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Abstract

The QRS complex is the most important component of electrocardiogram (ECG) signals; therefore, its detection is the first step 

of all kinds of automatic feature extraction and crucial part of an ECG analysis system. The R wave is one of the most important 

sections of the QRS complex, which has an essential role in diagnosis of irregular heartbeats. This paper employs Empirical Wavelet 

Transform (EWT) and Hilbert transforms as well as by employing Flower Pollination Algorithm (FPA) in order to approach an optimum 

combinational method for R peak detection. First, the Empirical Wavelet Transform (EWT) is used to eliminate the noise and improve 

the envelope extraction. The Hilbert envelope is then used to determine the positions of the R waves. Finally, FPA is used to adjust the 

envelope’s parameters. In the experimental section of this paper, the proposed approach is evaluated using the MIT/BIH database. 

We show that the proposed method can achieve results that are comparable to the state-of-the-art, with a global sensitivity of 99.95%, 

a positive predectivity of 99.92%, and a percentage error of 0.136%.
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1 Introduction
Electrocardiography (ECG) is by far the most frequently 
used diagnostic tool. Therefore, a large number of scien-
tists have attempted to develop automatic algorithms to 
help medical staff in making fast and accurate decisions. 
The two major fields of ECG analysis are QRS waveform 
detection and arrhythmia classification.

The QRS complexes serve as reference points for 
the automatic heart rate detection analysis and feature 
extraction. For many years, QRS complex detection has 
been a research topic. Numerous new approaches have 
been proposed in the literature, to be extensively reviewed; 
see [1]. The slope of the R wave is a popular signal feature 
used to locate the QRS complex in many QRS detectors. 
Such algorithms are based on signal derivatives [2–4]. 
However, this algorithm based on drives does not guar-
antee the detection of R peaks with large complex QRS 
because of ventricular anomalies such as extrasystoles.

Other algorithms based on more sophisticated digital 
filters and irregular RR interval checkup strategies are 
published in [5]. New algorithms based on artificial neural 
networks [6, 7]. However, due to the presence of noise and 

anomalies and the time-varying form of the QRS complex, 
the early real-time algorithms showed poor accuracy.

To improve the algorithm for correct ECG wave 
extraction, various methods have been used [8–20]. 
Belkadi and Daamouche [8] proposed a new technique 
using a Particle Swarm Optimization (PSO) algorithm 
to look for the best values of the parameters of the pop-
ular Pan-Tompkins algorithm. Kozia et al. [9] presented 
an empirical mode decomposition-based algorithm for 
QRS complex detection, it uses an adaptive threshold over 
a sliding window combined with a gradient-based and 
refractory period checks to differentiate large Q peaks and 
reject false R peaks.

Several other techniques for R-peak detection have also 
been reported in various studies. These include math-
ematical morphology [10, 11], quadratic filter [12], filter 
banks [13], neural network [14–16], weighted total varia-
tion denoising [17], Hilbert transform [18], max-min dif-
ference algorithm [19].

To solve the problem of specific battement forms, several 
authors have used wavelet transform and multiresolution 
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analysis to account for the differences in the frequency of 
normal and pathological battements [20–29]. Li et al. [20] 
described a wavelet-based QRS detection algorithm by 
searching for the maximum modulus of wavelet coeffi-
cients greater than the update threshold. In [21], a new 
method for detecting ECG waves using the Daubechies 
wavelet function is described. The author developed and 
evaluated an ECG feature extraction system based on a 
multiresolution wavelet transform. This method achieves 
a sensitivity of 99.18% and a positive prediction rate of 
98%. The author in [22] explained multiresolution analy-
sis using a binary wavelet transform. The potential advan-
tages of signal decomposition under different time scales 
will be realized, and therefore, different special resolu-
tions will be realized. In addition, certain types of noise 
and baseline drift can be removed from the original sig-
nal according to the corresponding frequency range of the 
original signal so that the detection algorithm has good 
performance [23, 24]. Pal and Mitra [24] proposed an ECG 
wave detection system based on a multiresolution wavelet 
transform. They used a selective coefficient method based 
on the identification of the appropriate and optimal set of 
wavelet coefficients to reconstruct the wave or complex of 
interest from the ECG record. The R peak detection algo-
rithm is verified on the PTB diagnostic database, and its 
accuracy is 99%. Ieong et al. [25] proposed a QRS detec-
tion processor using a quadratic spline wavelet transform 
for wireless ECG acquisition. The algorithm proposed by 
Zidelmal et al. [26] is based on wavelet detail coefficients 
to detect R-wave positions in signals with multiple QRS 
morphologies. Their method is based on the power spec-
trum of QRS complexes at different energy levels, includ-
ing normal and pathological levels. The algorithm uses 
the entire MIT-BIH record for evaluation, and its sensi-
tivity is 99.64%, the positive prediction rate is 99.82%, 
and the error rate is 0.54%. However, some records with 
deformed QRS shapes, artifacts, and baseline shifts (105, 
108, 201, 203, and 228) have high error rates. A wavelet 
filter bank-based R-peak detector for a low-power cardiac 
pacemaker is described in [27]. Discrete wavelets trans-
form (Daubechies db10 wavelet)-based R-peak detector 
is described in [28]. Modak et al. [29] presented a new 
technique for detecting QRS using DWT, median filtering, 
with adaptive multilevel thresholding (AMT). The wave-
let transform-based peak finding logics are efficient, but 
for the selection of the mother wavelet, there is no general 
rule, and the performance of the wavelet transform-based 
algorithm depends on the application [28].

The robustness and high accuracy of detecting R peaks 
in ECG signals still remain open issues. This paper tries to 
benefit from the advantages of Hilbert and the Empirical 
Wavelet Transforms (EWT) as well as Flower Pollination 
Algorithm (FPA) in order to approach an optimum combi-
national method for R peak detection. To achieve this, we 
propose the EWT to filter the signal. The positions of the 
R waves are then detected using the Hilbert envelope from 
the de-noised signal. Finally, the FPA is used in order to 
find the best envelope threshold values; we formulate the 
parameter design as an optimization problem using three 
objective functions namely, maximum positive predictiv-
ity (P+), maximum sensitivity ( Se ), and minimum error 
rate ( Er ). The proposed method is implemented accord-
ing to the weighted-sum approach to combine multi-objec-
tives into a composite one objective function. Specifically, 
the method combines EWT, Hilbert transform, and FPA 
is used for the first time in R peak detection. In addition 
FPA is an intelligent optimization algorithm that adopts 
the Lévy flight mechanism and uses a parameter to con-
vert between a local search and a global search. Compared 
with similar algorithms, it has fewer parameters, is simple 
and easy to adjust, and is widely used in multi-objective 
function optimization.

The remainder of this paper is organized as follows. 
In Section 2, we give a brief theory about the Empirical 
Wavelet Transform (EWT), and we describe the details 
of the proposed method. Section 3 is dedicated to the 
obtained results and their discussion. Finally, Section 4 
concludes our study.

2 QRS detection algorithm
2.1 MIT-BIH Arrhythmia Database
The data provided by the MIT-BIH Arrhythmia Database 
are a standard used by many researchers. The MIT-BIH 
Arrhythmia Database has 48 records. Each record has 
a 30 min sampling frequency of 360 Hz and an 11-bit reso-
lution over a 10 mV range. Each record was independently 
annotated by two cardiologists or more to obtain comput-
er-readable reference annotations for all beats contained in 
the database (approximately 110,000 annotations in total). 
Since the database was made public [30, 31], the annota-
tions have been revised many times.

2.2 Empirical Wavelet Transform (EWT)
Gilles introduced the Empirical Wavelet Transform 
(EWT) in 2013. EWT is a novel approach to build wavelets 
adapted to represent the processed signal. The adaptability 
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A properly selected parameter τn guarantees that EWT 
is a tight frame. The v(x) is the auxiliary function of the 
Meyer wavelet defined as follows [32]:

v x
x x x x x� � � � � �� � � ��
�
�

4
35 84 70 20 0 1

0

if

otherwise
. (3)

An example of a spectrum segmentation of an empirical 
filter bank for ω1 = 1.5 rad/s, ω2 = 2 rad/s, ω3 = 2.8 rad/s 
is given in Fig. 1.

Define EWT after exporting the scaling function and 
the empirical wavelet. The approximated coefficients are 
the inner product of the signal and the scaling function:

W t f ff
� � � �0 1

1 1
, ,� � � � � � �� �� �� d . (4)

The detail coefficients are the inner product of the sig-
nal, and the empirical wavelets are given by 

W n t f ff n n
� � � � � �, ,� � � � � � �� �� 1 d . (5)

Then, the empirical modes decomposed from the signal 
are presented below:

f t W t tf0 1
0� � � � ��� � ��
,  (6)

f t W n t tk f k� � � � �� � �� �, . (7)

In this case, the number of modes N = 10, for a standard 
ECG signal 234 with 1800 samples (5 s), sampled at a fre-
quency of 360 Hz, along with ten modes decomposed by 
EWT, as shown in Fig. 2.

The flowchart diagram of the proposed R peak detec-
tion method is shown in Fig. 3. First, we used an Empirical 
Wavelet Transform (EWT) for ECG enhancement from 

of EWT is because filters' supports depend on where the 
information in the analyzed signal.

The detailed calculation process of EWT was introduced 
in [32]. The EWT process contains two important aspects: 

1. segmenting the spectrum of the signal: detect the 
local maxima ωn in the spectrum and select the 
top M values in descending order as MA. The first 
largest maxima are kept to form a peak sequence. 
The boundaries of all segments are defined as the 
center of two consecutive local maxima values. 

2. Empirical wavelets are constructed and applied to 
process each segment of the signal.

The spectrum restricted to a range of 0~π is divided 
into N contiguous segments. The boundaries of all seg-
ments are denoted by ωn (where ω0 = 0 and ωN = π). 

Therefore, each segment is defined as �n n n� � ��� �
1
, . It is 

obvious that �n
n

N

�

� � �
1

0


,� . A transient phase whose 

width is 2τn is defined around each ωn .
Based on the detected spectral boundaries, we choose 

the Meyer wavelet as the basis function [32]. The corre-
sponding scaling function and empirical wavelets of EWT 
are designed by using Eqs. (1) and (2), respectively:
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Fig. 1 Example of a spectrum segmentation of an empirical filter bank
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high- and low-frequency noise. The signal is processed by 
the EWT to build wavelets adapted to represent the pro-
cessed signal. The spectrum of the detail coefficient is 
studied to select where the energy of the signal is con-
centrated. When EWT is applied to the noisy signal, the 
estimate of powerline interference is provided by the last 
mode (ewt10); however, the baseline is estimated by the 

first mode (ewt1). Hence, removing these modes from the 
noisy ECG signal provides the denoised ECG. Then, a 
Hilbert envelope is applied to the resulting signal to deter-
mine the positions of the R waves. Finally, FPA is used to 
adjust the envelope's parameters. We define in each beat 
a window of 160 ms (57 samples) duration. Each window 
starts from the first determined point that satisfies the 
threshold condition.

The power spectrum of the detail coefficient is calculated 
based on the Fast Fourier Transform (FFT). The energy 
content of the decomposed signal is shown in Fig. 4.

When EWT is applied to a noisy signal, the estimate 
of powerline interference is provided by the last mode 
(ewt10). However, the baseline is estimated by the first 
mode (ewt1). Hence, removing these modes from the noisy 
ECG signal provides the denoised ECG.

The energy of the QRS complex is concentrated within 
the frequency range (5–22 Hz) for normal and abnormal 
beats, as shown in [25]. Hence, it is evident from Fig. 4 
that the energy of the signal under investigation is con-
centrated at detail coefficients ewt3, ewt4, ewt5 and ewt6, 
having the frequency ranges (11.25–22.5 Hz) and (5.62–
11.25 Hz), respectively.

Fig. 5 shows the typical representation of the original 
and the free noise signal for the segment (0–5 s) of the 
ECG record 234 m. It is evident that the baseline wan-
der existing in the segment is corrected and the high-fre-
quency noise is well eliminated.

2.3 Hilbert transform
The Hilbert transform was introduced in the early 20th 
century by David Hilbert and is widely used in signal 
theory to describe the complex envelope of a full scale 
modulated by a signal. Given a real-time function x(t), its 
Hilbert transform is defined as:

x t H x t x t
t

x
t

� � � � ��� �� � � �� �
� �
���

��

�
1 1
� �

�
�

̂ , (8)

Fig. 2 Decomposition of the original signal 234 m using EWT

Fig. 3 Flowchart showing the steps involved in the proposed optimization scheme
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x(t) and x̂ (t) are correlated to each other in such a manner 
that they together create a strong analytic signal. The ana-
lytic signal is expressed as:

x t x t iH x ta � � � � � � � ��� �� . 

The module of the analytic signal provides the Hilbert 
envelope of x(t), which is defined as:

B t x t H x t� � � � � � � ��� ��
2 2 . (9)

The envelope determined using Eq. (9) will have the 
identical slope and magnitude of the original signal x(t).

2.4 Extraction of R-peak positions
Fig. 2 shows the flowchart of the R-peak detection algo-
rithm, which can be summarized as follows:

1. Apply EWT to the noisy ECG signal x(i),
2. Compute the Hilbert envelope B(i),
3. QRS localization: select B(i) associated to QRS com-

plex using a threshold TH = λ * max(B),
4. Then, we search the beginning of the window. Each 

window starts from the first determined point which 
satisfies the threshold condition.
• if B(i) ≥ TH then position i ⇒ QRS (candidate),
• else position i ⇒ Not QRS.

5. Since the maximum duration of QRS complex is 
<160 ms, we define in each beat a window of 160 ms 
(57 samples) duration.

6. The R peaks positions are identified as the points 
with the maximum amplitude of the signal ECG 
denoising in each predefined window.

7. Elimination of multiple detection: The refractory 
period of 200 ms (72 samples) between two consec-
utives searches is regarded [2]. This constraint is a 
physiological one due to the refractory period during 
which ventricular depolarization cannot occur.

The indexes corresponding to the various detected 
positions are stored in a new array, named R peaks, and 
they are represented in Figs. 6 and 7.

(a)

(b)

Fig. 5 (a) Original ECG signal 234 m for 1800 samples.  
(b) Denoised signal

Fig. 4 Power spectrum of the denoised signal
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2.5 Optimization with the Flower Pollination Algorithm
The Flower Pollination Algorithm (FPA), developed by 
Xin-She Yang in 2012 [33], was inspired by the flow pol-
lination process of flowering plants. The flower pollina-
tion process aims to transfer pollen between the same or 
diverse plant species for reproductive purposes. The FPA 
has been extended to multi-objective optimization [34]. 
For simplicity, the following four rules are used:

1. global pollination process, both biotic and cross-polli-
nation steps can be realized by performing Lévy fights.

2. local pollination includes abiotic and self-pollination.
3. the reproduction possibility is proportional to the 

resemblance between any two flowers.
4. the switch probability p ∈ [0,1] can be controlled 

between local and global pollination. Due to certain 
external factors (e.g., wind), local pollination includes 
an important portion of all pollination activities.

The main rules can be summarized in the pseudocode 
of the FPA implemented in Algorithm 1, where  ∈ ℜ 
denotes a small amount of value.

3 Results and discussions
In Section 3, the performance of the proposed QRS com-
plex detection method was evaluated using ECG signals 

from the MIT-BIH database; all 48 arrhythmia ECG sig-
nals from MIT-BIH were taken.

In this study, a multi-objective Flower Pollination 
Algorithm (FPA) with EWT and Hilbert envelope is 
proposed to solve the QRS complex detection prob-
lem. The novelty of this study is to find the best thresh-
old values of the envelope using the Flower Pollination 
Algorithm (FPA) based on three measurement criteria for 
QRS complex detection, namely, maximum positive pre-
dictivity (P+), maximum sensitivity ( Se ), and minimum 
error rate ( Er ). All three measurements can be calculated 
using Eqs. (10)–(12):

Fig. 6 Representation of the (a) original signal 234 m, (b) improved 
approximate envelope and (c) R peak positions

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 7 Results of R peak detection for segments from MIT-BIH records: 
(a) Record 208, (b) Record 200, (c) Record 203
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P TP
TP FP

� � � �
�

�
��

�
��
�% 100  (10)

S TP
TP FNe %� � �

�
�
��

�
��
�100  (11)

E FP FN
TBr %� � � ��

��
�
��
�100  (12)

where:
TP: number of true positives indicates the accurate detec-
tion of R peaks.
FN: number of false negatives, representing the failure of 
the algorithm to detect a real beat.
FP: number of false positives indicating the erroneous 
detections of R peaks.
TB: total analyzed beat.

Positive predictivity (P+) is the probability that classi-
fied beat as true beat, i.e., positive predictivity reports the 
percentage of beat detections, which is true, beats.

Sensitivity is the capability to detect true beats, i.e., 
sensitivity indicates the percentage of true beats that 
are correctly detected by the algorithm. The error rate is 

approximately two types of errors, false positives and false 
negatives, and the sum of FP and FN is the total error.

The testing results are given in Table 1 for all 
records from the first channel of the MIT-BIH database. 
We obtained a global sensitivity ( Se ) and positive predic-
tivity (P+) of 99.95 and 99.92%, respectively. The error 
rate of R peak detection for all analyzed beats is 0.136%. 
Table 2 summarizes the comparison of the proposed algo-
rithm with other algorithms found in the literature. It is 
evident that our algorithm presents good accuracy because 
it gives comparable test parameters with some works and 
the highest parameters to others.

The achieved results reported in Table 1 show statis-
tical indices higher than or comparable to those cited in 
literature (see Table 2). The obtained results show 99.95% 
sensitivity, a 99.92% positive predictivity, and a detec-
tion error rate of only 0.136. The proposed method is 
then compared to ten other state-of-the-art methods, and 
it outperforms eight of them in all aspects (see Table 2). 
Even if the Nayak et al. [11] method has higher positive 
predictivity than the proposed algorithm, the difference is 
negligible. The proposed method has far greater positive 

Algorithm 1 Flower Pollination Algorithm pseudocode

1: Objective: min f(x), x ∈ ℜd

2: Initialize a population of n flowers (pollens) with random solutions.

3: Find the best solution x* in the initial population.

4: Define a switch probability p ∈ [0,1].

5: Calculate all ( f(x)) for n solutions.

6: t = 0

7: while t ≤ MaxGeneration do

8: for i = 1,…,n do

9: rnd ← U(0,1).

10: if rnd ≤ p then

11: Draw a d-dimensional step vector ξ which obeys a Lévy distribution.

12: Perform global pollination via x x g xi
t

i
t

i
t� �� � � �� �1 �� .

13: else

14: Draw from a uniform distribution U(0,1).

15: Randomly choose j and k among all solutions, such that j ≠ k.

16: Perform local pollination via x x x xi
t

i
t

j
t

k
t� � � �� �1  .

17: end if

18: Calculate f(x').

19: if f(x') ≤ f(x) then

20: x ← x'.

21: end if

22: end for

23: Find the current best solution x* among all xi
t .

24: t = t + 1.

25: end while
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Table 1 Experimental results of the R peak detection algorithm

Record TB TP FP FN Se (%) P+ (%) Er (%)

100 2273 2273 0 0 100 100 0

101 1865 1865 0 0 100 100 0

102 2187 2184 0 3 99.86 100 0.137

103 2084 2084 0 0 100 100 0

104 2229 2226 1 3 99.86 99.95 0.179

105 2572 2569 15 3 99.88 99.42 0.699

106 2027 2027 0 0 100 100 0

107 2137 2137 0 0 100 100 0

108 1763 1757 0 6 99.6597 100 0.340

109 2532 2532 0 0 100 100 0

111 2124 2123 1 1 99.95 99.95 0.094

112 2539 2539 0 0 100 100 0

113 1795 1795 1 0 100 99.94 0.056

114 1879 1874 1 5 99.73 99.95 0.319

115 1953 1953 0 0 100 100 0

116 2412 2412 0 0 100 100 0

117 1535 1535 0 0 100 100 0

118 2278 2277 1 1 99.96 99.96 0.088

119 1987 1986 0 1 99.95 100 0.050

121 1863 1863 1 0 100 99.95 0.054

122 2476 2476 0 0 100 100 0

123 1518 1518 0 0 100 100 0

124 1619 1618 1 1 99.94 99.94 0.123

200 2601 2600 2 1 99.96 99.92 0.115

201 1963 1960 6 3 99.85 99.69 0.458

202 2136 2134 0 2 99.91 100 0.094

203 2980 2977 16 3 99.90 99.46 0.638

205 2656 2656 7 0 100 99.74 0.264

207 1860 1858 9 2 99.89 99.52 0.591

208 2955 2951 10 4 99.86 99.66 0.474

209 3005 3005 0 0 100 100 0

210 2650 2644 2 6 99.77 99.92 0.302

212 2748 2748 0 0 100 100 0

213 3251 3251 1 0 100 99.97 0.031

214 2262 2262 2 0 100 99.91 0.088

215 3363 3363 0 0 100 100 0

217 2208 2208 1 0 100 99.95 0.045

219 2154 2154 0 0 100 100 0

220 2048 2048 0 0 100 100 0

221 2427 2426 1 1 99.96 99.96 0.082

222 2483 2480 6 3 99.88 99.76 0.362

223 2605 2605 0 0 100 100 0

228 2053 2048 7 5 99.76 99.66 0.584

230 2256 2256 0 0 100 100 0

231 1571 1571 0 0 100 100 0

232 1780 1778 2 2 99.89 99.89 0.225

233 3079 3079 0 0 100 100 0

234 2753 2753 1 0 100 99.96 0.036

All 109494 109438 95 56 99.95 99.92 0.136
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predictivity and a lower detection error rate than [2, 3, 13, 
16, 19, 20, 23, 26, 29].

Fig. 6 (a) shows a section from record 234 of the 
MIT-BIH arrhythmia database. Fig. 6 (b) represents the 
improved approximate envelope, while Fig. 5 (c) shows the 
R peak position.

Fig. 7 illustrates some ECG segments with complicated 
patterns to demonstrate the effectiveness of R peak local-
ization. Fig. 7 (a) captures the position of R peaks on a sec-
tion of record 208 that contains PVC-corresponding beats. 
The R peaks are well localized. Fig. 7 (b) represents a seg-
ment of record 200. A special case of PVCs beats is shown, 
called Bigminy, where premature ventricular beats occur 
in an alternating pattern after every normal beat. All nor-
mal and abnormal QRS beats are detected successfully.

Fig. 7 (c) depicts the position of R peaks on a section 
from record 203. Record 203 contains ectopic beats with 
variable RR intervals and R amplitude variation. The posi-
tions of the R peaks are correctly detected. 

The QRS detection algorithm was applied to the entire 
data of the MIT-BIH database from lead I. It presents the 
possibility of detecting R locations of great variations of 
normal and abnormal QRS complexes with the influence 
of different kinds of cardiac arrhythmias.

4 Conclusion
In this paper, we presented a novel approach for R peak 
detection in the ECG signal using Hilbert and Empirical 
Wavelet Transforms, as well as a Flower Pollination 
Algorithm (FPA). The EWT is used to denoise the ECG 
signal; the last mode (ewt10) estimates powerline inter-
ference; however, the first mode estimates the baseline 
(ewt1). Hence, removing these modes from the noisy 
ECG signal yields the denoised ECG. The positions of 
the R waves are then detected using the Hilbert enve-
lope from the resulting signal. Though the FPA has fewer 
parameters, is simple and easy to adjust, and it is widely 
used in multi-objective function optimization. It allowed 
us to find an optimal value of the envelope threshold to 
minimize the number of the false detection. The QRS 
detection algorithm was applied to the entire data of the 
MIT-BIH database from lead I. According to our results, 
combination of EWT, Hilbert transform, and FPA has 
a significant effect in the detection of R wave and out-
performs the others. It offers the possibility of detect-
ing R locations with great variations in both normal and 
pathological QRS complexes.

In perspective, an ECG heartbeats classifier can be pro-
vided to classify and categorize various QRS complex 
anomalies (e.g., PVCs, APCs, LBBBs, and RBBBs beats).

Table 2 Comparison with other algorithms

Method TP FP FN Se (%) P+ (%) Er (%)

Presented algorithm 109438 95 56 99.95 99.92 0.136

Banerjee et al. [23] 19022 76 40 99.60 99.50 0.61

Zidelmal et al. [26] 109101 193 393 99.64 99.82 0.54

Afonso et al. [13] 90535 406 374 99.59 99.56 0.86

Pan and Tompkins [2] 109532 507 277 99.75 99.54 0.71

Hamilton and Tompkins [3] 108927 248 340 99.69 99.77 0.54

Li et al. [20] 104070 65 112 99.89 99.94 0.17

Nayak et al. [11] 109494 70 52 99.95 99.94 0.11

Jia et al. [16] 109494 - - 99.89 99.90 0.21

Pandit et al. [19] 109432 369 389 99.65 99.66 -

Modak et al. [29] 109494 130 289 99.74 99.88 0.38
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