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Abstract

The QRS complex is the most important component of electrocardiogram (ECG) signals; therefore, its detection is the first step
of all kinds of automatic feature extraction and crucial part of an ECG analysis system. The R wave is one of the most important
sections of the QRS complex, which has an essential role in diagnosis of irregular heartbeats. This paper employs Empirical Wavelet
Transform (EWT) and Hilbert transforms as well as by employing Flower Pollination Algorithm (FPA) in order to approach an optimum
combinational method for R peak detection. First, the Empirical Wavelet Transform (EWT) is used to eliminate the noise and improve
the envelope extraction. The Hilbert envelope is then used to determine the positions of the R waves. Finally, FPA is used to adjust the
envelope’s parameters. In the experimental section of this paper, the proposed approach is evaluated using the MIT/BIH database.
We show that the proposed method can achieve results that are comparable to the state-of-the-art, with a global sensitivity of 99.95%,

a positive predectivity of 99.92%, and a percentage error of 0.136%.
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1 Introduction

Electrocardiography (ECG) is by far the most frequently
used diagnostic tool. Therefore, a large number of scien-
tists have attempted to develop automatic algorithms to
help medical staff in making fast and accurate decisions.
The two major fields of ECG analysis are QRS waveform
detection and arrhythmia classification.

The QRS complexes serve as reference points for
the automatic heart rate detection analysis and feature
extraction. For many years, QRS complex detection has
been a research topic. Numerous new approaches have
been proposed in the literature, to be extensively reviewed;
see [1]. The slope of the R wave is a popular signal feature
used to locate the QRS complex in many QRS detectors.
Such algorithms are based on signal derivatives [2—4].
However, this algorithm based on drives does not guar-
antee the detection of R peaks with large complex QRS
because of ventricular anomalies such as extrasystoles.

Other algorithms based on more sophisticated digital
filters and irregular RR interval checkup strategies are
published in [5]. New algorithms based on artificial neural
networks [6, 7]. However, due to the presence of noise and

anomalies and the time-varying form of the QRS complex,
the early real-time algorithms showed poor accuracy.

To improve the algorithm for correct ECG wave
extraction, various methods have been used [8-20].
Belkadi and Daamouche [8] proposed a new technique
using a Particle Swarm Optimization (PSO) algorithm
to look for the best values of the parameters of the pop-
ular Pan-Tompkins algorithm. Kozia et al. [9] presented
an empirical mode decomposition-based algorithm for
QRS complex detection, it uses an adaptive threshold over
a sliding window combined with a gradient-based and
refractory period checks to differentiate large Q peaks and
reject false R peaks.

Several other techniques for R-peak detection have also
been reported in various studies. These include math-
ematical morphology [10, 11], quadratic filter [12], filter
banks [13], neural network [14—16], weighted total varia-
tion denoising [17], Hilbert transform [18], max-min dif-
ference algorithm [19].

To solve the problem of specific battement forms, several
authors have used wavelet transform and multiresolution
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analysis to account for the differences in the frequency of
normal and pathological battements [20—29]. Li et al. [20]
described a wavelet-based QRS detection algorithm by
searching for the maximum modulus of wavelet coeffi-
cients greater than the update threshold. In [21], a new
method for detecting ECG waves using the Daubechies
wavelet function is described. The author developed and
evaluated an ECG feature extraction system based on a
multiresolution wavelet transform. This method achieves
a sensitivity of 99.18% and a positive prediction rate of
98%. The author in [22] explained multiresolution analy-
sis using a binary wavelet transform. The potential advan-
tages of signal decomposition under different time scales
will be realized, and therefore, different special resolu-
tions will be realized. In addition, certain types of noise
and baseline drift can be removed from the original sig-
nal according to the corresponding frequency range of the
original signal so that the detection algorithm has good
performance [23, 24]. Pal and Mitra [24] proposed an ECG
wave detection system based on a multiresolution wavelet
transform. They used a selective coefficient method based
on the identification of the appropriate and optimal set of
wavelet coefficients to reconstruct the wave or complex of
interest from the ECG record. The R peak detection algo-
rithm is verified on the PTB diagnostic database, and its
accuracy is 99%. leong et al. [25] proposed a QRS detec-
tion processor using a quadratic spline wavelet transform
for wireless ECG acquisition. The algorithm proposed by
Zidelmal et al. [26] is based on wavelet detail coefficients
to detect R-wave positions in signals with multiple QRS
morphologies. Their method is based on the power spec-
trum of QRS complexes at different energy levels, includ-
ing normal and pathological levels. The algorithm uses
the entire MIT-BIH record for evaluation, and its sensi-
tivity is 99.64%, the positive prediction rate is 99.82%,
and the error rate is 0.54%. However, some records with
deformed QRS shapes, artifacts, and baseline shifts (105,
108, 201, 203, and 228) have high error rates. A wavelet
filter bank-based R-peak detector for a low-power cardiac
pacemaker is described in [27]. Discrete wavelets trans-
form (Daubechies dbl0 wavelet)-based R-peak detector
is described in [28]. Modak et al. [29] presented a new
technique for detecting QRS using DWT, median filtering,
with adaptive multilevel thresholding (AMT). The wave-
let transform-based peak finding logics are efficient, but
for the selection of the mother wavelet, there is no general
rule, and the performance of the wavelet transform-based
algorithm depends on the application [28].
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The robustness and high accuracy of detecting R peaks
in ECG signals still remain open issues. This paper tries to
benefit from the advantages of Hilbert and the Empirical
Wavelet Transforms (EWT) as well as Flower Pollination
Algorithm (FPA) in order to approach an optimum combi-
national method for R peak detection. To achieve this, we
propose the EWT to filter the signal. The positions of the
R waves are then detected using the Hilbert envelope from
the de-noised signal. Finally, the FPA is used in order to
find the best envelope threshold values; we formulate the
parameter design as an optimization problem using three
objective functions namely, maximum positive predictiv-
ity (P7), maximum sensitivity (S,), and minimum error
rate (£ ). The proposed method is implemented accord-
ing to the weighted-sum approach to combine multi-objec-
tives into a composite one objective function. Specifically,
the method combines EWT, Hilbert transform, and FPA
is used for the first time in R peak detection. In addition
FPA is an intelligent optimization algorithm that adopts
the Lévy flight mechanism and uses a parameter to con-
vert between a local search and a global search. Compared
with similar algorithms, it has fewer parameters, is simple
and easy to adjust, and is widely used in multi-objective
function optimization.

The remainder of this paper is organized as follows.
In Section 2, we give a brief theory about the Empirical
Wavelet Transform (EWT), and we describe the details
of the proposed method. Section 3 is dedicated to the
obtained results and their discussion. Finally, Section 4
concludes our study.

2 QRS detection algorithm

2.1 MIT-BIH Arrhythmia Database

The data provided by the MIT-BIH Arrhythmia Database
are a standard used by many researchers. The MIT-BIH
Arrhythmia Database has 48 records. Each record has
a 30 min sampling frequency of 360 Hz and an 11-bit reso-
lution over a 10 mV range. Each record was independently
annotated by two cardiologists or more to obtain comput-
er-readable reference annotations for all beats contained in
the database (approximately 110,000 annotations in total).
Since the database was made public [30, 31], the annota-
tions have been revised many times.

2.2 Empirical Wavelet Transform (EWT)

Gilles introduced the Empirical Wavelet Transform
(EWT) in 2013. EWT is a novel approach to build wavelets
adapted to represent the processed signal. The adaptability
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of EWT is because filters' supports depend on where the
information in the analyzed signal.
The detailed calculation process of EWT was introduced
in [32]. The EWT process contains two important aspects:
1. segmenting the spectrum of the signal: detect the
local maxima @, in the spectrum and select the
top M values in descending order as MA. The first
largest maxima are kept to form a peak sequence.
The boundaries of all segments are defined as the
center of two consecutive local maxima values.
2. Empirical wavelets are constructed and applied to
process each segment of the signal.

The spectrum restricted to a range of O~z is divided
into N contiguous segments. The boundaries of all seg-
ments are denoted by w (where o, = 0 and w, = ).

Therefore, each segment is defined as A, =[,,,,]. Itis

N

obvious that | JA, =[0,x]. A transient phase whose
n=1

width is 27 is defined around each w .

Based on the detected spectral boundaries, we choose
the Meyer wavelet as the basis function [32]. The corre-
sponding scaling function and empirical wavelets of EWT
are designed by using Egs. (1) and (2), respectively:

1 if |o|<w, -7,
T 1 .
¢, (w)= COS{EU[Z(|C¢)| ~o, +Tn)j:| if w, -1, <|o|<w,+T, (1)
0 otherwise
1 if w,+71, <|o|<w,, -7,

1
COS|:%U[27W+1 (|w|_wn+l +Tn+l )J:|
. 1
sSin |:%U(2—Tn(|(0| -0, +7, )jjl

0 otherwise

A properly selected parameter 7, guarantees that EWT
is a tight frame. The v(x) is the auxiliary function of the
Meyer wavelet defined as follows [32]:

©)

v(x)— x4(35—84x+70x—20x) if0<x<l1
o otherwise

An example of a spectrum segmentation of an empirical
filter bank for w, = 1.5 rad/s, , = 2 rad/s, @, = 2.8 rad/s
is given in Fig. 1.
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Fig. 1 Example of a spectrum segmentation of an empirical filter bank

lf wn+1 - T}'H-l < |(0| < a)n+1 + Tn+1 . (2)

ifo, -1, S|w|£a)n+f"

Define EWT after exporting the scaling function and
the empirical wavelet. The approximated coefficients are
the inner product of the signal and the scaling function:

Wi (0.0)=(1.2,)=[/()@,(r-1) dr. @

The detail coefficients are the inner product of the sig-
nal, and the empirical wavelets are given by

Wi () =(f) = [ £ ()i, (1) dr ®

Then, the empirical modes decomposed from the signal
are presented below:

Jo(6)=W7 (0,1)+2, (1) ©)
AURLACORACE ™

In this case, the number of modes N = 10, for a standard
ECG signal 234 with 1800 samples (5 s), sampled at a fre-
quency of 360 Hz, along with ten modes decomposed by
EWT, as shown in Fig. 2.

The flowchart diagram of the proposed R peak detec-
tion method is shown in Fig. 3. First, we used an Empirical
Wavelet Transform (EWT) for ECG enhancement from
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Fig. 2 Decomposition of the original signal 234 m using EWT

high- and low-frequency noise. The signal is processed by
the EWT to build wavelets adapted to represent the pro-
cessed signal. The spectrum of the detail coefficient is
studied to select where the energy of the signal is con-
centrated. When EWT is applied to the noisy signal, the
estimate of powerline interference is provided by the last
mode (ewtl0); however, the baseline is estimated by the
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first mode (ewtl). Hence, removing these modes from the
noisy ECG signal provides the denoised ECG. Then, a
Hilbert envelope is applied to the resulting signal to deter-
mine the positions of the R waves. Finally, FPA is used to
adjust the envelope's parameters. We define in each beat
a window of 160 ms (57 samples) duration. Each window
starts from the first determined point that satisfies the
threshold condition.

The power spectrum of the detail coefficient is calculated
based on the Fast Fourier Transform (FFT). The energy
content of the decomposed signal is shown in Fig. 4.

When EWT is applied to a noisy signal, the estimate
of powerline interference is provided by the last mode
(ewtl0). However, the baseline is estimated by the first
mode (ewtl). Hence, removing these modes from the noisy
ECG signal provides the denoised ECG.

The energy of the QRS complex is concentrated within
the frequency range (5-22 Hz) for normal and abnormal
beats, as shown in [25]. Hence, it is evident from Fig. 4
that the energy of the signal under investigation is con-
centrated at detail coefficients ewt3, ewt4, ewt5 and ewt6,
having the frequency ranges (11.25-22.5 Hz) and (5.62—
11.25 Hz), respectively.

Fig. 5 shows the typical representation of the original
and the free noise signal for the segment (0—5 s) of the
ECG record 234 m. It is evident that the baseline wan-
der existing in the segment is corrected and the high-fre-
quency noise is well eliminated.

2.3 Hilbert transform

The Hilbert transform was introduced in the early 20®
century by David Hilbert and is widely used in signal
theory to describe the complex envelope of a full scale
modulated by a signal. Given a real-time function x(?), its
Hilbert transform is defined as:

ECG
ECG i
ional —»  denoising | —p Hilbert
send using EWT envelope

N 1 17%x(r
x(z):H[x(t)]:x(t)*;:;Ig, ®)
A
Threshold R-peak
val ue _’ Extracti on _> Erroi rate
/ Parameters
optimization
using FPA

Fig. 3 Flowchart showing the steps involved in the proposed optimization scheme
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Fig. 4 Power spectrum of the denoised signal

x(f) and x(f) are correlated to each other in such a manner
that they together create a strong analytic signal. The ana-
lytic signal is expressed as:

x,(t)=x(t)+iH [ x(1)].

The module of the analytic signal provides the Hilbert
envelope of x(¢), which is defined as:

B(1)=x(e) +H[x(1)T - ©)

The envelope determined using Eq. (9) will have the
identical slope and magnitude of the original signal x(z).
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Fig. 5 (a) Original ECG signal 234 m for 1800 samples.

(b) Denoised signal

2.4 Extraction of R-peak positions
Fig. 2 shows the flowchart of the R-peak detection algo-
rithm, which can be summarized as follows:

1. Apply EWT to the noisy ECG signal x(7),

2. Compute the Hilbert envelope B(i),

3. QRS localization: select B(i) associated to QRS com-
plex using a threshold TH = 4 * max(B),

4. Then, we search the beginning of the window. Each
window starts from the first determined point which
satisfies the threshold condition.

» if B({) > TH then position i = QRS (candidate),
* else position i = Not QRS.

5. Since the maximum duration of QRS complex is
<160 ms, we define in each beat a window of 160 ms
(57 samples) duration.

6. The R peaks positions are identified as the points
with the maximum amplitude of the signal ECG
denoising in each predefined window.

7. Elimination of multiple detection: The refractory
period of 200 ms (72 samples) between two consec-
utives searches is regarded [2]. This constraint is a
physiological one due to the refractory period during
which ventricular depolarization cannot occur.

The indexes corresponding to the various detected
positions are stored in a new array, named R peaks, and
they are represented in Figs. 6 and 7.
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2.5 Optimization with the Flower Pollination Algorithm
The Flower Pollination Algorithm (FPA), developed by
Xin-She Yang in 2012 [33], was inspired by the flow pol-
lination process of flowering plants. The flower pollina-
tion process aims to transfer pollen between the same or
diverse plant species for reproductive purposes. The FPA
has been extended to multi-objective optimization [34].
For simplicity, the following four rules are used:

1. global pollination process, both biotic and cross-polli-
nation steps can be realized by performing Lévy fights.

2. local pollination includes abiotic and self-pollination.

3. the reproduction possibility is proportional to the
resemblance between any two flowers.

4. the switch probability p € [0,1] can be controlled
between local and global pollination. Due to certain
external factors (e.g., wind), local pollination includes
an important portion of all pollination activities.

The main rules can be summarized in the pseudocode
of the FPA implemented in Algorithm 1, where ¢ € R
denotes a small amount of value.

3 Results and discussions
In Section 3, the performance of the proposed QRS com-
plex detection method was evaluated using ECG signals
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Fig. 7 Results of R peak detection for segments from MIT-BIH records:
(a) Record 208, (b) Record 200, (c) Record 203

from the MIT-BIH database; all 48 arrhythmia ECG sig-
nals from MIT-BIH were taken.

In this study, a multi-objective Flower Pollination
Algorithm (FPA) with EWT and Hilbert envelope is
proposed to solve the QRS complex detection prob-
lem. The novelty of this study is to find the best thresh-
old values of the envelope using the Flower Pollination
Algorithm (FPA) based on three measurement criteria for
QRS complex detection, namely, maximum positive pre-
dictivity (P'), maximum sensitivity (S,), and minimum
error rate (£)). All three measurements can be calculated
using Egs. (10)—(12):
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Algorithm 1 Flower Pollination Algorithm pseudocode

I: Objective: min f{x), x € R
2: Initialize a population of n flowers (pollens) with random solutions.
3: Find the best solution x” in the initial population.
4: Define a switch probability p € [0,1].
St Calculate all (f{x)) for n solutions.
6: t=0
7: while < MaxGeneration do
8: fori=1,...,ndo
9: rnd «— U(0,1).
10: if rnd < p then
11: Draw a d-dimensional step vector & which obeys a Lévy distribution.
12: Perform global pollination via x/* = x! + & *(g* —xf) .
13: else
14: Draw from a uniform distribution U(0,1).
15: Randomly choose j and k among all solutions, such that j # k.
16: Perform local pollination via x{” = x{ +€ (x’/ - x,’() .
17: end if
18: Calculate f(x").
19: if f(x') < f(x) then
20: X —x'
21: end if
22: end for
23: Find the current best solution x” among all x! .
24: t=t+1.
25: end while
TP approximately two types of errors, false positives and false
P (%):[—}doo (10) . )
TP + FP negatives, and the sum of FP and FN is the total error.
The testing results are given in Table 1 for all
S.(%) = { P }x 100 a0 records from the first char.nlle? of the MIT-BI.H. databa§e.
TP+ FN We obtained a global sensitivity (S,) and positive predic-
tivity (P*) of 99.95 and 99.92%, respectively. The error
E, (%)= {FP"'FN}“OO (12) rate of R peak detection for all analyzed beats is 0.136%.
Table 2 summarizes the comparison of the proposed algo-
where: rithm with other algorithms found in the literature. It is

TP: number of true positives indicates the accurate detec-
tion of R peaks.

FN: number of false negatives, representing the failure of
the algorithm to detect a real beat.

FP: number of false positives indicating the erroneous
detections of R peaks.

TB: total analyzed beat.

Positive predictivity (P) is the probability that classi-
fied beat as true beat, i.e., positive predictivity reports the
percentage of beat detections, which is true, beats.

Sensitivity is the capability to detect true beats, i.e.,
sensitivity indicates the percentage of true beats that
are correctly detected by the algorithm. The error rate is

evident that our algorithm presents good accuracy because
it gives comparable test parameters with some works and
the highest parameters to others.

The achieved results reported in Table 1 show statis-
tical indices higher than or comparable to those cited in
literature (see Table 2). The obtained results show 99.95%
sensitivity, a 99.92% positive predictivity, and a detec-
tion error rate of only 0.136. The proposed method is
then compared to ten other state-of-the-art methods, and
it outperforms eight of them in all aspects (see Table 2).
Even if the Nayak et al. [11] method has higher positive
predictivity than the proposed algorithm, the difference is
negligible. The proposed method has far greater positive
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Record B P FP FN S, (%) P (%) E (%)
100 2273 2273 0 0 100 100 0
101 1865 1865 0 0 100 100 0
102 2187 2184 0 3 99.86 100 0.137
103 2084 2084 0 0 100 100 0
104 2229 2226 1 3 99.86 99.95 0.179
105 2572 2569 15 3 99.88 99.42 0.699
106 2027 2027 0 0 100 100 0
107 2137 2137 0 0 100 100 0
108 1763 1757 0 6 99.6597 100 0.340
109 2532 2532 0 0 100 100 0
111 2124 2123 1 1 99.95 99.95 0.094
112 2539 2539 0 0 100 100 0
113 1795 1795 1 0 100 99.94 0.056
114 1879 1874 1 5 99.73 99.95 0.319
115 1953 1953 0 0 100 100 0
116 2412 2412 0 0 100 100 0
117 1535 1535 0 0 100 100 0
118 2278 2277 1 1 99.96 99.96 0.088
119 1987 1986 0 1 99.95 100 0.050
121 1863 1863 1 0 100 99.95 0.054
122 2476 2476 0 0 100 100 0
123 1518 1518 0 0 100 100 0
124 1619 1618 1 1 99.94 99.94 0.123
200 2601 2600 2 1 99.96 99.92 0.115
201 1963 1960 6 3 99.85 99.69 0.458
202 2136 2134 0 2 99.91 100 0.094
203 2980 2977 16 3 99.90 99.46 0.638
205 2656 2656 7 0 100 99.74 0.264
207 1860 1858 9 2 99.89 99.52 0.591
208 2955 2951 10 4 99.86 99.66 0.474
209 3005 3005 0 0 100 100 0
210 2650 2644 2 6 99.77 99.92 0.302
212 2748 2748 0 0 100 100 0
213 3251 3251 1 0 100 99.97 0.031
214 2262 2262 2 0 100 99.91 0.088
215 3363 3363 0 0 100 100 0
217 2208 2208 1 0 100 99.95 0.045
219 2154 2154 0 0 100 100 0
220 2048 2048 0 0 100 100 0
221 2427 2426 1 1 99.96 99.96 0.082
222 2483 2480 6 3 99.88 99.76 0.362
223 2605 2605 0 0 100 100 0
228 2053 2048 7 5 99.76 99.66 0.584
230 2256 2256 0 0 100 100 0
231 1571 1571 0 0 100 100 0
232 1780 1778 2 2 99.89 99.89 0.225
233 3079 3079 0 0 100 100 0
234 2753 2753 1 0 100 99.96 0.036
All 109494 109438 95 56 99.95 99.92 0.136

|387
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Table 2 Comparison with other algorithms

Method TP FpP FN S, (%) Pt (%) E (%)
Presented algorithm 109438 95 56 99.95 99.92 0.136
Banerjee et al. [23] 19022 76 40 99.60 99.50 0.61
Zidelmal et al. [26] 109101 193 393 99.64 99.82 0.54
Afonso et al. [13] 90535 406 374 99.59 99.56 0.86
Pan and Tompkins [2] 109532 507 277 99.75 99.54 0.71
Hamilton and Tompkins [3] 108927 248 340 99.69 99.77 0.54
Li et al. [20] 104070 65 112 99.89 99.94 0.17
Nayak et al. [11] 109494 70 52 99.95 99.94 0.11
Jia et al. [16] 109494 - - 99.89 99.90 0.21
Pandit et al. [19] 109432 369 389 99.65 99.66 -
Modak et al. [29] 109494 130 289 99.74 99.88 0.38

predictivity and a lower detection error rate than [2, 3, 13,
16, 19, 20, 23, 26, 29].

Fig. 6 (a) shows a section from record 234 of the
MIT-BIH arrhythmia database. Fig. 6 (b) represents the
improved approximate envelope, while Fig. 5 (c) shows the
R peak position.

Fig. 7 illustrates some ECG segments with complicated
patterns to demonstrate the effectiveness of R peak local-
ization. Fig. 7 (a) captures the position of R peaks on a sec-
tion of record 208 that contains PVC-corresponding beats.
The R peaks are well localized. Fig. 7 (b) represents a seg-
ment of record 200. A special case of PVCs beats is shown,
called Bigminy, where premature ventricular beats occur
in an alternating pattern after every normal beat. All nor-
mal and abnormal QRS beats are detected successfully.

Fig. 7 (c) depicts the position of R peaks on a section
from record 203. Record 203 contains ectopic beats with
variable RR intervals and R amplitude variation. The posi-
tions of the R peaks are correctly detected.

The QRS detection algorithm was applied to the entire
data of the MIT-BIH database from lead I. It presents the
possibility of detecting R locations of great variations of
normal and abnormal QRS complexes with the influence
of different kinds of cardiac arrhythmias.
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