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Abstract

Stencil printing is one of the key steps in reflow soldering technology, and by the spread of ultra-fine-pitch components, analysis of 

this process is essential. The process of stencil printing has been investigated by a machine learning technique utilizing the ensemble 

method of boosted decision trees. The phenomenon of overfitting, which can alter the prediction error of boosted decision trees has 

also been analyzed in detail. The training data set was acquired experimentally by performing stencil printing using different printing 

speeds (from 20 to 120 mm/s) and various types of solder pastes with different particle sizes (particle size range 25–45 µm, 20–38 µm, 

15–25 µm) and different stencil aperture sizes, characterized by their area ratio (from 0.35 to 1.7). The overfitting phenomenon was 

addressed by training by using incomplete data sets, which means that a subset of data corresponding to a particular input parameter 

value was excluded from the training. Four cases were investigated with incomplete data sets, by excluding the corresponding data 

subsets for: area ratios of 0.75 and 1.3, and printing speeds of 70 mm/s and 85 mm/s. It was found that the prediction error at input 

parameter values that have been excluded from the training can be lowered by eliminating the overfitting; though, the decrease in 

the prediction error depends on the rate of change in the output parameter in the vicinity of the respective input parameter value.
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1 Introduction
The mass manufacturing of electronic circuits is dom-
inated by the usage of surface mount technology now-
adays, in which the components are connected to the 
printed circuit board by reflow soldering technology [1, 2]. 
The essence of this technology is that the solder material 
is provided onto the assembly board in a paste form, the 
electronic components are placed into the deposited solder 
paste, then the assembly is transported through an oven. 
The assembly is heated above the melting point of the sol-
der alloy (lead-free ones have been used generally since 
2006), the solder melts and wets the metallizations, then 
it solidifies when the assembly is cooled down at the end 
of the process, thereby forming the solder joints between 
the components and the printed circuit board. The com-
ponent sizes are continuously decreasing in electronics 
to meet the functional requirements of IoT (Internet of 
Things) and 5G devices.  The decrease in the component 
sizes challenges the most critical step in reflow soldering 
technology, namely the (step of) stencil printing  [3,  4]. 

The stencil printing is responsible for the deposition of 
solder paste (suspension of solder particles and flux vehi-
cle) onto the soldering pads of the printed circuit board. 
Based on the literature, most of the reflow soldering fail-
ures (50–60%) can be rooted to stencil printing, which 
renders it a process needed to be analyzed and optimized 
continuously [5]. The need for optimization became even 
more crucial by the spread of ultra-fine-pitch components 
(e.g., QFN – Quad Flat No-lead, µBGA – Micro Ball Grid 
Array) [6], since smaller apertures belong to the assembly 
of these components, and the solder paste is harder to be 
deposited through these apertures. As a consequence, the 
detailed analyzes and thorough optimization of the sten-
cil printing process by new techniques and methods, like 
machine learning-based methods, is inevitable to comply 
with the approach of zero-defect manufacturing.

Machine learning-based methods consist of such algo-
rithms (within the field of artificial intelligence), which 
can evolve through empirical learning (by datasets) and 
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provide more accurate results. By utilizing the learning 
dataset, these methods can create a model that can pre-
dict the values of parameters or make appropriate deci-
sions without being developed or programmed to the spe-
cific subject. Recently, computing resources have been 
advancing to a level which allows the application of com-
putational demanding methods to predict and optimize the 
output of non-linear processes. Optimizing in the early 
design phase of the electronics manufacturing process can 
greatly increase their first-pass yield, thereby reducing 
the need for repair and rework. Several ensemble meth-
ods (within the field of machine learning) were used for 
assessing the technology of reflow soldering or stencil 
printing, like fuzzy logics  [7], decision trees or random 
forests [8] and artificial neural networks [9]. Though, the 
stencil printing process was modelled either by neglect-
ing the main characteristic of the stencil aperture, namely 
the area ratio [5], or has been investigated for the applica-
tion of through-hole components in the pin-in-paste tech-
nology [9]. Furthermore, boosted decision tree ensemble 
methods have though proven to be appropriate for elec-
tronics technology processes, they suffered from the risk 
of overfitting. Consequently, we decided to analyze the 
effect of overfitting on the predicting capability of boosted 
decision trees for the process of stencil printing by also 
taking the area ratio of stencil apertures into consideration.

2 Materials and methods
2.1 Theoretical background
Decision trees construct a categorization for the training 
instances by forming branches from well-defined true/
false questions in a tree structure. In the structure of the 
decision tree, the letters represent the appropriate instance 
category, and the branches represent the connection of 
features that lead to these categories. If the target value 
is continuous, e.g. in the case of real numbers, the tree 
is called a regression tree. The common relevant term, 
CART (Classification and Regression Trees), covers both 
regression and classification trees  [10]. The main advan-
tage of decision trees is that the data do not require any 
preparation/pre-shaping, and they can easily be applied to 
large data sets. However, the accuracy and robustness of 
the method may be lower compared to other approaches.

The so-called hybrid models apply techniques (e.g., 
boosting or bagging) which help to overcome these dis-
advantages, while gradient scaling helps to maintain the 
required low computation time.

The idea of boosting is based on an iterative method, 
with an input of x yi i,� �� �

�i

n

1
 and with a loss function of 

L(y, F(x)). The predicting model Fm(x) = Fm−1(x) + γmhm(x) 
is getting more precise stepwise, while the learner – for 
example, a decision tree – hm(x) is aligned by solving the 
following optimization problem in Eq. (1): 
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where Fm(x) is the updated model after iteration step m. 
Trees with a predefined size are used in gradient boosting, 
where the base learner is a regression tree h(x) having L 
leaves. This regression tree divides the x vector space into 
L independent regions Rlm l

L� � �1
 in every iteration step m. 

The solution for the minimization problem, in the end, is 
in Eq. (2) [11]:
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One can use simple regularization method as well, 
which defines the contribution of the base learners by 
using a ν factor [11] as follows in Eq. (3):

F F v I Rm m lm lmx x x� � � � � � � �� ��1 � , 	 (3)

where ν is mainly called the "learning rate".
Using a machine learning method means that an opti-

mal solution is sought for a system of equations with sev-
eral parameters. It can happen that if the parameters are 
chosen incorrectly, the system is overparameterized, i.e., 
the so-called overfitting phenomenon occurs [12]. In addi-
tion, in the case of overfitting, a seemingly excellent and 
accurate model and solutions are provided to a given prob-
lem – that is, the output data is determined with a high 
accuracy based on the input data. However, an over-
fitted model will most likely estimate the output with a 
high error rate for other input combinations which are not 
included in the training data set.

There are many approaches for preventing overparam-
eterization. For example, suppose the number of parame-
ters can be reduced so that the accuracy of the model does 
not deteriorate significantly. In that case, one can avoid 
overfitting (at the same time) by considering fewer param-
eters in the teaching, thus utilizing less memory and com-
putational resources. As a result, the required runtime can 
be reduced significantly. The most common approaches 
include building a model that consists of the appropri-
ate input parameters but excludes parameters that are not 



134|Martinek and Krammer
Period. Polytech. Elec. Eng. Comp. Sci., 66(2), pp. 132–138, 2022

suitable for the general description of the system. Hence, 
this approach seeks to reduce the number of parameters 
used by the training method [13, 14].

Another approach is the partitioning of the data (used 
for teaching) into multiple data sets to validate the model. 
During the validation, the efficiency of the created model 
is examined on these different data sets, so it can be deter-
mined if the model has been overfitted on a given set of the 
training data; the model calculates the output with rather 
high error rate for one or more validation date sets in this 
case. Because in this approach the teaching is performed in 
multiple iterations (a model considered inaccurate during 
the validation process is rejected and possibly re-training 
is also initialized), so it may not be applicable for large data 
sets due to the significant increase in the training time [15].

2.2 The training data set
The data set for training the decision tree-based method 
was obtained by experiments. Stencil printing was carried 
out on a testboard by utilizing different printing speeds 
(in  an EKRA X4 stencil printer), stencil aperture sizes, 
and lead-free solder paste types (varying solder particle 
diameter), as detailed in the work [16]. The printing speeds 
were the following: 20, 40, 75, 85, 120 mm/s, and the area 
ratio of the stencil apertures was varied between 0.35–1.7. 
The investigated solder paste types were Type-3, Type-4, 
Type-5, in which the diameter range of the solder parti-
cles were 25–45 µm, 20–38 µm, 15–25 µm, respectively. 
Though, the particle sizes in the different solder paste types 
were analyzed in detail. The particle diameter distribu-
tion was approached by a log-normal distribution, and the 
parameters of the geometric mean ( µg = eµ ) and geometric 
deviation ( σg  =  eσ ) were used for characterizing the dif-
ferent solder paste types quantitatively. The output param-
eters which determine the quality of the stencil printing 
process were the area, thickness and volume of the solder 
paste deposits. These parameters were measured by a Koh-
Young aSPIre II solder paste inspection (SPI) machine.

The experimental runs were repeated 5 times, i.e., using 
5 testboards for each printing speed and solder paste type. 
As a result, the experiment yielded a data set with 15 675 vec-
tors consisting of the input and output parameters.

2.3 Analyzing the overfitting of decision trees
Boosted decision trees (using the technique of Least 
Squares Boosting) were used for the analyzes. The deci-
sion tree models were implemented in Matlab and opti-
mized by splitting the input data set into training and test 

set stochastically and minimizing the Root Mean Squared 
Error (RMSE) of the model prediction to the test set.

Besides, a validation data set was created, which con-
sisted of 345 vectors of the input and output parameters, 
strictly including only one instance of each input parame-
ter value. The output parameter values in the validation set 
were obtained by calculating the mean of the correspond-
ing output values. The predicting capability of the deci-
sion trees (non-boosted and boosted) was characterized by 
the Mean Absolute Percentage Error of the prediction to 
the output values in the validation data set.

The phenomenon of overfitting was analyzed by pre-
paring so-called incomplete data sets. This means that one 
value of an input parameter was omitted entirely from the 
training together with the corresponding output parame-
ter values. For example, the vectors for the printing speed 
of 70  mm/s were entirely omitted from the training set. 
As a second step, the decision trees were trained by this 
incomplete data set. Finally, the predicting capability was 
analyzed by setting the excluded value as an input value 
(e.g., 70  mm/s printing speed) and comparing the pre-
dicted output values to the excluded experimental output 
values. By this method, one can simulate the effect when 
a new (formerly unknown) input parameter value appears 
in the process of stencil printing, and the decision trees are 
used to predict the quality of the printing (area, thickness 
and volume of solder paste deposits). Incomplete data sets 
can be created similarly by omitting values of the sten-
cil aperture size (area ratio). By going through the steps 
mentioned above, one can simulate the effect when a new 
(formerly unknown) aperture size appears in the manu-
facturing, e.g. when a new electronic component is intro-
duced into the electronics product. In this investigation, 
the predicting capability was analyzed for 4  incomplete 
data sets; by omitting the value of printing speed 70 mm/s 
or 85 mm/s, or by omitting the value of area ratio 0.75 or 
1.3 (always omitting only one input value at once).

Training by incomplete data sets can reveal the phenom-
enon of overfitting immediately. If the output values are 
predicted for an input value included in the training set, 
the prediction error is expected to be low. Contrary, if the 
output values are predicted for an input value which was 
excluded from the training, the predicting error is expected 
to be relatively high. By eliminating the phenomenon of 
overfitting, the predicting error at input values included in 
the training can be slightly higher, but the prediction error 
at an input value excluded from the training can be lower 
at the same time. The elimination of overfitting was solved 
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in this investigation by changing the training parameters 
and evaluating the changes of the prediction error for both 
omitted and included input data combinations in different 
training data sets. Learning parameters for the boosted 
decision trees were: minimum leaf size, learning rate and 
number of learning iterations. Overfitting may occur if min-
imum leaf size and learning rate are low, while the number 
of learning iterations is high. Hence, if validation for omit-
ted input parameters showed a high error rate, parameters 
for the minimum leaf size and learning rate were increased 
and the number of learning iterations were decreased to 
prevent overfitting by also analysing the changes in error 
rate for multiple validation data sets in multiple training 
iterations for various training data.

3 Results and discussion
The phenomenon of overfitting was investigated for boosted 
decision trees. By analyzing the mean absolute percentage 
of the prediction for incomplete data sets the phenomenon 
of overfitting was found. Fig. 1 and Fig. 2 illustrate the pre-
diction error for the cases when data vectors corresponding 

to the stencil aperture area ratio of 0.75 were excluded. 
In Fig. 1, the prediction error for AR 0.9 is illustrated – pre-
senting the case when the output parameters (area, thick-
ness, volume) are predicted for an input parameter value 
that has been included in the training.

On the contrary, the prediction error for AR 0.75 is 
illustrated in Fig.  2 – presenting the case when the out-
put parameter values are predicted for an input parameter 
value that has been excluded from the training.

As it can be observed in Figs. 1 and 2, when the over-
fitting is not eliminated, boosted decision trees can pre-
dict the quality of stencil printing with low error, [below 
1% (Fig. 1 left part)] for input parameters that have been 
included in the data set. On the contrary, the prediction 
error is much higher for an input parameter value that has 
not been included in the training (simulating when a new 
input parameter value is introduced in the process); the 
prediction error can reach 3% (Fig. 2 left part).

If the overfitting is eliminated, the prediction capability 
of boosted trees can be enhanced for the process of stencil 
printing. The prediction error can be lowered from 2.2% 
to 1.4% in average for an input parameter value (AR 0.75) 
that has not been included in the training set, as illustrated 
in the right part of Fig.  2. Nevertheless, eliminating the 
overfitting can increase the prediction error, particularly 
for the input parameter values included in the training, as 
illustrated in the right part of Fig. 1. Generally, if boosted 
tree-based prediction is necessary for a process parameter 
value that is not available at the moment but is expected to 
be introduced in the future, overfitting can be eliminated.

Nevertheless, eliminating overfitting may not reduce 
the prediction error for excluded parameter values but does 
not significantly increase the error either. Fig. 3 illustrates 
the prediction error for the stencil aperture area ratio of 1.3 
(in this case, this value was excluded from the training).

Fig. 1 Prediction error of area, height and volume of deposited solder 
paste at a stencil aperture area ratio 0.9 (the data subset for AR 0.75 has 

been excluded from the training)

Fig. 2 Prediction error of area, height and volume of deposited solder 
paste at a stencil aperture area ratio 0.75 (the data subset for AR 0.75 

has been excluded from the training)

Fig. 3 Prediction error of area, height and volume of deposited solder 
paste at a stencil aperture area ratio 1.3 (the data subset for AR 1.3 has 

been excluded from the training)
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This can be because the change of output values (area, 
thickness, volume) is lower in the vicinity of the specific 
input value; that is, the slope of the output function is lower 
at that region. Fig. 4 illustrates the area, height and volume 
of solder paste deposits as functions of stencil aperture 
area ratio. As it can be seen, the slope or the change in the 
function is much pronounced at the area ratio of 0.7 than at 
the ratio of 1.3 (indicated by orange dashed lines), except 
for the parameter of height. If Fig. 2 is reanalyzed, it can 
be found there too that the prediction error of height was 
not decreased by eliminating overfitting.

The prediction error of boosted trees was analyzed for 
such incomplete data sets also in which data vectors were 
excluded for specific printing speeds (not for particular 
area ratios). Figs. 5–7 illustrate the corresponding predic-
tion errors. At first, a case is presented in Fig. 5, where the 
specific printing speed was included in the training.

Like when data vectors for particular area ratios were 
excluded, the prediction error is increasing for input 

values that have been included in the training by eliminat-
ing the overfitting; from ~0.6% to 2% in this case. Fig. 6 
and Fig. 7 illustrate the prediction error for printing speeds 
which were not included in the training.

By eliminating overfitting, no significant decrease in 
the prediction error was found at the printing speed of 
70 mm/s, i.e., using an input parameter which was excluded 
from the training. Similar results were obtained with the 
printing speed of 85 mm/s. The change in the average pre-
diction error of the output parameters (mean of error for 
the area, height and volume) for the two printing speeds 
were 2.57% -> 2.4% and 3.85% -> 3.45%, respectively.

The reason for the insignificant decrease in the predic-
tion error (by eliminating overfitting) is the same as in 
the case presented in Fig. 3, that is, the output parameters 
(area, height, volume) do not change significantly as the 
function of the input parameter (printing speed), as illus-
trated in Fig. 8.

Fig. 4 Output parameters as a function of stencil aperture area ratio 
(note, the percentage value for the height is calculated by dividing the 

height values by 150 µm, which is the stencil thickness)

Fig. 5 Prediction error of area, height and volume of deposited solder 
paste at a printing speed of 45 mm/s (the data subset for speed 70 mm/s 

has been excluded from the training)

Fig. 6 Prediction error of area, height and volume of deposited solder 
paste at a printing speed of 70 mm/s (the data subset for speed 70 mm/s 

has been excluded from the training)

Fig. 7 Prediction error of area, height and volume of deposited solder 
paste at a printing speed of 85 mm/s (the data subset for speed 85 mm/s 

has been excluded from the training)
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