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Abstract

In pharmaceutical industry, dissolution testing is part of the target product quality that essentials are in the approval of new products. 

The prediction of the dissolution profile based on spectroscopic data is an alternative to the current destructive and time-consuming 

method. RAMAN and Near Infrared (NIR) spectroscopy are two complementary methods, that provide information on the physical and 

chemical properties of the tablets and can help in predicting their dissolution profiles. This work aims to use the information collected 

by these methods to support the decision of how much of the dissolution profile should be measured and which methods to use, so 

that by estimating the remaining part, the accuracy requirement of the industry is met. Artificial neural network models were created, 

in which parts of the measured dissolution profiles, along with the spectroscopy data and the measured compression curves were 

used as an input to estimate the remaining part of the dissolution profiles. It was found that by measuring the dissolution profiles 

for 30 minutes, the remaining part was estimated within the acceptance limits of the f2 similarity factor. Adding further spectroscopy 

methods along with the measured parts of the dissolution profile significantly increased the prediction accuracy.
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1 Introduction
In Section 1 the pharmaceutical background and the appli-
cation of machine learning in pharmaceutical industry 
will be presented and explained.

1.1 Pharmaceutical background
In pharmaceutical industry, a target product quality pro-
file is a term used for the quality characteristics that a drug 
product should go through in order to satisfy the promised 
benefit from the usage and are essentials in the approval of 
new products or the post-approval changes. A target prod-
uct quality profile would include different important charac-
teristics, very often one of these is the in vitro (taking place 
outside of the body) dissolution profile [1]. A dissolution 
profile represents the concentration rate at which capsules, 
and tablets emit their drugs into bloodstream over the time. 
It is especially important in case of tablets that yield a con-
trolled release into the bloodstream over several hours. 

That offers many advantages over immediate release drugs 
like reducing the side effects due to the reduced peak dos-
age and better therapeutic results due to the balanced drug 
release [2]. In vitro dissolution testing has been a subject of 
scientific research for several years and became a vital tool 
for accessing product quality performance [3]. However, this 
method is destructive since it requires immersing the tablets 
in a solution simulating the human body and time-consum-
ing as the measurements require taking samples over sev-
eral hours. As a result, the tablets measured represent only 
a small amount of the tablets produced, also called batch. 
Therefore, there is a need to find different methods that do 
not have the limitations of the in vitro dissolution testing. 
The prediction of the dissolution profile based on spectro-
scopic data is an alternative on which many articles have 
been published and showed promising results. RAMAN 
and Near Infrared (NIR) spectroscopy are two evolving 
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techniques that are applied in the pharmaceutical industry. 
The interaction of NIR and RAMAN with tablets in both 
reflection (what is reflected from the tablet after the inter-
action) and transmission (what is transmitted through the 
tablet after the interaction), offer the opportunity to obtain 
information on the physical and chemical properties of the 
tablets that can help predicting their dissolution profiles in 
few minutes without destroying them. RAMAN spectros-
copy is very sensitive for analyzing Active Pharmaceutical 
Ingredient (APIs) which is the part of the drug that pro-
duce the intended effect. NIR spectroscopy on the other 
hand is better used for the tableting excipients which are 
the substances added to aid in manufacturing the tablets. 
The process of generating data using the NIR and RAMAN 
methods in both reflection and transmission are described 
in Figs. 1 to 4. Hence, RAMAN and NIR are considered to 
be complimentary methods, straight-forward, cost effective 
alternatives and non-destructive tools in the quality control 
process [4, 5]. The utilization of NIR and RAMAN spec-
troscopy in the pharmaceutical industry has been increasing 
quickly. They have been applied to determine content uni-
formity [6], detecting counterfeit drugs [7] and monitoring 
the polymorphic transformation of tablets [8].

1.2 Machine learning application in pharmaceutical 
industry
RAMAN and NIR spectroscopy produce a large amount of 
data as they consist of measurements of hundreds of wave-
lengths. This data can be filtered out or maintained depend-
ing on how much useful information can be extracted from 
it. This can be achieved using multivariate data analysis 
techniques such as Principal Component Analysis (PCA). 
Several researchers have used the spectroscopy data along 
with the multivariate data analysis techniques in order to 
predict the dissolution profiles. Zan-Nikos et al. worked 
on a model that permits hundreds of NIR wavelengths to 
be used in the determination of the dissolution rate [9]. 
Donoso et al. [10] used the NIR reflectance spectroscopy 
to measure the percentage drug dissolution from a series of 
tablets compacted at different compressional forces using 
linear regression, nonlinear regression and Partial Least 
Square (PLS) models. Freitas et al. [11] created a PLS cal-
ibration model to predict drug dissolution profiles at dif-
ferent time intervals and for media with different pH using 
NIR reflectance spectra. Hernandez et al. [12] used PCA to 
study the sources of variation in NIR spectra and a PLS-2 
model to predict the dissolution on tablets subjected to dif-
ferent levels of strain. Artificial Neural Networks (ANNs) 

Fig. 1 NIR reflection method

Fig. 2 NIR transmission method

Fig. 3 RAMAN transmission method

Fig. 4 RAMAN reflection method
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are very suitable for complex and highly nonlinear problems 
and have been used in pharmaceutical industry in many 
aspects, such as the prediction of chemical kinetics  [13], 
monitoring a pharmaceutical freeze-drying process [14], 
solubility prediction of drugs [15]. ANN models have been 
also used for the prediction of the dissolution profile based 
on spectroscopic data. Ebube et al.  [16] trained an ANN 
model with the theoretical composition of the tablets to 
predict their dissolution profile. Galata et al. [17] developed 
a PLS model to predict the contained drotaverine (DR) and 
the hydroxypropyl methylcellulose (HPMC) content of the 
tablets which are respectively the drug itself and a jelling 
material that slows down the dissolution, based on both 
RAMAN and NIR Spectra, and used the predicted val-
ues along with the measured compression force as input 
to an ANN model in order to predict the dissolution pro-
files of the tablets defined in 53 time points. Using NIR 
and RAMAN spectra to predict the DR and HPMC content 
of the tablets then along with the concentration force pre-
dicting the dissolution profile is a fast method that require 
minimal amount of human labor and which makes it eas-
ier to evaluate a larger amount of the batch. In this paper, 
useful information was extracted directly from the NIR 
and RAMAN spectra, and the compression curve using 
a multivariate data analysis technique. This information 
along with some parts of the in vitro measured dissolution 
profiles was used by Artificial Neural Network models to 
estimate the remaining part of the dissolution profiles. Our 

goal was to support the decision of how much of the disso-
lution profiles need to be measured to be able to estimate 
the remaining parts of the dissolution profile within the 
acceptance limits required by the industry.

2 Data and methods
In Section 2, the data used will be described and the meth-
ods used for the data pre-processing will be presented. 
The artificial neural network models created will be pre-
sented and finally the error measurement methods adopted 
to evaluate the results.

2.1 Data description
We have been provided with the measurements of the NIR 
and RAMAN spectroscopy, along with the pressure curves 
extracted during the compression of the tablets. The data 
consists of the NIR reflection and transmission, RAMAN 
reflection and transmission spectra, the compression 
force - time curve and the dissolution profile of 148 tab-
lets (Fig. 5). The tablets were produced with a total of 37 
different settings. Three parameters were varied: drotaver-
ine content, HPMC content and the compression force. 
From each setting, four tablets were selected for analy-
sis (37*4). The NIR and RAMAN measurements on the 
tablets were carried respectively by Bruker Optics MPA 
FT-NIR spectrometer and Kaiser RAMAN RXN2 Hybrid 
Analyzer equipped Pharmaceutical Area Testing (PhAT) 
probe. The spectral range for NIR reflection spectra was 

Fig. 5 Dataset composed of NIR, RAMAN transmission and reflection the compression curve and the dissolution profiles 
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4,000–10,000 cm–1 with a resolution of 8 cm–1, which rep-
resents 1556 wavelength points. NIR transmission spec-
tra were collected in the 4000-15,000 cm–1 wavenumber 
range with 32 cm–1 spectral resolution, which represents 
714 wavelength points. RAMAN spectra were recorded in 
the range of 200-1890 cm–1 with 4 cm–1 spectral resolution 
for both transmission and reflection measurements which 
represents 1691 points. Two spectra were recorded for each 
tablet in both NIR and RAMAN. The pressure during the 
compression of the tablet was recorded in 6037 time points. 
The dissolution profiles of the tablets were recorded using 
Hanson SR8-Plus in vitro dissolution tester. The length of 
the dissolution run was 24 hours. During this period, sam-
ples were taken at 53 time points (at 2, 5, 10, 15, 30, 45 and 
60 min, after that once in every 30 min until 1440 min).

2.2 Data analysis
The collected data were visualized and analyzed using 
MATLAB and Excel in order to detect and fix missed and 
wrong values: setting first point of the dissolution curves to 
zero, detecting missed values, and fixing negative values 
found due to error of calibration, etc. Specifically, the data 
is represented in matrices Ni

n for NIR transmission data 
and Mj

n for NIR reflection data, where i = 1556, j = 714. 
Rk

n and Qk
n respectively for RAMAN reflection and trans-

mission data where k = 1691. Cl
n for the compression force 

data where l  =  6037 and Ps
n for the dissolution profiles 

where s = 54. With n representing the number of samples 
which is equal to 296. All the different NIR, RAMAN and 
the compression force matrices have been standardized 
using scikit-learn preprocessing method: StandardScaler. 
StandardScaler fits the data by computing the mean and 
standard deviation and then centers the data see in Eq. (1):

Stdr NS NS u s� � � �� � / ,	 (1)

where NS is the non-standardized data, u is the mean of 
the data to be standardized, and s is the standard devi-
ation. All the different standardized NIR, RAMAN and 
the compression force matrices have been row-wise con-
catenated to form a new matrix Dm

n where n = 296 and 
m = i + j + 2k + l = 11686 as follow (Eq. (2)):
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After standardization, PCA was applied to the different 
standardized matrices as well as the merged data Dm

n in 
order to reduce the dimension of the data while extract-
ing and maintaining the most useful variations. Basically, 
taking Dm

n as an example we construct a symmetric m*m 

dimensional covariance matrix Σ (where m = 11686) that 
stores the pairwise covariances between the different fea-
tures calculated as follow (Eq. (3)): 
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With µj and µk are the sample means of features j and k. 
The eigenvectors of Σ represent the principal components, 
while the corresponding eigenvalues define their mag-
nitude. The eigenvalues were sorted by decreasing mag-
nitude in order to find the Eigen pairs that contains most 
of the variances. Variance explained ratios represents the 
variances explained by every principal component (Eigen 
vectors), it is the fraction of an eigenvalue λj and the sum 
of all the eigenvalues. The following plot (Fig. 6) shows 
the variance explained rations and the cumulative sum of 
explained variances. It indicates that the first principal com-
ponent alone accounts for 50% of the variance. The second 
component account for approximately 20% of the variance.

The plot indicates that the seven first principal compo-
nents combined explain almost 96% of the variance in D. 
These components are used to create a projection matrix 
W which we can use to map D to a lower dimensional PCA 
subspace D' consisting of less features:

D d d d d R D DW W Rm
m m v� �� �� � � ��

1 2 3, , , ,
* ,	 (4)

� � �� � �D d d d d d Rm
m

1 2 3, , , , .	 (5)

2.3 Artificial Neural Networks
ANN models were used to predict the dissolution profiles 
of the tablets. The models were created using the Python 
library Sklearn. Different ANN models were created, with 
different inputs and output targets each time. The models 

Fig. 6 PCA explained and cumulative variances
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used the rectified linear unit activation function referred 
to as ReLU on the hidden layers and the weights on the 
models were optimized using LBFGS optimizer which is 
known to perform better and converge faster on dataset 
with small number of samples (296 in our case). Adam 
optimizer was tried as well but did not perform as good 
as LBGFS. The mean-squared error (MSE) was the loss 
function used by the optimizer in the different models. 
The training target for the models were the remaining part 
of the dissolution profiles, e.g., the dissolution curves are 
described in 53 points, if 10 points are used in the input 
then the remaining part of 43 points is the training tar-
get. The number of layers on the models and the number 
of neurons were optimized based on their performances. 
Regularization term has been varied in order to reduce 
overfitting. In each training, 16% of the training samples 
(49 samples) were selected randomly for testing. The accu-
racy of the model's predictions was calculated by evaluat-
ing the similarity of the predicted and measured parts of 
the dissolution profiles using the f2 similarity values.

2.4 Error measurement 
Two mathematical methods are described in the literature 
to compare dissolution profiles [18]. A difference factor f1 
which is the sum of the absolute values of the vertical dis-
tances between the test and reference mean values at each 
dissolution time point, expressed as a percentage of the 
sum of the mean fractions released from the reference at 
each time point. This difference factor f1 is zero when the 
mean profiles are identical and increases as the difference 
between the mean profiles increases:

f R T R
t

n
t t t

n
t1 1 1
100� �

� �� �/ * ,	 (6)

where Rt and Tt are the reference and test dissolution val-
ues at time t. The other mathematical method is the simi-
larity function known as the f2 measure, which performs 
a logarithmic transformation of the squared vertical dis-
tances between the measured and the predicted values at 
each time point. The value of f2 is 100 when the test and 
reference mean profiles are identical and decreases as the 
similarity decreases.

f log n R T
t

n
t t2 10 1

2
0 5

50 1 1 100� � �� �� �
�

�
��

�
�
��

�

�
.

* 	 (7)

Values of f1 between zero and 15 and of f2 between 50 and 
100 ensure the equivalence of the two dissolution profiles. 
The two methods are accepted by the FDA (U.S. Food and 
Drug Administration) for dissolution profiles comparison, 

however the f2 equation is preferred, thus in this paper 
maximizing the f2 will be prioritized.

3 Results and discussions
In Section 3 the results after the PCA dimensionality 
reduction will be discussed. The results and the perfor-
mance of the Artificial Neural Network models created 
will be presented.

3.1 Dimensionality reduction using PCA
Principal component analysis transformation was applied 
in a first step to the standardized NIR and RAMAN spec-
tra recorded in reflection and transmission mode (Ni

n, Mj
n, 

Rk
n, Qk

n matrices) and the standardized compression force 
curve Cl

n, and in a second step on all the data merged in 
matrix Dm

n in order to investigate the effect of the trans-
formation on the merged and the separated data (Fig. 7).

The resulting PCA decompositions, showed that in the 
case of NIR reflection, three principal components explain-
ing 84.79%, 9.67% and 4.83% of the total variance in 
the data, respectively, leading to a cumulative explained 
variance of more than 99%. Four principal components 
explained more than 80% of the total variances of the NIR 
transmission data and 95% of the compression force data. 
However, for RAMAN transmission, the first principal 
component alone explains 99.69% of the variance in the 
data. The first two principal components explain 98.51% 
and 1.01% of the variance in the RAMAN Reflection 
data, respectively. For matrix Dm

n, 7 principal components 
explain more than 95% of the variance and 33 explain more 
than 99% of the merged standardized data. These data 
resulting from the PCA decompositions were used along the 
dissolution profiles parts as inputs for the Artificial Neural 
Network models. For all measurements, the numbers of 
components explaining 99% of the total variance were kept.

3.2 Predicting the dissolution profile using Artificial 
Neural Network
In Subsection 3.2, the Artificial Neural Network models 
created will be presented in Sub-subsections 3.2.1, 3.2.2 
and 3.2.3 based on the input used and the target of models.

3.2.1 Separated measurements and dissolution parts
The ANN models that were created in Sub-subsection 
3.2.1 had the following inputs:

•	 The plain dissolution parts;
•	 The dissolution parts along with the PCs of RAMAN 

transmission spectra;
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•	 The dissolution parts along with the PCs of RAMAN 
reflection spectra;

•	 The dissolution parts along with the PCs of NIR 
transmission spectra;

•	 The dissolution parts along with the PCs of NIR 
reflection spectra;

•	 The dissolution parts, PCs of Compression force;
•	 The dissolution parts along with the 33 PCs of all the 

data merged (matrix Dm
n).

Different dissolution parts were used as part of the 
inputs and the training targets each time were the remain-
ing parts of the dissolution profiles which were not included 
in the inputs (Table 1). The training target for each model 
was the remaining part of the dissolution profiles. For 
each model, 3000 trainings with randomly selected testing 
datasets were run. The average f2 of the 3000 trainings was 
recorded. The number of neurons was increased from one 
to 13 neurons. A second layer and then a third layer hav-
ing all the same number of neurons were added in order to 
check the effect of deeper network on the behavior of the 
models and their results. Results showed that increasing 
the number of neurons until 10 neurons was beneficial and 
improved the average f2 values. However, after 10 neurons 
the models maintained the same behavior. Adding a sec-
ond hidden layer slightly increased the performance of the 
models. On most models, two hidden layers with each hav-
ing 10 neurons achieved the best f2 results.

Results showed that all ANN models created were 
able to predict the remaining part of the dissolution pro-
files within the acceptance range of the f2 similarity factor 
(Table 2). By using 30 minutes of the measured dissolu-
tion profile as an input, the ANN model was able to pre-
dict the remaining part with an f2 = 55.84. Adding other 
methods, improved the average f2 results. f2 values of 
62.53, 60.68 and 62.68 were achieved by adding respec-
tively RAMAN transmission, NIR transmission and the 
compression curve to the 30 minutes of the measured dis-
solution profiles. When using all the merged data along 
with the dissolution part (30 minutes), an f2 = 70.28 was 
achieved. ANN model that used 120 minutes of the mea-
sured dissolution profile along with the compression force 

Table 1 Parts of dissolution profiles used. The dissolution run being 
24 hours, samples were taken in 54 time points. The parts of the 

dissolution used are represented in both minutes (mins) and time points. 

Input dissolution parts Target dissolution points

30 mins 6 points 1410 mins 48 points

60 mins 8 points 1380 mins 46 points

90 mins 9 points 1350 mins 45 points

120 mins 10 points 1320 mins 44 points

180 mins 12 points 1260 mins 42 points

210 mins 13 points 1230 mins 41 points

240 mins 14 points 1200 mins 40 points

270 mins 15 points 1170 mins 39 points

300 mins 16 points 1140 mins 38 points

Fig. 7 Explained variance of spectral data, compression force, and all data merged
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achieved f2  =  71.68. In  all models, best f2 results were 
achieved when using all the data along with the dissolu-
tion parts. However, a result of f2 > 70 can be achieved by 
measuring 120 minutes of the dissolution and performing 
the RAMAN reflection or the compression force measure-
ments (Fig. 8). 

3.2.2 Combinations of two measurements and the 
dissolution parts
In Sub-subsection 3.2.2, the Artificial neural network 
models created used each time two different measurements 
along with the dissolution parts described in Table 1 as an 
input, while the targets were the remaining parts of the 
dissolution profiles same as in Sub-subsection 3.2.1. This 
experiment was conducted to check if better results can be 
achieved by combining two different measurements and 
the dissolution parts. The input was all the possible com-
binations of two different measurements as follow:

•	 NIR transmission + RAMAN reflection;
•	 NIR transmission + Compression force;
•	 NIR transmission + NIR reflection;

•	 NIR transmission + RAMAN transmission;
•	 RAMAN reflection + Compression force;
•	 RAMAN reflection + NIR reflection;
•	 RAMAN reflection + RAMAN transmission;
•	 Compression force + NIR reflection;
•	 Compression force + RAMAN transmission;
•	 NIR reflection + RAMAN transmission;

Results showed that some of the combinations signifi-
cantly improved the result compared to when they were 
tested individually (Table 3). When using 30 mins of the 
dissolution profiles as part of the input along the combina-
tion NIR transmission and the compression force, we were 
able to estimate the remaining part of the dissolution 
curve with f2 = 68.97 compared to f2 = 60.32 when using 
only NIR transmission and f2 = 62.68 when using only the 
compression force.

The combination NIR transmission and compression 
force, and RAMAN transmission and the compression 
force, along with 60 minutes of the measured dissolution 
curve models estimated the remaining parts of the dissolu-
tion profiles with an f2 >7 0 while with individual measure-
ments this was possible only after measuring 120 minutes 
of the dissolution profiles. By adding 120 mins of the mea-
sured dissolution profiles to the input, almost all combi-
nations were able to estimate the remaining part with an 
f2 value > 70 (Fig. 9).

3.2.3 Combinations of three measurements
In this third approach, the Artificial Neural Network models 
were created in the same way as in Sub-subsection 3.2.1, 
with same number of layers and neurons. However, the 
models used along with the dissolution parts described in 
Table 1, a combination of three measurements as an input 
and the target was the remaining parts of the dissolution 
profiles as described in Table 1 same as the previous two 
approaches (Fig. 10). All possible combinations of three 
measurements were used as follow:

Table 2 Average f2 results ANN models using individual measurements

Part of dissolution used in minutes 30 60 90 120 180 210 240 270 300

Results in 
f2 of

Plain dissolution 55.84 62.01 63.84 67.31 71.73 75.29 77.98 78.01 80.56

RAMAN Transmission + Diss 62.53 66.22 68.82 69.36 77.06 78.07 80.25 81.64 81.53

RAMAN Reflection + Dissolution 63.61 64.86 69.50 70.07 75.81 77.00 78.59 79.25 81.11

NIR transmission + Dissolution 60.32 64.95 65.64 68.44 72.25 74.22 75.53 76.31 78.96

NIR Reflection + Dissolution 60.42 65.51 68.36 68.67 75.29 77.37 80.02 81.34 81.57

Compression force + Dissolution 60.68 67.07 67.99 71.68 75.73 76.35 79.16 79.51 81.67

All measurements + Dissolution 70.28 70.98 72.03 75.00 77.05 78.53 79.92 80.74 82.23

Fig. 8 Results of the ANN models with individual measurements
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•	 NIR TR + RAMAN RE + Compression force;
•	 NIR TR + RAMAN RE + NIR RE;
•	 NIR TR + RAMAN RE + RAMAN TR;
•	 NIR TR + Compression force + NIR RE;
•	 NIR TR + Compression force+ RAMAN TR;
•	 NIR TR + NIR RE + RAMAN TR;
•	 RAMAN RE + Compression force + NIR RE;
•	 RAMAN RE + Compression + RAMAN TR;
•	 RAMAN RE + NIR RE + RAMAN TR;
•	 Compression + NIR RE + RAMAN TR.
Results showed that an f2 ≈ 70 can be achieved with 

measuring 30 mins of the dissolution curve and using the 
combination of NIR TR + RAMAN RE + Compression 
force which is almost equal to the result achieved using all 
the measurements along with 30 minutes of the dissolution 
curve. This shows that it is possible to obtain the same f2 

results without carrying the NIR reflection and RAMAN 
transmission measurements. Also, by adding only 90 mins 
of the measured dissolution profiles to the input, almost 
all combinations were able to estimate the remaining part 
with an f2 value > 70 compared to 120 minutes in the pre-
vious approach (Table 4).

3.2.4 Results observation 
Few rules can be concluded from the different approaches 
that were tested in this paper: 

1.	 By measuring 30 mins of the dissolution profile: 
•	 The remaining part can be predicted within the 

acceptance range of the f2 value ( f2 = 55.84)
•	 An f2 > 60 can be achieved by adding any of the 

previous measurements and preferably RAMAN 
transmission or reflection.

Table 3 Average f2 results of the different ANN models using combinations of two measurements along the dissolution parts in minutes

Dissolution used 30 60 90 120 180 210 240 270 300

f2 of

NTr + RRe 60.54 67.03 72.61 72.25 73.58 77.02 77.31 79.03 79.20

NTr + Cmp 68.97 71.51 73.01 74.91 75.91 76.03 81.08 80.52 80.91

NTr + NRe 61.73 70.05 68.81 70.80 71.96 73.58 76.89 78.71 80.57

NTr + RTr 61.37 66.47 68.69 69.09 73.19 77.20 76.92 79.03 78.29

RRe + Cmp 65.44 66.81 68.59 73.16 76.87 78.94 81.86 82.90 84.22

RRe + NRe 64.41 66.05 70.11 70.44 76.18 77.94 78.26 82.45 84.50

RRe + RTr 61.92 64.81 65.75 74.80 78.04 78.24 81.90 82.48 83.43

Cmp + NRe 64.21 67.22 68.88 73.97 78.43 79.13 78.82 80.05 81.61

Cmp + RTr 64.59 70.49 71.04 71.13 78.26 79.28 81.87 81.29 83.06

NRe + RTr 61.87 69.30 72.34 70.91 78.22 79.47 81.25 83.48 82.62

Fig. 9 Results of ANN models with combinations of two measurements Fig. 10 Results of ANN models with combinations of three measurements
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•	 f2 = 68.97 can be achieved by using a combina-
tion of two measurements NIR Transmission + 
Compression force.

•	 f2 ≈ 70 can achieved by using a combination of 
three measurements NIR TR + RAMAN RE + 
Compression force.

•	 f2 = 70.28 can be achieved by combining all the 
measurements. 

2.	By measuring 60 minutes of the dissolution profile:
•	 f2 > 70 can be achieved by using a combina-

tion of the compression force and either NIR 
Transmission of RAMAN transmission

•	 f2 = 74.44 can be achieved by using NIR transmis-
sion + NIR reflection + Compression force

3.	 By measuring 90 minutes of the dissolution profile:
•	 f2 > 70 can be achieved by using any combination 

of three measurements
4.	 By measuring 120 minutes of the dissolution profile: 

•	 f2 > 70 can be achieved by adding either the com-
pression force or the RAMAN reflection.

5.	 By any combination of two or three measurements:
•	 f2 = 70 can be achieved.
•	 In case a specific f2 value is required the previ-

ous experiments can help in making the decision 
of how much of the dissolution profile should be 
measured and which other measurements need to 
be carried in order to achieve the required f2 result.

4 Conclusion
The current work aimed to utilize the measured NIR and 
RAMAN spectroscopy data and the compression force along 
with some parts of the dissolution profiles of tablets produced 
with 37 different settings in order to predict the remaining 
part of the dissolution profiles. The spectroscopy data was 
standardized and its dimensionality was reduced using PCA. 
Three different approaches were tried in which parts of the 
dissolution profile was used with one, two or three measure-
ments. The results show the importance of the measure-
ments in improving the accuracy of the prediction and also 
compare the importance of each of the measurements based 
on the results achieved by using them. The work also pres-
ent rules that help in making the decision of which mea-
surements to use and how much of the dissolution profile 
should be measured in case a specific f2 result is needed.

Acknowledgement
Project no. FIEK_16-1-2016-0007 has been implemented 
with the support provided from the National Research, 
Development and Innovation Fund of Hungary, financed 
under the Centre for Higher Education and Industrial 
Cooperation Research infrastructure development (FIEK_16) 
funding scheme.

Table 4 Average f2 results of the different ANN models using combinations of three measurements along the dissolution parts in minutes

Dissolution used 30 60 90 120 180 210 240 270 300

f2 of

NTr+RRe+Cmp 69.53 72.61 73.57 74.93 76.69 77.79 80.16 80.49 80.04

NTr+RRe+NRe 62.33 66.68 70.64 71.15 75.27 76.38 78.01 77.37 81.58

NTr+RRe+RTr 62.08 69.41 69.26 74.24 74.96 76.34 77.93 78.66 80.60

NTr+Cmp+NRe 67.68 74.44 71.21 74.63 75.69 76.87 78.32 79.41 81.46

NTr+Cmp+RTr 67.51 71.09 72.98 73.26 76.22     78.96 79.02 80.27 79.28

NTr+NRe+RTr 60.73 67.81 72.19 72.26 74.95 76.43 78.57 80.94 79.03

RRe+Cmp+NRe 65.41 68.02 70.92 74.38 74.28 75.24 79.47 80.44 81.62

RRe+Cmp+RTr 65.59 68.88 71.53 73.82 75.76 78.49 81.06 83.14 82.01

RRe+NRe+RTr 58.44 67.92 70.81 75.28 75.21 78.37 81.34 83.34 83.77

Cmp+NRe+RTr 64.71 68.45 71.89 72.70 75.28 79.51 79.59 80.48 81.84
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