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Abstract

Electric vehicles are becoming increasingly popular in societies and an important part of smart grids. Utility companies should be able 

to provide them with vital energy as they need electric energy instead of fuel, and this is where new challenges emerge in the network. 

In order to avoid causing utilities to incur additional energy and economic losses, researchers have proposed smart charging as a way 

to provide adequate energy to vehicles. When developing a charging schedule for a fleet of EVs, special considerations are made on 

variables such as energy, cost, and EVs milage. In this review paper, the importance of EVs integration into smart grids is studied, and 

then different methods to develop EVs charging scheduling are investigated. These methods can vary from optimization algorithms 

to learning-based, and game theory-based approaches. Then, as the considered system consists of three main actors, including EV 

users, the utility operator, and aggregators, a systematic review is conducted on these actors, and objectives related to each one are 

analyzed. Finally, research gaps related to the problem are studied. Researchers can use this review to conduct further research on 

the integration of EVs into smart grids.
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1 Introduction
Today with global warming and raising the awareness of 
the vehicle users, the number of EVs is drastically increas-
ing, and they will most likely replace traditional vehicles 
entirely in the future, or at least will soon dominate the 
market [1]. It is targeted for global EVs number to approach 
a 30% share by 2030 as we expect to see an exponential 
increase in the number every year [2]. For example, in 
Hungary, EVs' share was 1.9% in 2019, 50% more than 
its 2018 share, indicating a growing interest among casual 
users toward EVs. In some other European countries, the 
share is much higher. For example, the EVs market share 
has already reached 28.8% in Norway and 6.4% in the 
Netherlands. Also, while the number of EVs compared to 
conventional vehicles in China is 1.4%, many countries 
have targeted 100% EVs usage in a not-so-far future [3].

As stated in the literature, although EVs are benefi-
cial to urban Society by reducing air pollution, their chal-
lenges must be understood and addressed to clear the path 
for electrification of such devices. 

In Sabzi and Vajta [4], the challenges of EVs charging 
and the fact that they need additional electrical energy 
from the grid were analyzed, and we proposed three solu-
tions to provide this energy, as follows:

• Expanding the transmission, distribution, and 
charging station infrastructure;

• Installing energy storage devices and renewable 
energy sources to help the grid;

• Smart charging strategies.

Moreover, we concluded that the third solution was the 
most optimum in the long run. Smart charging can be car-
ried out to pursue several technical and financial objec-
tives. Technical objectives include balancing load power, 
V2G scheme realization, V/f regulation, reducing losses. 
Financial objectives benefit the actors inside the market, 
including the utility operator, EV users, and aggregators. 
Furthermore, objectives can vary in a smart charging 
plan, from increasing the actors profits to time-saving and 
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milage optimization. This article considers the three main 
actors' objectives, and each one's role and interests in the 
market platform will be studied. 

While the main contribution of this research is to pro-
vide a state-of-the-art review of the literature to research-
ers working on EVs integration and smart scheduling 
solutions, the rest of the paper is organized as follows: 
in Section 2, the optimization problem is stated and con-
straints related to each section are analyzed, in Section 
3 a review on the most recent methods for EVs charging 
scheduling in smart grids is carried out. In Section 4, the 
actors with a significant role in the platform and their 
interests are studied, and several objective functions are 
presented. In Section 5, we introduce the research gaps, 
and finally, in Section 6, conclusions will be given.

2 Optimization problem statement and formulation
In many studies, the issue of EV charging has been consid-
ered as an optimization problem. In this case, an objective 
function is defined, which must be minimized or maxi-
mized subjected to the existing constraints. Therefore, in 
order to develop optimal EV scheduling strategies, the 
objective function and constraints should be formulated 
first. The main purpose of optimization is to find the loca-
tion and time of charging for each vehicle so that the pro-
posed method is optimal for both the driver and the net-
work that improves the performance of the smart grid. In 
this way, if the drivers intend to charge the vehicle during 
peak hours, a discount can be offered to them to postpone 
the charging. In order to encourage drivers to charge their 
vehicles during off-peak hours, incentives should be made 
that can include lower charging costs.

In smart charging, unlike the conventional charging 
method, charging station operators, market operators 
and drivers are connected to cloud and have the ability 
to exchange information, monitor and manage the situa-
tion [5]. Therefore, another requirement for scheduling a 
charging program is a communication network that can 
exchange data on vehicle location, vehicle SoC rate, and 
driver preference for cost, time, location, and distance 
with the market operator or aggregator [6]. The aggrega-
tor can also send the desired results for charging to each 
driver by examining the information received from the 
drivers and the network constraints received from the dis-
tribution network operator and implementing the optimi-
zation method defined for the problem [7]. In this case, the 
charging schedule can be considered in real-time and the 
possibility of two-way communication between the net-
work and EVs is established and EVs can work in both 

V2G and G2V modes [8]. As a result, after each imple-
mentation of the optimization method, vehicles are priori-
tized and for those that are charged during peak load, driv-
ers are required to pay more.

In order to define the optimization charging problem 
of EVs in the network, the objective function and the 
required constraints must be determined. Constraints are 
introduced to bound the solutions within the physical and 
user-specified limitations. In previous studies, two types 
of constraints have been proposed: network constraints 
and EVs constraints.

2.1 Network constraints
As the name implies, these constraints include keeping 
the parameters related to the stability and efficiency of 
the network within the defined allowable range. These 
parameters include voltage, power demand, losses, power 
quality, switching number of capacitors and on-load tap 
changer switching. 

One of the main network constraints that have been con-
sidered in many papers is the distribution network voltage, 
for which the upper and lower limits of ±10 or ±5% are 
usually considered and in a total of 24 hours, these limits 
must be observed. This constraint is defined as Eq. (1) [9]:

V V V k nk
min max

, , ,� � � �for 1  (1)

where V  min and V  max denote the minimum and maximum 
allowable bus voltage range, respectively and k and n are 
the bus number and the total number of buses, respectively.

Another constraint is defined as the line to neutral volt-
age deviation and its upper limit is usually determined by 
the utilities is defined as Eq. (2) [10]:

� �V t k V t k V, , ,
max

� � � � � � �1  (2)

where ΔVmax is the maximum allowable deviation.
For voltage, there is a constraint called the three-phase 

voltage unbalance factor, and similar to the previous con-
straint, its maximum allowable value is set by the utility 
and is defined as Eq. (3) [11]:
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V t k
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,
,
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where VUF is voltage unbalance factor and V − and V + 
are negative sequence and positive sequence of voltage, 
respectively. These two values can be determined using 
Fortescue transformation technique. 

Another effective constraint in solving the optimization 
problem is the amount of power demand. As expressed in 
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Eq. (4), for each power system, the power must be kept in 
a threshold at any given time [12]:

� �P Dt k� , max
.

total  (4)

In Eq. (4) ∆t is the time interval within 24 hours, P 
is the total consumption and D is the maximum allowed 
demand for the grid.

Power losses in the network are a constraint that should 
not exceed the maximum defined limit [13]. The formula-
tion of these criteria is as Eq. (5):

t

P P� �
loss loss _max

,  (5)

where t is time, and Ploss_max is the maximum allowable loss 
in the grid.

Furthermore, losses in the network are calculated as 
follows [14]:

P P R V V yloss t k k
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where P t k k� , , �� �1
loss  is the power loss in time interval Δt and 

between buses k and k+1 and Vk is the voltage of bus k. In 
this equation, Rk,k+1 and yk,k+1 are resistance and admittance 
of line section between buses k and k+1, respectively.

Another important parameter is the power quality in 
the network, which is checked for THD, and THD in the 
network should not exceed the allowable THD. Here, THD 
is defined for voltage as Eq. (7) [9]:
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where, V h is the voltage harmonic and h is the order of 
harmonic in voltage. THD can be defined for the current 
in the network as well.

There are capacitors in the network in both the feed-
ers and the secondary buses to compensate reactive power 
and resolve voltage deviation issues. There is a limitation 
to switch the capacitors in feeders and these capacitors can 
only be switched on or off once a day. But secondary buses 
capacitors can be switched on more than once. However, 
the maximum allowable switching of capacitors on the 
secondary buses can be considered as another constraint 
and it has an important effect on reducing losses in the net-
work. This constraint is defined as Eq. (8) [10]:

t
s t s t smC C C

�
�� �� � �

1

24

1, ,
,  (8)

where Cs,t is the status of the capacitor, and Csm is the maxi-
mum allowable number of switching for capacitor s in a day.

An OLTC consists of an open load tap changer that is 
used in areas where there is an interruption in the power 
supply due to an unacceptable tap change. The ratio of the 
number of turns can be changed without breaking the cir-
cuit. However, because of higher maintenance costs and 
reduction of life expectancy the daily number of switching 
operation is limited by a constraint [15].This constraint is 
defined as Eq. (9):

t

L

t tTap Tap Tap
�

�� � �
1

1 max
,  (9)

where L is the number of load levels in a day. The maxi-
mum number of allowable switching operations of OLTC 
is 30 times a day [16].

2.2 Electric vehicles constraints
Each electric vehicle has specifications that affect the 
charging process, and in order to optimize the charging 
procedure, these constraints must be taken into consid-
eration to provide an optimal charging program for each 
vehicle. These constraints are related to SoC, charging and 
discharging rates and charging time. Also, there is a max-
imum value for battery capacity [17]. The SoC constraint 
is defined as Eq. (10):

SoC SoC
min

,� � � � � �t t�  (10)

where, β is the battery capacity of each EV. 
In Eq. (10), as an upper limit, SoCreq can be considered 

instead of  and it is defined as the requested maximum 
charge set by the customer.

For each electric vehicle, the charge and discharge rates 
are defined as positive and negative power, respectively. 
The lower and upper bounds are defined as Eq. (11) [18]:

p p t pnmax max
,

discharge charge� � � �  (11)

where p
max

discharge  is maximum V2G capacity, p
max

charge  is max-
imum charging rate and pn(t) is the charging/discharging 
rate in time slot t. If V2G mode is not possible for an elec-
tric vehicle, in fact the vehicle will not have a discharge 
rate and p

max

discharge  will be considered as zero.
If EV provides some services for the network, the dis-

charge rate cannot be greater than the battery capacity, 
because it can deliver maximum power that have been 
already stored in the battery. The formulation for this con-
straint is defined as Eq. (12) [19]:

d tt
V2G

� � �� ,  (12)

where, d t
V2G

 is the discharge power in V2G mode at time t 
and β is the battery capacity.
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A battery constraint related to time of charge is pro-
posed in Eq. (13) [20]:

t t ddep i char i� �� � ,  (13)

where tdep−i is the expected departure time of EVi, t is 
the current time, and dchar−i is the duration needed for the 
EVi to be charged at full power to its expected SoC [20]. 
Therefore, based on this constraint, the scheduling should 
be such that the battery has enough time to be fully charged.

2.3 Objective function
An objective function is the function whose value is 
intended to be minimized (costs) or maximized (profits) 
through the optimization process and based on a set of con-
straints and the relationship between one or more decision 
variables. Depending on the goal of optimization, differ-
ent objective functions can be defined including price cost, 
total energy cost, power loss, emission, deviation, V2G 
revenue, aggregator revenue, transformer overload and etc. 

According to the researches, most of the papers have 
specified the objective function based on minimizing the 
total cost of the power demand, the general form of which 
is as Eq. (14) [21]:

t

T

c tk P
�
�
1

�
Demand

,  (14)

where, kc is the cost per MWh of generation at time interval 
Δt based on the price of purchasing or producing the energy 
and P tD

Demand  is the power demand in time interval Δt.
In other articles, only power losses are defined as an 

objective function [12, 13, 15].
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T

tP
�
�
1

�
loss  (15)

With regard to the wishes of the aggregator, a specific 
objective function will be defined and also constraints 
will be provided according to the existing actors in the 
grid and their limitations and parameters and the allow-
able range that were discussed in Section 4. In the end, 
the objective function should be maximized or minimized 
subjected to the constraints of the problem.

3 EVs charging scheduling methods
In a simple plan of smart charging, the demand is distrib-
uted across different time slots during the day or week, or a 
different charging station is proposed to drivers. Therefore, 
incentives like compelling prices can be used to encourage 
off-peak charging. In order to do this, EVs, charge stations, 

and utility providers need to keep in constant communica-
tion to adjust prices or restrict the chargings according to 
grid usage patterns and the needs of consumers. 

As stated, in smart charging, the aggregator offers dif-
ferent charging proposals to drivers, trying to improve 
one or more of the system characteristics. Following 
approaches have been suggested in the literature for EVs 
charging scheduling with respect to the formulated EVs 
charging problem:

• Mathematical optimization methods;
• Meta-heuristic and Heuristic optimization methods;
• Learning-based methods;
• Game-theory based methods.

While the first two methods are different solvers that 
could be used for the same problem, depending on the 
designer's creativity and preferences, the learning-based 
methods are used in a wide range of solutions, for exam-
ple, predicting drivers behavior in chargings. On the other 
hand, game theory-based methods have been mostly used 
for EVs routing and finding the best combination of EVs 
(as agents) to be charged at a specific time and location.

3.1 Mathematical optimization
In this case, a mathematical model of the problem is devel-
oped. Although this method is straightforward, calcula-
tions can become complicated and more time-consuming; 
therefore, only one or two parameters can be optimized. 
Nevertheless, mathematical optimization methods are 
widely used to solve the EVs charging coordination prob-
lem. For example, in [22], investigating the impact of EVs 
charging on a residential distribution grid is the primary 
goal, and a quadratic optimization model and a dynamic 
programming technique have been used to solve the EVs 
charging coordination problem. These two methods pre-
sented similar results with the same computational time, 
achieving an acceptable accuracy. While [23, 24] use the 
MILP method to solve the EVs charging coordination 
problem, in [25], MILP has been employed for charging 
coordination in addition to DGs. The model built in [25] 
also features operational constraints, including voltage 
and current constraints. Moreover, a MILP approach that 
minimizes the total daily cost due to EVs charging is pro-
posed in [23]. 

Xu et al. in [26] presented a decentralized charging 
method based on augmented Lagrangian and compared 
it with the centralized charging method. In the proposed 
method, drivers have the opportunity to select their 
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charging program locally, in which the high cost of com-
munication in the centralized method is eliminated, and 
the volume of calculations is reduced. This method maxi-
mizes the aggregator's revenue while maintaining the dis-
tribution network's constraints.

In addition to smart charging, linear programming meth-
ods are mostly used for the optimal placement of charging 
stations. For example, to cost-effectively place electric EVs 
charging stations at bus stops, the programming relaxation 
algorithm is used to resolve the problem in [27], and a com-
plex combinatorial problem is formulated in [28, 29] as an 
optimization problem to determine the minimal number of 
strategically selected charging stations.

3.2 Heuristic and meta-heuristic optimization
In the optimization process, one selects input values from 
a range of permitted values and then calculates the true 
value of the function. In the case of EVs charging optimi-
zation, the maximization can be conducted for the profit 
earned by utility or aggregator, or the minimization can be 
applied for the energy costs paid by drivers. Speed is typ-
ically more important than accuracy or optimality when 
using a heuristic method. Some of the most well-known 
heuristic methods used in EVs charging optimization are 
SVM, Tabu Search, and GA. Meta-heuristic algorithms 
are more efficient than traditional algorithms, which are 
inspired by nature. For example, in [30], PSO was used to 
optimize the problem of coordinated charging of EVs. The 
charging model includes OPF, statistical specifications of 
EVs, degree of satisfaction of EV drivers, and power grid 
cost. The proposed method significantly reduces power 
grid operation costs and satisfies the drivers.

In [31], a real-time charging method for EVs using 
energy storage systems and photovoltaic systems is pro-
posed. For this purpose, GWO and IBGWO methods have 
been used to solve the problem, and the objective func-
tion was defined as cost minimization. The results prove 
that the IBGWO is highly effective in solving the problem, 
reducing operating costs, and improving PV operation.

In [32], the EVs charging optimization is presented by 
considering energy arbitrage and the distribution network 
cost. The cost function is defined based on peak demand, 
power losses, and transformer aging in the distribution 
network, and the genetic algorithm is used for optimiza-
tion. In this paper, data from the city of Udon Thani in 
Thailand is used as a case study. This method has reduced 
the transformer peak load, power losses, and energy arbi-
trage losses. In another work [33], the authors used a 

centralized GA to optimize the charge of EVs. They also 
analyzed the ToU rate to find a scenario with the least cost 
to the customer and the network. On the other hand, con-
sidering that the shape of the load curve remains constant, 
the authors concluded that the algorithm achieved statisti-
cally similar results within each run.

The fuzzy control method models price uncertainty 
in the upstream grid to provide robust scheduling for 
charging EVs [34]. In [35], the authors proposed a new 
fuzzy charging strategy in which the price can be con-
sidered variable over time, and the nature of the problem 
is considered multi-constrained and multi-objective. This 
paper compares the proposed method with centralized 
charging and the conventional fuzzy method. The results 
prove the superiority of the proposed method.

Poursistani et al. [36] have proposed a method for mod-
eling the load demand of EVs, which includes battery 
size, charge rates, and vehicle speeds. Then, to optimally 
charge the vehicles using the proposed model, they imple-
mented the BGSA and concluded that this method posi-
tively affects the peak load shading.

In [37], the authors have used the AIS and tangent vec-
tor methods to charge EVs in the distribution network. 
Furthermore, they selected the IEEE 34-bus distribution 
system as a case study and concluded that these methods 
reduce losses and computational complexity after imple-
menting the mentioned methods. In [38], the authors used 
the PSO to allocate energy to EVs in the charging process. 
The PSO uses previously stored data to solve the optimi-
zation problem, and if a change is made to the system, new 
data needs to be stored and used. They defined the objec-
tive function to maximize the average SoC. Moreover, 
they considered the algorithm's energy price, remaining 
battery capacity, and remaining charge time. They also 
used genetic algorithms to compare with the PSO method 
and concluded that PSO responds faster than GA. 

In the following works, the authors intend to define the 
objective function as multi-objective, taking into account 
the minimization of the total charging time. In [39], the 
charging optimization of EVs has been done by using 
the fitness function to maximize the average SoC with 4 
bio-inspired methods. These methods include PSO, GSA, 
accelerated PSO, and a hybrid version of PSO and GSA 
PSOGSA. The authors implemented these 4 methods for 
different charging scenarios for 50, 100, 300, 500, and 1000 
EVs and compared the results in 5 critical parameters: 

1.  Stopping criteria: In all 4 methods, the algorithm 
introduces the final solution if this criterion is met. 
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2.  Convergence analysis: Although there is a compro-
mise between computation time and algorithm con-
vergence, the combined PSOGSA algorithm con-
verges with fewer iterations and performs better than 
other methods. 

3.  Fitness value: The combined PSOGSA method 
shows the best fitness value. 

4.  Computation time: Unlike other parameters, PSO 
and APSO perform better than the PSOGSA hybrid 
method and perform 100 iterations in less time. 

5.  Robustness: In this parameter, the PSOGSA hybrid 
method has the lowest standard deviation, showing 
the best robustness.

Arias et al. [40]  have used 3 methods of Tabu Search, 
GRASP, and a new proposed HOA in order to optimize the 
coordinated charging process of EVs. The objective func-
tion in this paper is defined based on minimizing the total 
operating cost, and all three optimization methods offer 
reasonable solutions compared to uncoordinated charging. 
However, HOA has a higher advantage than the other two 
methods in providing better results. Furthermore, this 
paper shows that the charging process and network-related 
parameters such as voltage profiles, energy losses, etc., are 
improved by using DG sources.

3.3 Learning-based methods
Many papers in the literature have used LB methods for 
energy dispatching through VR and energy scheduling. 
For example, Alqahtani and Hu [41] developed a RL model 
for energy scheduling and routing of EVs while consider-
ing uncertainties in power supply and demand. LB meth-
ods are usually model-free, and therefore researchers have 
taken advantage of this in the process of EVs charging, 
which may depend on many dynamic parameters. 

In ML methods, first, the trend and pattern among 
the data are determined by the learning process. Then, a 
model is obtained that predicts the exact behavior of a sys-
tem's part. For example, in [42], an ML algorithm is used 
to predict the behavior of EV users in the charging pro-
cess. The data used for learning are the time the vehicles 
stay in the charging stations and the energy consumption 
of each vehicle. The effectiveness of this algorithm has 
been validated by a 27% reduction in peak load, 10% load 
change, and 4% reduction in costs. Morsalin et al. [43] 
used an ANN decision-making system to predict energy 
demand and solve the charging coordination problem of 
EVs. They incorporate both V2G and G2V modes into 

their work. Pilát [44] used a feed-forward NN and echo 
state network to solve the problem of charging EVs in a 
decentralized structure, and their results showed a reduc-
tion in prices for drivers.

Dang et al. [45] proposed a multi-dimensional dynamic 
charging method based on the Q-learning algorithm for 
charging EVs, where both V2G and G2V modes were con-
sidered. A reward table is created because the main param-
eter has been the ToU. The authors claimed that using this 
method would meet the requirements of EVs drivers and 
the distribution network at the same time. The disadvan-
tage of this method is that if the dimensions of Table Q 
become large, the problem will be challenging to solve. 

Some authors have implemented LB methods to solve 
optimization problems in the e-mobility environment. For 
example, in [46], the deep RL method has been used to 
quickly select the charging station and plan the EVs route 
to solve the charge optimization problem. The objective 
function is defined to minimize the charging time and cost 
of energy. While the data of the battery SoC, the location 
and direction of EVs, the number of parking lots, and the 
number of chargers were required, the results of their work 
showed that the proposed method achieved a near-optimal 
solution. Shi et al. [47] defined the objective function to 
minimize driver's waiting time, electricity costs, and vehi-
cle operating costs. They used a decentralized learning 
method and a centralized decision-making process to solve 
the problem. The decentralized learning method consists 
of two parts that allow drivers to share their operational 
experiences and estimate the state-value function using the 
DNN model. The results of their work showed that the pro-
posed method works appropriately in terms of cost reduc-
tion. In [48], the problem of charging EVs is modeled as 
the MDP, and its goal is to minimize the cost of charging 
in the long-term time horizon; furthermore, the SRL has 
been used to learn pricing patterns and solve the problem 
of charging optimization. The results of this work show a 
reduction in the costs imposed on the customer.

3.4 Game theory-based methods
The issue of EVs charging scheduling can be considered 
as a game. While the optimization-based methods aim at 
minimizing or maximizing a cost, GT-based methods try 
to find a suitable solution for actors. In the case of EVs 
charging, if drivers accept the proposed charging station 
or routing, the issue can be regarded as a Nash equilibrium 
strategy. In this case, the goal will be to find the best route 
to offer to the applicant driver; as a result, the complexity 
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is significantly reduced. Moreover, a maximum of 15% 
reduction in travel time is achieved, and therefore road 
traffic density and energy consumption are lowered [49]. 

Usually, the aggregator plays a vital role in GT-based 
methods. As an example, Mediwaththe and Smith [50] 
considered the competition between aggregators for 
charging EVs as a non-cooperative game. To minimize the 
total cost of charging energy, each aggregator determines 
the start time of charging EVs and the charging energy 
profile. They showed that using this strategy led to energy 
savings. Wang et al. [51] proposed the Stackelberg game 
modeling method for pricing aggregators and charging 
EVs. In this way, they defined two upper and lower levels 
for the price as:

• The upper level: the price of grid electricity;
• The lower level: the pricing mechanism of the 

aggregator.

The method to solve the problem is to maximize the 
profit of the aggregator and minimize the charging cost 
of each EV concerning prices. Game Nash equilibrium is 
calculated using quadratic programming.

Furthermore, [52] proposed a non-cooperative optimi-
zation for EVs charging scheduling using SG and MT. By 
expressing the EVs allocation problem as a matching algo-
rithm, the authors first aim to balance the utilization ratio 
between charging stations and EVs employing MT. The 
authors claim that the Stackelberg equilibrium proves to 
be superior to the Nash equilibrium when considering the 
dynamics of energy demand and energy pricing.

4 Actors in an EV-integrated smart grid
In an EV-integrated smart grid, three actors are mainly 
involved in the charging operation, each with its own 
goals and interests, including utility operators, EV users 
and aggregators.

4.1 Utility operator
EVs should be supplied with continuous power from the 
grid at the desired time in dispersed locations; therefore, 
in only G2V mode and in unscheduled charging, they are 
not favorable for utility companies as utilities are desired 
to have a homogenous load profile; otherwise, they will 
face future issues imposed on the grid, such as local power 
shortages. The effect of EVs charging on load profile in 
transmission systems has been investigated in [53–56], and 
the effects of EVs charging stations on load profile in dis-
tribution systems have been investigated in [57, 58]. Also, 

charging stations can imply several impacts on the grid's 
power quality, such as injecting harmonics and changing 
the grid's power factor [59, 60], which are out of the scope 
of this article. Table 1 summarizes the operational impacts 
of EVs charging in the grid, divided by energy-related and 
power quality issues.

4.1.1 Flattening the load profile
Flattening the load profile is the main interest of the util-
ity operator. If the demand in different hours of the day is 
not controlled, there will be a risk of overloading trans-
formers leading to equipment getting damaged. Also, by 
flattening the load on different buses, generators are not 
required to ramp up and ramp down sharply; furthermore, 
a more efficient steady-state operation will be achieved. 
For this purpose, EVs charging operation must be sched-
uled to fill up the valley and reduce the charging load in 
peak hours for flexible and motivated users. As shown in 
Fig. 1 [61], the effect of a fleet of EVs charging in a short 
period of the day on the grid is extreme, and the amount 
of demand in the hours between 6 AM and 4 PM is dras-
tically increased, and the voltage drop is observed while 
adding renewable energies such as PVs into the grid will 
compensate the demand developed by the EVs up to cer-
tain level. As shown in Fig. 2, when EVs are aggregated 

Table 1 The summary of EVs charging impacts on the grid

Impacts on power quality Impacts on the energy-related 
matters

Harmonics Inhomogeneous load profile

Sag/Swell
Transformer overloading

Flicker

Notches Shortage of energy

Voltage imbalance Need for new electricity 
infrastructures

Fig. 1 Load curves in a residential distribution grid at different 
scenarios with and without EV and PV [61]
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into a grid, the load forced on the grid is enlarged (high-
lighted in red) [62]. Fig. 2 shows 4 different cases, wherein 
in Fig. 2(a), the network is without EV, in Fig. 2(b) EVs 
are charged without any plan (called dumb charging), in 
Fig. 2(c) multiple tariffs are applied to the price of electric-
ity, and in Fig. 2(d) smart charging is applied to the vehi-
cles. As observed in Fig. 2(a), when EVs are not integrated 
into the grid the tension is at its lowest and there is just a 
minimal pressure on the grid that is distinguished by the 
red color. The highest tension is seen in Fig. 2(b), when 
dumb charging is applied and EVs are not controlled by 
the aggregators, and according to Fig. 2(c) using multiple 
tariffs does not help reduce this tension. However, using 
smart charging lower the tension on the electricity grid as 
the red color has been reduced in Fig. 2(d).

Furthermore, there are some methods to flatten the load 
profile in a grid, but minimizing the variance of the aggre-
gate load profile is the most common method, as described 
in Eq. (16):
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where D(t) is non-EV load profile, N is the number of EVs 
whose charging is scheduled over the time slots T with 
lengths Δt , and si

arr , si
dep , bi , pi

min
, pi

max and ηi are SoC at 
arrival, SoC at departure, battery capacity, minimum 
charging power, maximum charging power and charging 
efficiency of the i th vehicle, respectively. 

Moreover, there are also economic-based methods 
whose aim is to fill up the valley in the demand curve 
while profiting the actors. In this case, the aggregator, 
or system's operator, receives observed signals from all 
participants and, together with the electricity's real-time 
price, develops a command signal containing the informa-
tion on how profitable it is to charge a vehicle at a given 
time. This signal is then sent to the EV users, and they 
decide about the charging operation based on the price if 
they are price sensitive.

4.1.2 Maximizing the utility's revenue
Determining an electricity price by which both EV users 
and the utility operator's benefits are met is not an easy 
task; however, some articles have considered this mat-
ter. For example, Tushar et al. [63] presents a hierarchical 
model that determines the price of electricity which could 
optimize the profit of the EV users and revenue of the 
grid operator by selling energy. In this research, EVs first 
determine the amount of energy they want to buy from the 
grid and based on that; utility operators set a price that is 
made based on a trade-off between the revenue earned by 
the utility and money that EV users saved, therefore the 
solution is considered a game theory.

Also, some research has been carried out in the micro-
grid framework. Misra et al. [64] presents a control 
framework with V2G and G2V modes. In this work, the 
charging price is set dynamically based on the supply-de-
mand curve of microgrids. However, decisions about the 
charging operation are made by EV users in a multi-aspect 
decision-making operation. 

In this research, gaining the most revenue for the util-
ity is the second priority, as the aim is first to achieve the 
operational benefits, i.e., regulating load profile, as stated 
in Sub-subsection 4.1.1. However, by regulating the load, 
which leads to a minimized power loss, it is guaranteed 
that the utility's revenue is increased compared to the 
dumb charging scenario.

4.2 EV users
EVs' batteries have to be charged regularly (e.g., daily, 
weekly, etc.), which depends on multiple parameters, such 
as the driver's use case, the distance that an EV travels by 
one full charge, the path that driver takes, and etc. The 
amount of consumed energy directly affects the drivers 
and utility companies in terms of profit and energy man-
agement. If EVs consume energy without a smart schedule, 
called dumb charging as before [62], the optimization will 

Fig. 2 Loading on a network resulting from different charging types in 
peak hour: (a) without EV; (b) dumb charging; (c) pricing with multiple 

tariffs; (d) smart charging [62]
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not be achieved, bringing more challenges to the utility 
company. So, from the drivers' perspective, a set of goals 
must be achieved, and several interests must be satisfied.

4.2.1 Minimizing the EVs charging costs
Electric consumer behavior plays a vital role in the market, 
especially when prices become dynamic. Zheng et al. [65] 
showed that people's price sensitivity is an important factor 
in using green energies. Also, some research has been con-
ducted to answer this question "what share of EV users are 
willing to change the time or location of their charging with 
the changes in prices?" Sadeghianpourhamami et al. [66] 
measured the number of flexible drivers who are sensitive 
to price (or time and location) and set a price-based-incen-
tive charging plan for them to reduce the pressure on the 
grid at peak hours. 

EV users are the main actors influenced by the electric-
ity price who are willing to adjust the charging time (and 
sometimes location) based on the price. In this way, the 
simplest way for charging price minimization of a set of 
vehicles in time horizon T would be as Eq. (17) [67]:
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where c(t ) is the electricity price, considering the fact that 
RTP is a function of the instantaneous total demand and 
the charging power should be constrained between a min-
imum and a maximum value.

4.2.2 Shortening the distance traveled
With a higher number of charging stations and home-
charging ability, shortening the distance traveled is not as 
significant as before; however, EV users prefer to travel a 
shorter distance to charge their vehicle in remote areas. 
Therefore, this factor can be included in the algorithm in 
special cases and concerning the location.

4.3 Aggregator
Generally, aggregators act as an interface between the util-
ity operator and the end-users to achieve a goal for partic-
ipants in the market. Their most usual responsibility is to 
achieve demand response while reducing the operational 
cost of the whole system. In a traditional definition, aggre-
gators pay compensation to end-users, allowing them to 
control their consumption [68]. They mainly represent the 

end-users and negotiate with the grid operator on behalf of 
the users to improve the efficiency of the operation. 

In the case of EV fleet charging, the aggregator's role 
can benefit utility operators, EV users, and the aggrega-
tor itself. In a market where each EV attempt to charge on 
its own, the optimal point seems impossible to achieve; 
therefore, the concept of the aggregator is introduced to 
consider all possibilities for every participant and dif-
ferent parameters of the system such as electricity price, 
SoC of each EV, required energy, load profile, etc. Hence, 
aggregators propose some offers regarding the charging 
time (or/and location) to the EVs to achieve the optimal 
point. The aggregator can consider the charging pattern 
of an EV and decide that if the charging process is moved 
to another time of the day, it will be financially beneficial 
for the EV user and operationally beneficial for the utility 
company. Fig. 3 demonstrates the role of aggregator in a 
market framework with EVs fleet. As seen, the aggregator 
is connected with EVs and utility operators through data 
lines, while EVs are directly connected to utility in terms 
of energy flow. An important parameter is the aggrega-
tor's profit, which is computed as the revenue earned from 
the utility minus the compensation aggregator pays to the 
end-users, EV drivers in our case.

In [68], although the residential load is considered, the 
cost function that aims to maximize the aggregator's net 
profit is introduced as Eq. (18), where the first part of the 
equation is the amount of reward paid to the aggregator 
from utility and the second part is the money aggregator 
pays to users as an incentive or compensation:
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where λj is the reward to aggregator j, Δc is the demand 
response gain, pj is the aggregator j net profit and dj is the 
demand pattern from aggregator j.

Furthermore, in some articles, aggregators regulate the 
load and meet the demand with adequate energy supplied 
by the utility. In [69], the aggregator acts as a day ahead 
price predictor, and its profit is calculated as the revenue 
minus costs, as stated before, with revenue and price as:

Revenue � � ��� ���� t

H
pE t FR

1
* ,  (19)

Cost � � � � ��� ���� t

H
p schP t E t

1
* ,  (20)

where Ep and Pp are day-ahead predicted load and day-
ahead predicted price in MW and $/MWh, respectively. 
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FR is flat rate of electricity price, Pp is predicted price and 
Esch is the day ahead scheduled power. 

Fig. 4 shows the actors in the market with correspond-
ing data and objectives related to each one.

5 Research gaps
Driver behavior is the main source of uncertainty affect-
ing the charging process and energy consumption that has 
not been properly considered in past studies. As human 
decision-making is involved, it is highly recommended to 
create a practical approach for forecasting EVs demand to 
ensure intelligent EVs energy management in an e-mobility 
environment. It is crucial to estimate the EVs charging load 
(time and place) to develop a demand response pattern that 
can be used in the algorithm. Therefore, an AI algorithm can 
be used to estimate the EV users' behavior with clustering 

methods such as k-means clustering or DBSCAN in future 
research. To achieve this, one must find out which specific 
habits and demographic attributes of EV owners directly 
affect the charging process. For example, we know from the 
results presented in [70] that age and gender directly affect 
the route choice of EV. Also, it is known that younger EV 
users tend to charge the vehicles at lower SoCs while older 
users usually go to charging stations with a higher level of 
SoC. Additionally, a categorization of the specific vehicles 
regarding the parameters mentioned in Fig. 4 can be helpful 
in developing a more accurate charging schedule for EVs. 
Some of these parameters include arrival time, stay time, 
departure time, charging duration, etc. This kind of algo-
rithm can specify which EVs are flexible and which per-
centage of EV owners can change their charging pattern 
through offers made by the aggregator. 

Fig. 3 Market framework with the aggregator

Fig. 4 Actors and related data and interests
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Furthermore, a global optimization model like in Fig. 5 
is suggested for future research to meet the interests of all 
actors. Of course, optimizing such a system seems impos-
sible or very difficult as there are conflicts between differ-
ent actors' interests, but combining DL in the first stage 
with the optimization in the last stage can achieve at least 
partial global optimization. As seen, the system consists of 
three main actors, including utility in the upper level, EV 
users in the lower level, and aggregators between them. 
The aim can be to meet the defined goals, which can differ 
based on the application and actors' interests. 

The utility, as described before, has several interests, 
such as flattening the load profile and increasing its rev-
enue. As said in Section 4, flattening the load profile has 
a higher priority, and then the focus can be made on the 
financial aspect of the problem's constraints are not vio-
lated. On the next level aggregator considers every actor's 
interests. Aggregators have a crucial role, and they should 
see EV users and utility benefits simultaneously. The 
aggregator can be a physical corporation or just a software 
unit for programming the problem. On the level of EVs, 
the aim is to minimize the charging cost and let the EV 
users participate in the market and receive incentives for 
their participation in DSM.

6 Conclusions
Considering how imperative it is for a greener future to 
integrate EVs into electricity grids, we investigated the 
importance of EVs integration in this study. It is well estab-
lished that EVs are the main players in the future transpor-
tation sector, so we need to consider their impact on the 

electricity grid. Consequently, we examined the effects of 
EVs on the grid with regard to energy and power quality. 
Some solutions have been proposed to address the chal-
lenges imposed on the generation section, including using 
local energy storage or decentralized generation, expand-
ing current infrastructures, and utilizing smart charging. 
It was noted that smart charging might be the most prac-
tical and viable solution for these challenges. EVs smart 
charging is a broad concept, which can be considered a 
game theory problem or an optimization algorithm that 
minimizes the amount of energy delivered to EVs. It is 
beneficial in one way or another for certain aspects of the 
system to implement smart charging. So, four different 
approaches to smart charging were described, including 
mathematical optimization techniques such as MILP, heu-
ristic and non-heuristic optimization methods, game theo-
ry-based methods, and learning-based methods.

Moreover, since the main actors in the framework are 
EV users, the utility operator, and the aggregator, then we 
studied the role of each one in the grid. We investigated 
the interests of each of them. We suggested that future 
studies should examine the role of EV users, whose demo-
graphic attributes and individual behavior may directly 
affect aspects of energy consumption and charging, such 
as charging station choice and route choice. Additionally, 
we suggested a market framework to solve the schedul-
ing problem. As seen in Fig. 5, in the first level, drivers' 
behavior and demographic attributes must be considered 
and processed by a deep learning method and combined 
with data of other actors; an algorithm would be developed 
to create the charging plan on the last level.

Fig. 5 A suggested global optimization for future research
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Abbreviations
AIS Artificial immune systems
BGSA Binary gravitational search algorithm
DG Distributed generation
DR Demand response
DSM Demand-side management
DNN Deep neural network
EV Electric vehicle
G2V Grid to Vehicle
GA Genetic algorithm
GRASP Greedy randomized adaptive search 

procedure
GSA Gravitational search algorithm
GT Game theory
GWO Grey wolf optimization
HOA Hybrid optimization algorithm
IBGWO Improved binary grey wolf 

optimization
LB Learning-based
DBSCAN Density-based spatial clustering of 

applications with noise

MDP Markov decision process
MILP Mixed-integer linear programming
ML Machine learning
MT Matching theory
NN Neural network
OPF Optimal power flow
OLTC On-Load Tap Changing Transformer
PSO Particle swarm optimization
PSOGSA Hybrid version of PSO and GSA
RL Reinforcement learning
RTP Real-time pricing
SG Stackberger game
SoC State of Charge
SRL Sarsa reinforcement learning
SVM Support vector machine
THD Total Harmonic Distortion
ToU Time of use
V2G Vehicle to grid
VR Vehicle routing
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