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Abstract

An estimation model is key in the design and development of an unmanned aerial vehicle's control system. This work presents 

a complete methodology for modelling the dynamics of a fixed-wing UAV for aerobatic maneuvers. The UAV dynamic non-linear 

model considered uses total variables instead of a nominal values and perturbation values about certain trimmed conditions for 

conventional flight envelopes. Such modelling allows the expansion of the flight envelope of an unmanned aerial vehicle to cover the 

full range of the angle of attack. The quaternion formulation is used since it eliminates the nonlinearity of the aerodynamics due to 

Euler angles for high angle of attacks. The objective is to have a complete and accurate representation of a highly dynamic fixed wing 

UAV capable of making aerobatic maneuvers without encountering singularities. A set of controllers are then designed for the inner 

and outer loops for attitude control using nonlinear dynamic inversion in cascade with a PI controller. Simulations carried out show 

robust tracking of reference attitude angles.
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1 Introduction
An Unmanned Aerial Vehicle (UAV) is a powered vehicle 
that uses aerodynamic forces to provide lift and can fly auto- 
nomously or be piloted remotely. The design and configu-
ration of a UAV can vary according to its specifications and 
applications. Even though UAVs can be built for any size, 
most designers tend to keep them small hence better energy 
efficiency and a low cost. UAVs can be categorized in terms 
of their mechanical architecture into three groups that is 
fixed wing, rotary wings and hybrid UAVs which combine 
the properties of both fixed wing and rotary wing UAVs. 

The methodological modelling of a conventional air-
craft has been provided in different literature. In [1], the 
equations of motion of a rigid aircraft are derived using 
the procedure attributed to Byran, whose basis is largely 
used. The aim was to realize the Newton's second law of 
motion for the six degrees of freedom. A linearization 
of the equations is done with the assumption of a steady 
flight and specific trim conditions. This method is simi-
lar to the one presented in [2] for small UAVs albeit using 
a different methodology. 

The complete set of equations, reduced order models, 
separation into the longitudinal and lateral directional 
dynamics and the simplifications thereof are given in [1, 2] 
and expressed in first order form hence can be rearranged 
into the state vector form. If linearization is not carried 
out, there would be cross coupling; motion of the lateral 
dynamics would induce motion in the longitudinal dynam-
ics and vice versa. A common challenge that the above 
method encounters with respect to representation of the 
attitude of an aircraft is the gimbal lock. This effect arises 
due to the angular velocities transformation from one axes 
to another using the 3-2-1 Euler angles [3]. The integra-
tion of the ensuing variables become indeterminate due to 
a singularity for values of θ = ±90°. 

A common way to avoid the singularity is to use a sin-
gle rotation about an eigen axis/Euler axis to describe 
the orientation of a non-inertial frame relative to an iner-
tial frame through a change of variables. This method is 
attributed to the Euler-Rodrigues quaternion formula-
tion where the parameters in the Euler axis description 
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of orientation were used to define four parameters. These 
four parameters uniquely described an orientation having 
only three degrees of freedom [3]. 

This formulation is free from singularities in critical fly-
ing situations however, the interpretation of a quaternion 
is less intuitive than the Euler angles. Using this formula-
tion and the Newton's approach, the translational and rota-
tional states of any rigid body can be completely defined 
for a full flight envelope. For a highly dynamic flight, the 
nonlinear behavior would be difficult to capture using the 
conventional approach. This is the case in some particular 
maneuvers such as perching, aggressive turns and way-
point transitions. However, considerable research has been 
carried out in this area for a highly dynamic combat air-
craft [4, 5] but the results cannot be applied to small fixed-
wing UAVs due to their small size, low thrust to weight 
ratios, high aspect ratios and small control surfaces. 

This paper is organized as follows; Section 2 describes 
the dynamics and the conventional model while Section 3 
introduces the more general quaternion formulation. 
Section 4 discusses the forces and moments equations 
acting on an aircraft. Section 5 discusses the controller 
design based on nonlinear dynamic inversion in cascade 
with a PI controller. Physical properties of a UAV model 
are given in Section 6 and in Section 7, results and discus-
sions of the simulations done are given. 

2 Conventional model 
The motion of an aircraft is described in terms of forces, 
moments, linear and angular velocities, and attitude 
resolved into components with respect to a chosen refer-
ence axis system. Central to this framework is the deriva-
tion of a mathematical model commonly referred to as the 
equations of motion. These are a set of equations describ-
ing the generalized six degrees of freedom, 6-DoF motion 
of a rigid vehicle in the body fixed frame [1, 6] and are 
given in Eq. (1) and Eq. (2). 
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Equation (1) represents the forces equations which 
describe the motion of the center of gravity, and Eq. (2) 
is the moment equations with the variables on the right 
describing the rolling, pitching, and yawing motions 
respectively. The resulting forces and torques in CoG of 
the body frame are FB = (X, Y, Z)T and MB = (L, M, N)T, 
respectively. The other variables have their meanings as 
provided for in literature [1]. 

These equations of motion were derived for an axis sys-
tem fixed to the aircraft. However, the position and attitude 
of an aircraft is usually described relative to an inertial 
frame usually the earth fixed frame of reference. The ori-
entation of these two coordinate systems relative to each 
other are provided using Euler angles transformations.

Let the inertial coordinate system be represented by 
(x, y, z) and the body fixed axis by (xb,

 yb,
 zb). The Euler 

angle rotation sequence φz → φy → φx with the associ-
ated angles ψ, θ, ϕ, respectively is the commonly used in 
the aeronautical community. The coordinate orientation 
transformation from the body fixed system to the inertial 
frame is described using the matrix RB

I as in Eq. (3).
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The angular velocities p, q, r in fixed body axes can also 
be related to the attitude rates   � � �, ,  with respect to iner-
tial frame [1]. In matrix form, it is expressed as
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or alternatively as in Eq. (4) after inversion.
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Equation (4) provides the kinematic transformation in 
terms of Euler angles which allows us to represent and 
update the orientation of an aircraft with time. Notice 
that the 1st and the 3rd rows create a singularity when 
θ = ±90° [1]. This is called the gimbal lock. The four quan-
tities go to infinity and the Euler angle integration becomes 
indeterminate. Sometimes, approximate models are used.

Often, the deterioration in the fidelity of the response 
resulting from the use of approximate models may be 
insignificant. The limit of the approximation is determined 
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by the ability of mathematics to describe the physical phe-
nomena involved, or by the acceptable complexity of the 
description. In many fields of engineering, simplicity is 
a most desirable virtue.

The derivation of UAV dynamics incorporating Euler 
angles is classical and easy to implement. However, when 
more arduous designs and dynamics are to be considered, 
Euler angles encounter difficulties in the form of singular-
ities and gimbal locks. 

3 Quaternion formulation 
Quaternions were proposed by Hamilton in the nineteenth 
century as a three-dimensional version of complex num-
bers. They are also known as 'hyper complex' numbers 
since they can be represented as one real and three imag-
inary numbers as q q q i q j q ks + + +

1 2 3

̂ ̂ ̂  where î , ĵ , k̂  I, 
such that i j k i j k2 2 2

1� � � � �̂ ̂ ̂ ̂ ̂ ̂  and qs, q1, q2, q3  R [7]. 
In another assumption, the quaternion q = (s, w) is a pair 

of a scalar s = q0 and a vector w = (q1, q2, q3). The conjugate 
of the quaternion is q̃ = (s, –w). The product of two quater-
nions is defined by

q q s s w w w w s w s wT
1 2 1 2 1 2 1 2 1 2 2 1
� � � � � �( , ) .

For application, the subset of unit norm quaternions 
plays an important role satisfying ||q|| = s2 + w2 = 1. It is 
well known that a general rotation R around a unit axis t 
by an angle φ can be expressed by the Rodrigues formula 

R � � � �� � � �� �I C t S t( )1
2

� � ,

where Cφ = cos(φ) and Sφ = sin(φ) are used. The orientation 
of the body frame to the inertia frame can be described by 
a unit norm quaternion according to
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where s = Cφ/2 and w = Sφ/2t. The formula can easily be con-
verted to a form using only q0, q1, q2, q3 and the property 
q0
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Unit norm quaternions can be extensively used to rep-
resent dynamics, velocity and orientation of rigid bodies 
since they do not suffer the limitations associated with 
Euler angles in critical flight situations. Therefore, quater-
nions can play an integral part in tracking the orientation of 
a vehicle, thereafter construct the direction cosine matrix 

(DCM) and/or the Euler angles from the quaternions [7]. 
This is what makes them desirable for flight-modelling.

The compact equations of motion for a UAV describing 
the dynamics and orientation can be written as 
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Using quaternions, the model of a complete flight enve-
lope of a UAV will be captured to encompass ±90° range 
in the sideslip angle and angle of attack. Due to the advan-
tages stated, a quaternion, q is used to represent attitude. 
The translational velocity V u v wB

cg T� � �, , , angular velocity 
ωB = [p, q, r]T, inertia matrix IB, forces FB and moments MB 
acting on an aircraft are resolved in the body frame while the 
position vector PI = [x, y, z]T is resolved in the inertial frame. 
RB
I  is the quaternion rotation matrix transformation from the 

body frame to the inertial frame. Equation (8) which is a 
quaternion product, is fully represented as in Eq. (9).

q q

q p q q q r
q p q r q q
q q q p q r
q r q q q p

B� � �

� � �
� �
� �
� �

�
1

2

1

2

1 2 3

0 2 3

0 3 1

0 1 2

�

��

�
�
�

�

�

�
�
�

, (9)

which provides the kinematic transformation equations in 
terms of a quaternion of finite rotation [7].

4 Forces and torques 
The total forces and moments acting on an aircraft due 
to aerodynamics, propulsion and gravitational effects are 
given in Eq. (10).

F F F F
M M M
B B

grav
B
prop

B
aero

B B
prop

B
aero
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� ��
 (10)

The gravitational force which is usually expressed in 
an inertial frame must be transformed to the body frame 
since the aerodynamic and propulsion forces are expressed 
in the body frame. The aerodynamics forces and moments 
include the contribution due to the aerodynamic control 
deflections that is, the elevator, aileron and rudder. Roll 
control stick, pitch control stick and rudder pedal dis-
placements will be denoted by δa, δe and δr, respectively 
for a standard aircraft configuration. 
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For the v-tail configuration ruddervators are used. They 
are two movable surfaces on the V-tail empennage. The 
differential displacement of ruddervators achieves the 
same effect as the rudder and the simultaneous displace-
ment same effect as an elevator. In the flying wing-config-
uration, the differential displacement of elevons has same 
effect as ailerons and simultaneous displacement the effect 
of an elevator. Fig. 1 shows the two configurations.

4.1 Propulsion 
For completeness, propeller forces and moments are 
expressed as in Eq. (11). 
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M Q M M
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Prop
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T is the force, Q is the torque, Fy,p is the side force, Fz,p 
is the normal force, My,p is the pitching moment and Mz,p 
is the yawing moment. Due to the rotation of a propeller, 
a slipstream is created. The slipstream contributes more 
airflow over the aircraft surfaces. A rotating propeller of 
a maneuverable aircraft propulsion system induces flow 
in three directions: axial, radial and swirl. The radial and 
swirl components are normally neglected [6].

4.2 Aerodynamics 
The forces and moments describing the longitudinal 
dynamics are influenced by the pitch rate, q and elevator 
deflection, δe [6]. The contribution of aerodynamic forces 

and moments from other different components/segments 
are neglected. In the lateral dynamics, the forces and 
moments are influenced by the sideslip angle β, roll rate p, 
yaw rate r and control deflections δa and δr. Using Taylor 
series approximations, the resultant forces and moments 
are given by Eq. (12) and Eq. (13). 
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The different equations and relations given in the pre-
ceding text are plugged into Eq. (5) and Eq. (6). The result-
ing Eq. (14) and Eq. (15) are the 6 DoF equations that can 
be used to describe the motion of a highly maneuverable 
fixed wing UAV. 
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These equations rewritten in compact form become 
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The aircraft kinematics are described by Eq. (16) using 
quaternions which defines the vehicle position with respect 
to an inertial frame. 

Fig. 1 (a) Elevons and (b) Ruddervators in a UAV [2]

(a)

(b)
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The orientation is calculated using Eq. (4), which rep-
resent the aircraft attitude using Euler angles. In case of 
singularities, the Euler angles are computed from quater-
nions using Eq. (17).
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5 Controller design 
For a conventional fixed wing UAV the control segments 
are the ailerons, elevator and rudder deflections, defined 
as variables δa, δe and δr. The outputs are the roll, pitch, 
and yaw angles (ϕ, θ, ψ) and angular velocity rates (p, q, r), 
respectively. The control goal for a hierarchical control 
strategy is to control the inner loop through stabilizing the 
nonlinear dynamics. 

The inner loop as shown in Fig. 2 are fast dynamics and 
correspond to the states (p, q, r). That is, for any given ref-
erence attitude angles, the inner loop control will track the 
desired angular rates for the reference attitude angles. The 
outer loop consists of variables as shown in Fig. 2 which 
provide references and trajectories to be tracked by the non-
linear model of the aircraft. In order to achieve these objec-
tives, a closed loop cascade control structure is adopted. 

The inner control method using Nonlinear Dynamic 
Inversion (NLDI) stabilizes the dynamics and the outer ref-
erence tracking method is conjured using a proportional 
integral (PI) controller. Usually, the integral term in a PI 
controller reduces the steady state error, and the corrective 
action is proportional to the deviation from the target. The 

outer loop should provide continuous reference signals to the 
inner loop that is why PI controller is desirable. Moreover, 
a PI controller is simple to implement, highly sensitivity 
and effective even in the presence of nonlinearities. 

5.1 Nonlinear Dynamic Inversion 
Linear flight models capture the approximate motion of 
a vehicle under specific conditions. From these models, lin-
ear flight control systems are normally derived. However, 
due to the approximate motions, robustness and good per-
formance cannot be guaranteed especially for an agile air-
craft due to the nonlinearities and saturations that limit lin-
ear approximation. Therefore, linear analysis is not suited 
for these applications. 

Nonlinear control methods remedy the limitations of 
linear control methods. One common candidate approach 
is nonlinear dynamic inversion, which involves transform-
ing a nonlinear model into a full or partial model using 
differential-algebraic means. The fundamental principle 
of dynamic inversion is to obtain a nonlinear controller for 
a system using an inverse transformation using algebraic 
means to cancel a nonlinearity from the input to the out-
put (input/output linearization). This is done by enforcing 
stable linear error dynamics. The advantages are that it 
leads to a simple design, no need of tedious gain sched-
uling, has an easy online implementation as it leads to 
a 'closed form solution' for a controller and it is guaranteed 
asymptotic stability for the error dynamics. The downside 
of this method is sensitive to modeling inaccuracies and 
unlike linear methods, this approach in most cases arrives 
at a model dependent controller. 

Unfortunately, the approach may have two problems. 
Firstly, in case of underactuated systems besides the lin-
earized subsystem, a nonlinear zero dynamics also arises 
that may be unstable. Secondly, also in case of fully actu-
ated systems without zero dynamics, the aerodynamic 

Fig. 2 Cascade Inner and Outer Loop Control Architecture
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forces and moments acting on an agile aircraft present 
complex non-linearities that are difficult to model accu-
rately, and thus perfect cancellation due to dynamic inver-
sion becomes arduous. Moreover, any unmodelled dynam-
ics and parameter uncertainty contribute to reducing the 
robustness of a controller designed using NLDI. 

Nonetheless, due to its simple design and asymptotic 
stability, NLDI can be very useful in aircraft controller 
design [8]. 

5.2 Input/output linearization of the orientation 
The orientation subsystem is fully actuated and can be 
brought to the form 

I I M Mc B B c B a c� � � �� � � �( ) , (18)

where the control signal is δ = (δa, δe, δr)T. The control-
ler consists of a nonlinear and a linear part. The nonlinear 
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linear controllers can be chosen to satisfy
 



� �

� � � � � �

B B ref

B ref P B ref B I B ref B

u PI

k k d

� � �

� � � � ��
:

( ) ( ) ,

,

, , ,

and with the error signal e ꞉= (ωB,ref – ωB) the resulting 
closed loop and its characteristic equation will be 

 e k e k s k s kP I P I� � � � � � �0 0
2

.  (20)

Assuming (1 + sT)2 with an appropriately chosen time 
constant T the choice kp = 2/T, kI = 1/T2 of the parameters 
should stabilize the system. With the low level linear con-
troller u ꞉= ω̇B,ref + PI the high level nonlinear controller to 
be realized is 

� � �: ( ) .� � � �� ��M I u I Mc c B c B a
1  (21)

Notice that for the realization, we need the aerodynamic 
model such that  

M M V A b c b L M Na c
T� �� �

1

2

2
diag( , , )( , , ) , (22)

where (L, M, N) are the dimension-free effects in the con-
trol torques reduced to the origin of the body frame that 
contain the control signal δ in linear form. 

5.3 Cascaded PI controller
The inner (outer) loop of Fig. 2 was implemented using 
a PI controller cascaded with the non-linear dynamic 
inversion controller for the inner loop. This cascade archi-
tecture has been applied in [9, 10]. The aim of the cascade 
strategy is to provide continuous reference signals to the 
inner loop. These reference signals are the desired angular 
rates. The control law is expressed as

u k e k ed
t

� � �1 2

0

� , (23)

where e(ϕ,θ,ψ) is the error between the reference and cur-
rent attitude angles, ki2 the PI controller gains and u(p,q,r) 
the desired angular rates. Although the attitude dynamics 
are almost decoupled, PI controllers are designed for each 
axis separately but with similar gains since the UAV is 
assumed to be symmetrical.

5.4 Velocity control
Velocity is normally controlled indirectly using the rela-
tion Eq. (24)

V F
m

F
m

ga
thrust drag� � � sin� , (24)

where Fthrust is the thrust force, Fdrag is the drag, g the grav-
itational pull and γ the flight path angle. In this relation, 
thrust force can be used as the control variable for veloc-
ity. Consider,





V F
m

F
m

g g h F

F V g K

a
thrust drag

thrust

thrust a

� � � � �

� � �� �
sin : ,�

0 0

0
// ,h

0

 (25)

where K is the design parameter and it is chosen accord-
ing to the velocity error given in Eq. (26) after appropriate 
substitutions.

 



 

V V K

e V V e V V
a a d

v a d a v a d aa a

� �

� � � � �
,

, ,

 (26)

6 Aircraft parameters and geometric characteristics 
The UAV used for simulations in this work is a Yak-54 
reduced model [11]. The nominal values are, CL0

 = 0.1470, 
CD0

 = 0.0528, Cm0
 = –0.0008, CTx0

 = 0.0515, M = 0.106 and 
Oswald's efficiency factor was chosen as ko = 0.90. The 
physical properties are given in Table 1.

Other aerodynamic properties, stability derivatives and 
parameters are listed in Table 2. 
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7 Simulation tests
The proposed method was verified using simulations in 
Matlab Simulink. The dynamic model in Eq. (1) and Eq. (2) 
was implemented together with the kinematic model uti-
lizing the quaternions Eq. (17). The design parameters 
were selected as T = 50 ms, k1 = 8 and k2 = 16.

7.1 Reference tracking of roll and yaw rates
The inner loop controller was tested first. Two signals 
were desired to be tracked simultaneously at the same 
simulation instance. Reference angular rates comprising 1 
cycle of square wave signals with amplitude 0.5 rad/s and 
0.25 rad/s were applied to the roll rate and yaw rate chan-
nels, respectively. 

The results achieved from the inner loop are presented 
in Fig. 3. Both the rates were tracked well. This shows 
the robustness of nonlinear dynamic inversion in tracking 

the fast changing inner loop variables. The velocities, qua-
ternions and the attitude angles are shown in Fig. 4 and 
Fig. 5, respectively.

Table 1 Aircraft properties

Property Value

m 12.755 kg

Ix 1.3059 kgm2

Iy 3.9208 kgm2

Iz 5.1597 kgm2

Ixz 0.0500 kgm2

b 2.4079 m

c 0.4420 m

Aspect ratio 5.77

Table 2 Stability and control derivatives

Longitudinal derivatives (1/rad) Lateral derivatives (1/rad)

CDu 0.0011 Cyβ -0.3462

CDα -0.0863 Cyp 0.0073

CLu 0.0017 Cyr 0.2372

CLα 4.5363 Clβ -0.0255

CLα̇ 1.9314 Clp -0.3817

CLq 5.1515 Clr 0.0504

Cmu 0.0004 Cnβ 0.0954

Cmα -0.3701 Cnp -0.0156

Cmα̇ -4.4705 Cnr -0.1161

Cmq -8.5026 Cyδr 0.1928

CLδe 0.3762 Clδα 0.3490

Cmδe -0.8778 Clδr 0.0154

CDq 0 Cnδα -0.0088

CDδe 0 Cnδr -0.0996

Fig. 3 Roll and yaw rates tracking

Fig. 4 Velocities

Fig. 5 Quaternions and Euler angles
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The total velocity decreased slightly from the steady 
state value by approximately 0.03 ms–1. The quaternions 
in Eq. (9) were propagated using the concept given in [2]. 

Having established that the inner closed loop is sta-
ble and gives satisfactory results in tracking of reference 
angular rates, we embarked on attitude angle tracking via 
the outer loop. Arbitrary reference attitude angles with 
step changes of 0.53 rad and 0.27 rad for the roll angle 
and yaw angles, respectively were set. The output of the PI 
controller would provide the reference signals for the inner 
loop in a cascade architecture as in Fig. 2. Fig. 6 shows the 
roll angle and yaw angle tracking.

Good tracking performance is seen without any over-
shoots in both angles. The angular rates arising from this 
tracking are shown in Fig. 7. These provided the reference 
angular rates for the inner loop.

Tracking of these angular rates is shown in Fig. 8.

The quaternions and Euler angles during the simulation 
are as shown in Fig. 9. Fig. 10 shows the evolution of the 
body velocities and total velocity during the simulation.

Fig. 10 UAV velocity during simulation

Fig. 9 Euler angles and quaternions

Fig. 8 Reference angular rates tracking

Fig. 7 Desired angular rates

Fig. 6 Roll and Yaw angles tracking
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8 Conclusions
A cascade control architecture has been presented for 
tracking of attitude angles in a fixed wing UAV. Based on 
the general flight dynamic equations, an inner loop con-
troller was designed using nonlinear dynamic inversion to 
stabilize the inner loop fast evolving variables character-
izing the angular body rates, and a PI controller for the 

outer loop to provide the inner loop with the desired refer-
ence body rates to achieve asymptotic tracking of the atti-
tude angles. Numerical simulations carried out using the 
dynamic model of a Yak-54 reduced model show the effec-
tiveness of the nonlinear dynamic inversion controller in 
a cascaded architecture with a PI controller in tracking 
reference attitude angles. 
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