
and the edges will be between neighboring regions (regions
sharing a side). There are special vertices, called Doors,
which will be the entry points for the robots, where they start
exploring the area. We assume that the adjacent vertices are
arranged in a fixed cyclic order for each vertex, which does not
change during the dispersion (an example is shown in Fig. 1).

https://doi.org/10.3311/PPee.17853
https://doi.org/10.3311/PPee.17853
mailto:Attila.Hideg%40aut.bme.hu?subject=

Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022|13

The robots are small agents capable of moving and
sensing their surroundings. Their hardware is kept simple
to maintain their cost-efficiency. The reason for this is that
for the robots to be able to sense and communicate, addi-
tional resources have to be built into them. However, the
lack of expensive hardware restricts their perception and
communication. The communication and sensing range
will be measured in hops (in the graph). Another typical
restricting aspect is the size of their persistent memory,
measured in bits, which is highly limited.

The robots act according to the Look-Compute-Move
(LCM) model. This means the actions of the robots are
decomposed into the following three phases: in the Look
phase, they take a snapshot with their sensors, in the
Compute phase, they perform their computations, and in
the Move phase, they perform their actions (in this case,
their movements). After the movement, the previous posi-
tion of the robot will be referred to as its Entry.

The Filling problem, which is investigated in this paper,
was introduced by Hsiang et al. [3]. This is a special type
of dispersion where robots are placed at the door vertex
one by one, and by the time the algorithm terminates, each
of the vertices has to be occupied by a robot. When there
is more than one door, the problem is called multi-door
Filling or k-door Filling (where k is the number of doors).
The algorithm terminates when each vertex of the graph is
occupied by exactly one robot. I.e., n robots are required
to fill a graph consisting of n vertices. In the Multiple
Door Filling, it is assumed that there are enough robots to
allow the placement of a new one whenever a Door vertex
becomes empty.

Barrameda et al. [4] investigated the hardware require-
ments of the robots, searching for the lowest possible hard-
ware requirement while still being able to solve the Filling
problem. They presented a method for the standard and
multi-door Filling with the goal of solving it by robots
with constant visibility and communication range. In [5],
they presented a method TALK, which required 1 hop
visibility and 1 hop communication range, while MUTE
required 6 hops visibility range and no communication.
Both algorithms worked in orthogonal areas (i.e., grid-like
areas where each cell had at most 4 neighbors).

The authors presented an algorithm further improved
in [6] where they required 1 hop visibility and no com-
munication. This method worked in orthogonal areas and
required a shared knowledge of directions (North, East,
South, West). In [2], it was further improved to remove the
requirement of orthogonal areas: it could solve the Filling
in arbitrary areas at the cost of runtime and memory.

Recently, several versions of the Filling problem have
been studied regarding the capabilities of the robots, e.g.,
allowing or forbidding collision, communication, having
various visibility ranges, using whiteboards at the vertices
of the graph.

Augustine and Moses [7] introduced a version of the
dispersion problem, where more than one robot can be at
the same vertex (collision is allowed). The robots can only
see the robots at the same vertex and are able to communi-
cate with them. In [7], they presented two algorithms, one
with a running time of O(m · n) rounds and O(log n) mem-
ory size of the robots, where m is the number of edges in
the graph; and another algorithm with O(m) running time
and O(n · log n) memory. Kshemkalyani et al. [8] allowed
global communication between the robots and they pre-
sented an algorithm with O(log(max(k, ∆))) bits of memory
and O(min(m, k∆))) running time, where ∆ is the maximum
degree of the graph. They also presented another algo-
rithm with O(max(D, ∆ log k)) bits memory requirement
and O(max(∆, k)∆(D + ∆)) runtime, where D is the diame-
ter of the graph. In [9], the authors solve this problem with-
out global communication with O(k, log ∆) bits memory
and O(m) running time. In [10], these bounds are improved
to O(log n) bits memory and O(min(m, k∆) · log k) running
time. They also provided a lower bound of O(log n) for the
memory requirement in this model.

Dereniowski et al. [11] investigated the memory and time
requirements for the exploration problem, where the robots
need to visit each vertex but do not need to settle there. Their
synchronous algorithm required O(k · log ∆) bits of memory

Fig. 1 Cyclic order of the nodes. Robot r (in the center) has several
neighbors (v1, v2, v3, v4). The order depends on the Entry, which will be

used as a pivot. Then the order will be in clockwise order

14|Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022

and O(D) runtime, however, they required nD robots. They
also investigated the trade-off between exploration time
and team size. Czyzowicz et al. [12] studied the complex-
ity of exploration algorithms in the continuous Euclidean
space in both the bound and the unbound visibility model.

Amir and Bruckstein [13] considered the single Door
case of the Filling problem in orthogonal areas using robots
with a visibility range of 2 hops. The aim was to mini-
mize the travel of the individual robots. They presented
an algorithm of O(n) running time. In scenarios where the
movement uses much more energy than staying in place,
this minimizes the energy requirements. However, there
are certain scenarios where this is not the case, e.g., flying
drones use nearly the same energy for hovering and mov-
ing as in [14]. In [15], scenarios with crash-prone robots
were also considered.

2.1 Virtual Chain Method
The Virtual Chain Method presented in [2] was designed
to minimize the hardware requirements to 1 hop visibil-
ity, O(∆ · log k) bits of memory, and no communication or
other hardware (e.g., global or local positioning hardware).
A short description of the algorithm:

Among the robots, there was a distinct one, which was
the leader robot. Its main task was to go to vertices that
were never occupied by a robot (named unvisited vertices).
The rest of the robots had follower roles and followed that
leader robot. This way, a non-visible chain was formed,
with the leader in the front, hence the name virtual chain
method. However, several tasks had to be solved. First, the
robots had to cover the whole area, i.e., when the leader
stuck, the next robot had to become the new leader and
move in a different direction. Second, the robots had to
follow the robot which has been previously placed (called
their predecessor), even when those robots were outside of
their visibility range (as they had a 1 hop visibility). Third,
the robots had to avoid collisions.

These were addressed by introducing a unique round
structure: an LCM-cycle was called a step, and a round
consisted of ∆ steps (see Fig. 2.). There were two differ-
ent rounds: odd and even. The robots started with an odd
round, and then the even and odd rounds were alternat-
ing during the algorithm. In its odd round, a robot is only
allowed to observe its surroundings, while in the even
round, it was allowed to move. The robots had to time
their movement in this round structure, i.e., the step they
utilized to move had a meaning. In their even round, they
moved to the ith neighbor (in the cyclic order) in the ith step.

Therefore, the robot observing it knows which direction it
went. When a robot is in its odd round, it counts the num-
ber of steps to know which direction the predecessor goes.

The round structure solves all problems in the follow-
ing way:

•	 The first issue is solved by using the timing of the
movement. If the predecessor robot did not move, it
implied that it could not move. Therefore, the robot
whose predecessor did not move became the new
leader and moved to a different direction.

•	 The second issue (namely, to follow the predecessor
even when it moves out of visibility range) is pos-
sible as the predecessor robot implicitly signals its
movement direction by timing its movement.

•	 The third issue (collision avoidance) was avoided by
the alternating rounds. If a vertex is not unvisited, then
there was a robot who occupied it. When that robot left
it in its even round, the next robot has its odd round.
In the next round, that robot will have its even round
and move there. Therefore, the robots knew which cells
are not unvisited by observing them for two rounds.

However, there were two constraints:
•	 First, the robots have to know the cyclic order. This

was implicitly the same as they entered from the same
direction (same vertex) in each movement. However,
at the first vertex (the door vertex), depending on
the direction they were facing during the placement,
it might be a different order (i.e., the robots had no
means to know which neighbor is the first in the
cyclic order). This was addressed by having the door
vertex only 1 degree (as a door-step). Then from that
point, they knew which was their entry vertex, which
was the basis of the cyclic order.

•	 Secondly, when there were multiple chains (in the
multiple door case), the two chains could have col-
lided. This was addressed by having distinct steps
for each chain (see Fig. 3). However, having k doors
meant that the runtime was increased by a factor of k.
This can be 'perceived' as the overhead coming from
the coordination of the chains.

Fig. 2 The structure of the rounds. The rounds (denoted by Rodd, Reven)
consist of ∆ consecutive steps in a fixed order

Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022|15

More details and proof of correctness can be found in [2].
In this paper, these constraints are removed by intro-

ducing a novel method.

3 Method
There are two modifications in the VCM method, which
is based on the same principle to improve the algorithm in
two ways: first, the runtime factor of O(k · ∆ · n) is reduced
to O((k + ∆) · n), where n is the size of the area; then, the
constraint of having 1-degree doors is removed.

A new rule is introduced, which is called back and forth
movement. This is a complex movement with two phases:

•	 the robot moves from its vertex v to a neighbor v' in
step si.

•	 the robot moves from its new position v' to v (its orig-
inal one) in step si+1.

During this movement, it is important to 'save' their state
before the movement and restore it afterward. The back
and forth movement is still simple enough to be performed
by the cheap robots with low computational capabilities;
moreover, it does not increase the hardware requirements.

3.1 Fast Virtual Chain Method
The factor of k in the O(k · ∆ · n) runtime comes from the
added steps for collision avoidance. The followers would not
collide with other robots as each follower only follows its
predecessor, and the predecessor is unique among follow-
ers; followers cannot collide with each other. The only col-
lision can happen if a Leader robot would move to a vertex
simultaneously with another robot. The leader only moves to
unvisited vertices, therefore, the other robot cannot be a fol-
lower, i.e., only two leaders can collide. This could happen if
two leaders would move to the same vertex, and to prevent
their collision, the chains had different timeslots (see Fig. 3).

The new method, called Fast Virtual Chain Method
(FVCM), will utilize the back and forth movement in the
following way: each leader will perform a back and forth
movement first to 'reserve' its target vertex (before show-
ing which way to go), then each chain simultaneously
perform their movements. This significantly reduces the
runtime, as instead of k · ∆ steps, only k + 1 + ∆ will be
required for a round. The following paragraph contains
a detailed description.

Label the doors Di and let Li be the current leader from Di.
The new rule for a leader Li will be to perform a back and
forth movement in step si towards its first unvisited neigh-
bor. E.g., in s1, L1 will move to v and moves back in s2 to its
original position. During the Look phase of s2, each robot
neighboring to v will remove v from their list of unvisited
neighbors. This will prevent their collision with L1. In s2,
L2 will move to its current first unvisited neighbor (which
must be other than v). This is repeated until Lk performs its
back and forth movement in sk (and moves back in sk+1).
Afterward, in the next ∆ steps, the robots perform their orig-
inal VCM algorithms as if there would be only a single door.

The labeling of the steps will be: SLi(i ≤ k + 1) for the
back and forth steps, and sj (j ≤ ∆) for the movement steps
(see Fig. 4).

3.2 Analysis
Lemma 1. In the Fast Virtual Chain Method, there are no
collisions.

Proof. The robots would collide if they moved to the
same vertex v at the same time. The possible states of those
two robots can be one of the following: both are followers,
both are leaders, or one of them is a follower, and the other
one is a leader.

In the first case, when both are followers, the collision
is not possible as the followers follow a different robot.
Therefore, when they move, they choose a distinct vertex
as their target.

In the second case, as the leader can only move to an
unvisited vertex, it cannot move to one which had been
occupied before. However, the vertices where the follow-
ers move were occupied previously (by their predecessor)
and are not unvisited vertices. Therefore, the leader cannot
move there and cannot collide with a follower.

The third case, when two leaders would move to the
same target vertex, had the potential to cause a collision.
This is solved by forcing the leaders to 'reserve' their target
before the actual movement (which includes the direction
signaling). Let Li and Lj(i < j) be two leaders who would

Fig. 4 New rounds structure for the FVCM. In the first k + 1 steps (SLi
the leaders perform a back and forth movement. In the next ∆ steps (Sj)

they perform their original movements

Fig. 3 Round structure for the multiple door filling. In sj
i the robots

from the ith Door perform their jth step

16|Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022

collide by both choosing v as their target vertex. However,
the two leaders Li and Lj would move to v in different steps
(SLi and SLj). After the former step SLi the vertex v has
already been removed from the list of unvisited vertices.

An example can be seen in Fig. 5 (a), where two robots,
L1 and L2 could potentially collide if both would go to v at
the same time. However, L1 moves to v and 'reserves' it in SL1
(see Fig. 5 (b)). When L2 detects L1, it will remove v from its
list of unvisited vertices. Therefore, collisions are not possi-
ble. In the next step SL2, L1 performs its backward movement
while L2 chooses another vertex as its target (Fig. 5 (c)).

Theorem 1. The FVCM algorithm fills an arbitrary con-
nected graph in rounds by silent robots with a visibility
range of 1 hop and bits of memory.

Proof. The visibility and communication requirements
are the same as in [2]. However, the back and forth move-
ment modifies the memory requirements. The robots must
store the round length, which is reduced from ∆ · k to
∆ + k + 1. Therefore, the memory requirement of the robots
is decreased from O(∆ · log k) to O(∆ + log k) bits. There is
a requirement of 1 additional bit in order to store when it
has to perform a back movement (during its back and forth
movement). This does not change the O(∆ + log k) memory
requirement.

The runtime improvement follows from the new length
of the rounds. Each round consists of k + 1 + ∆ steps, and
the robots move in every second round (their even round),

and a new robot is placed at the door in every third
round. As each round consists of k + 1 + ∆ steps, it takes
O((k + + ∆) · n) steps to place n robots.

3.3 Higher degree doors
The second improvement of the VCM eliminates the con-
straint of having 1-degree door vertices in [2]. This was to
ensure that the robots know the first direction they are going,
and then the cyclic order is known. Thus, to have higher
degree door vertices, the only task to be solved is to make
sure newly placed robots know where their predecessor is.

For the newly placed robot, the back and forth move-
ment will be utilized to find its predecessor. Similarly to
the improved runtime, k + 1 additional steps will be added.
In these steps, for each door Di, i = 1…k, and step SLi the
predecessor of the robot in Di will signal its position by
performing a back and forth movement. The robot of the ith
chain (chain originating form Di) uses SLi for forward and
SLi+1 for backward movement. No other robots can move in
these k + 1 steps. This can happen in the round the predeces-
sor would move to its next vertex (when it is unoccupied).

With this extension, the robot on Di will learn where its
predecessor is, as in SLi the only robot allowed to move is
that predecessor.

3.3.1 Combination with the faster runtime
The two improvements (faster runtime and higher degree
doors) can be combined by simply allocating 2 steps to
each chain (SLi and SLi').

•	 In the first step (SLi), the robot, which is showing
the direction to the robot at the door vertex, moves
(starts a back and forth movement).

•	 In the second step (SLi') the robot moves back, and in
the same step, the leader of that chain starts to per-
form its back and forth movement (which is finished
in the third step but that does not interfere with the
other chains).

Note that after the first 2k steps, an additional step is
required for the kth leader to perform the return step of its
back and forth movement. This will yield a round length of
2k + 1 +∆ steps. The runtime is still O((k + ∆) · n).

4 Simulation
To validate the presented algorithms, simulations were
carried out to verify both the correctness of the algorithms
and the runtime improvement. The graphs were created
using the following method:

Fig. 5 An example for the back and forth movements of two leaders, L1
and L2 . In (a) they do not see each other but select v as their target. In (b)

L1 moves to v, 'reserving', then in (c) L2 must go to a different target.

(a)

(c)

(b)

Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022|17

•	 Graph with 1-degree doors: for a graph with n verti-
ces and k doors, n-k points were randomly placed, and
using these points, a Delaunay triangulation is cre-
ated. Then, k vertices were randomly selected from
them, then the door vertices were added to them.

•	 Graph with multiple degree doors: for a graph with n
vertices and k doors, n points were randomly placed,
and using these points, a Delaunay triangulation is
created. Then, k vertices were randomly selected to
become doors.

4.1 Validation of runtime
The first set of simulations validated the theoretical results,
namely that the presented methods cover the whole area,
and there are no collisions. The simulations measured the
runtime of these algorithms in the 1, 2, and 3-door cases.
The graphs were created using the previously described
methods with sizes from 1 to 200.

The simulation results can be seen in Fig. 6. The ver-
tical axis shows the number of LCM-cycles (or steps) to
fill the area completely, and the horizontal axis shows the
number of doors (k).

The runtime was within the O((k + ∆) · n) bound. The
lines are not straight, which is caused by the slight varia-
tion in ∆ (the maximum degree ∆ was between 8 and 12).

4.2 Runtime improvement
The second sets of simulations tested the runtime improve-
ment of the FVCM (compared to the original VCM) for the
multiple Door case. The same graphs were created with
200 vertices and k doors, from k = 1 to 99, and both the
VCM and the FVMC were executed on them. (for k > 100,
the runtime will become constant, since when half of the
vertices are door vertices, after moving from those in the

first round, the other vertices will become occupied, and
as soon as a new robot is placed at the doors, the graph
will be filled)

Fig. 7 shows the results (again, the vertical axis shows
the number of steps; the horizontal axis shows the number
of doors).

An interesting result is that in the original VCM, add-
ing doors increases the runtime. This might be the result
of the increased round length. To further investigate this,
the number of required rounds as we assume that the total
rounds are decreasing but their length increase causing the
increased total runtime.

In Fig. 8, it is clearly visible that the rounds are decreas-
ing as expected in both cases. (Note that the algorithms are
based on the same principle, the robots move in every sec-
ond round; therefore, the number of rounds are the same).
However, the length of the rounds is decreased from ∆ · k
to ∆ + k + 1.

Fig. 6 FVCM performance for the 1, 2, and 3-Door cases

Fig. 7 Comparison of the runtime of the VCM and FVCM

Fig. 8 Comparison of the number of Rounds for the VCM and FVCM

18|Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022

Table 1 shows the number of rounds and steps for the
VCM and FVCM for several k and ∆ parameters.

5 Summary
In this paper, we improved our previous solutions for
the Filling problem. We proposed an extension of the

algorithm, which was simple enough to be performed by
cheap robots with low computational power. Utilizing
this rule, we significantly lowered the running time of
the algorithm without additional hardware requirements.
Furthermore, we removed the constraint of our previous
algorithm in [2], namely that the Door vertices needed to
have a degree of 1, causing the algorithm to be able to
operate in more general types of areas immediately. We
backed these results with simulations. It remains an open
question if the running time can be further improved.

Acknowledgement
The work presented in this paper has been carried out in
the frame of project no. 2019-1.1.1-PIACI-KFI-2019-00263,
which has been implemented with the support provided
from the National Research, Development and Innovation
Fund of Hungary, financed under the 2019-1.1. funding
scheme.

Table 1 The round lengths, number of rounds, and number of steps
during the simulation for k ϵ {1,2,3,4,5,10,20} and ∆ = 10.

k ∆
VCM
round
length

VCM
number

of rounds

VCM
number
of steps

FVCM
round
length

FVCM
number

of rounds

FVCM
number
of steps

1 10 10 596 5960 12 596 7152

2 10 20 333 6660 13 333 4329

3 10 30 245 7350 14 245 3430

4 10 40 197 7880 15 197 2955

5 10 50 167 8350 16 167 2672

10 10 100 100 10000 21 100 2100

20 10 200 52 10400 31 52 1612

References
[1]	 Reynolds, C. W. "Flocks, herds and schools: A distributed behavioral

model", ACM SIGGRAPH Computer Graphics, 21(4), pp. 25–34,
1987.

	 https://doi.org/10.1145/37402.37406
[2]	 Hideg A., Lukovszki T., Forstner B. "Filling Arbitrary Connected

Areas by Silent Robots with Minimum Visibility Range", In:
Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) Algorithms for
Sensor Systems, Springer, Cham, Switzerland, 2019, 193–205.

	 https://doi.org/10.1007/978-3-030-14094-6_13
[3]	 Hsiang, T.-R., Arkin, E. M., Bender, M. A., Fekete, S. P., Mitchell,

J. S. B. "Algorithms for Rapidly Dispersing Robot Swarms in
Unknown Environments", In: Boissonnat, J. D., Burdick, J.,
Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of
Robotics V, Springer, Berlin, Germany, 2004, pp. 77–93.

	 https://doi.org/10.1007/978-3-540-45058-0_6
[4]	 Barrameda, E. M., Das, S., Santoro, N. "Deployment of Asynchronous

Robotic Sensors in Unknown Orthogonal Environments", In:
Fekete, S. P. (ed.) Algorithmic Aspects of Wireless Sensor Networks,
Springer, Berlin, Germany, 2008, pp. 125–140.

	 https://doi.org/10.1007/978-3-540-92862-1_11
[5]	 Barrameda, E. M., Das, S., Santoro, N. "Uniform Dispersal of

Asynchronous Finite-State Mobile Robots in Presence of Holes",
In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf dr Heide, F. (eds.)
Algorithms for Sensor Systems, Spriner, Berlin, Germany, 2014,
pp. 228–243.

	 http://doi.org/10.1007/978-3-642-45346-5_17
[6]	 Hideg, A., Lukovszki, T. "Uniform Dispersal of Robots with

Minimum Visibility Range", In: Fernández Anta, A., Jurdzinski, T.,
Mosterio, M., Zhang, Y. (eds.) Algorithms for Sensor Systems,
Spinger, Cham, Switzerland, 2017, pp. 155–167.

	 https://doi.org/10.1007/978-3-319-72751-6_12

[7]	 Augustine, J., Moses, W. K. "Dispersion of Mobile Robots: A
Study of Memory-Time Trade-offs", In: Proceedings of the 19th
International Conference on Distributed Computing and Networking
(ICDCN'18),Varanasi, India, 2018, Article No. 1.

	 https://doi.org/10.1145/3154273.3154293
[8]	 Kshemkalyani, A. D., Molla, A. R., Sharma, G. "Dispersion

of Mobile Robots in the Global Communication Model", In:
Proceedings of the 21st International Conference on Distributed
Computing and Networking (ICDCN'2020), Kolkata, India, 2020,
Article number: 12.

	 https://doi.org/10.1145/3369740.3369775
[9]	 Kshemkalyani, A. D., Ali, F. "Efficient dispersion of mobile robots

on graphs", In: Proceedings of the 20th International Conference
on Distributed Computing and Networking (ICDCN'19), Banglore,
India, pp. 218–227.

	 https://doi.org/10.1145/3288599.3288610
[10]	 Kshemkalyani A. D., Molla A. R., Sharma, G. "Fast Dispersion of

Mobile Robots on Arbitrary Graphs", In: Dressler, F., Scheideler, C.
(eds.) Algorithms for Sensor Systems, Springer, Cham, Switzerland,
2019, pp. 23–40.

	 https://doi.org/10.1007/978-3-030-34405-4_2
[11]	 Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański,

P. "Fast collaborative graph exploration", Information and
Computation, 243, pp. 37–49, 2015.

	 https://doi.org/10.1016/j.ic.2014.12.005
[12]	 Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A. "Worst-case

optimal exploration of terrains with obstacles", Information and
Computation, 225, pp. 16–28, 2013.

	 https://doi.org/10.1016/j.ic.2013.02.001

https://doi.org/10.1145/37402.37406
https://doi.org/10.1007/978-3-030-14094-6_13
https://doi.org/10.1007/978-3-540-45058-0_6
https://doi.org/10.1007/978-3-540-92862-1_11
http://doi.org/10.1007/978-3-642-45346-5_17
https://doi.org/10.1007/978-3-319-72751-6_12
https://doi.org/10.1145/3154273.3154293
https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1145/3288599.3288610
https://doi.org/10.1007/978-3-030-34405-4_2
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.ic.2013.02.001

Hideg et al.
Period. Polytech. Elec. Eng. Comp. Sci., 66(1), pp. 12–19, 2022|19

[13]	 Amir, M., Bruckstein, A. M. "Minimizing Travel in the Uniform
Dispersal Problem for Robotic Sensors", In: Proceedings of the 18th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS'19), Montreal, Canada, 2019, pp. 113–121.

	 https://dl.acm.org/doi/10.5555/3306127.3331682
[14]	 Saska, M., Baca, T., Thomas, J., Chodoba, J., Preucil, L., Krajnik, T.,

Faigl, J., Loianno, G., Kumar, V. "System for deployment of groups
of unmanned micro aerial vehicles in GPS-denied environments
using onboard visual relative localization", Autonomous Robots,
41(4), pp. 919–944, 2017.

	 https://doi.org/10.1007/s10514-016-9567-z

[15]	 Amir, M., Bruckstein, A. M. "Fast Uniform Dispersion of a Crash-
prone Swarm", presented at Robotics: Science and Systems 2020,
Corvalis, OR, USA, July, 12–16, 2020.

	 https://doi.org/10.15607/rss.2020.xvi.017

https://dl.acm.org/doi/10.5555/3306127.3331682
https://doi.org/10.1007/s10514-016-9567-z
https://doi.org/10.15607/rss.2020.xvi.017

	1 Introduction
	2 Background and related work
	2.1 Virtual Chain Method

	3 Method
	3.1 Fast Virtual Chain Method
	3.2 Analysis
	3.3 Higher degree doors
	3.3.1 Combination with the faster runtime

	4 Simulation
	4.1 Validation of runtime
	4.2 Runtime improvement

	5 Summary
	Acknowledgement
	References

