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Abstract

One of the most difficult tasks in the area of computer vision is object detection, which combines object categorization and object 

location within a scene. In terms of object detection, Deep Neural Networks have been recently demonstrated to outperform alterna- 

tive approaches. The issues related deep learning neural network is its complexity and huge computation, so it is not possible to 

detect and track the objects in image of high resolution in real time. We proposed scaled YOLOv4 lite model as Single Stage Detector 

Neural Network for object detection, tracking and it is trained using COCO 2017 dataset. To create the YOLOv4-CSP- P5- P6- P7- P8 

networks, the Scaled YOLOv4 applied efficient network scaling strategies. The additional layer in YOLOv4 lite model is added as P8 

layer which improves accuracy. Cross-stage-partial (CSP) connections and Mish activation are used in improved network design, such 

as backbone optimization and Neck (PAN). In the case of YOLOv4, however, it can only be trained once for all resolutions. Width and 

Height activations have been changed, allowing for faster network training. With YOLOv4 lite model, we used CSPDarkNet-53 model 

as a backbone. The experimental result show our YOLOv4 lite model can detect and track object up to 28 fps when model run with 

the video input and has an accuracy of 86.09% when tested on real-time video with resolutions 1920 × 1080 (full HD). AP = 50.81%, 

AP @50 = 63.6%, and AP @75 = 52.5% for CSPDarkNet-53 model backbone.

Keywords

cross stage partial, object detection, computer vision, Deep Neural Network, backbone

1 Introduction
Object recognition and classification is critical at the country's 
border, where security is paramount. Object detection, track-
ing, and identification can be accomplished using a variety of 
approaches. However, utilizing image processing to reliably 
identify things in real time is a difficult task. The method of 
recognizing main things in an image is known as salient 
object detection. Humans can quickly recognize which ob- 
jects are important in a scenario. The goal of automating 
this process is to produce machines that can accurately sim-
ulate human. To recognize prominent objects, background 
subtraction and the Gabor filter are used [1]. The most basic 
implementation of background subtraction is to pixel-wise 
evaluate the difference between a previously taken or esti-
mated background image and the current image, and then 
threshold the difference value to find the pixels that belong 
to moving objects. Due to its ease of development, low 
processing costs, and lack of prior knowledge of the target 
objects, this simple background removal is used by many 

applications. This technique, however, has a number of sig-
nificant drawbacks. It can't adjust to dynamic background 
changes like fluttering leaves, changing lighting, or camera 
movement, for example. Second, when moving objects and 
the background have color combinations, the detection per-
formance degrades. These shortcomings frequently result 
in false positives and negatives, respectively [2].

In harvesting robot platforms, fruit detection is critical. 
Fruit recognition has proven difficult due to complex envi-
ronmental factors such as lighting variation and occlu-
sion. To overcome detection challenges, a strong YOLO- 
Muskmelon scheme that is both accurate and quick was 
presented [3]. The task of object recognition and classifica-
tion is crucial in computer vision. YOLO is an extremely 
effective method for recognition and classification. Hard- 
ware architectures for running YOLO model in real-time 
on embedded hardware has been considered [4]. Deep 
learning-based object detection methods are classified 
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into two types: region proposal-based two-stage meth-
ods and regression-based one-stage methods. The region-
based convolution neural network (R-CNN) approach is 
a common two-stage method. Fast R-CNN, Faster RCNN, 
fully convolutional networks with a focus on a region of 
interest (R-FCN), light head R-CNN, and various convo-
lution neural network enhance methods are all available. 
Although, the two-stage method is more accurate than 
the one-stage method, the one-stage method has a faster 
detection speed. In some situations where real-time pro-
cessing is required, the one-stage technique is preferable. 
Redmon et al. [5] proposed the YOLO approach, which 
is based regression-based one-stage method. He also pre- 
sented the YOLOv2, which is built on YOLO and involves 
eliminating the completely connected layer and the last 
pooling layer, using anchor boxes to forecast bound-
ing boxes, and creating a new basic network called 
DarkNet-19. The YOLOv3 is the most recent develop-
ment in YOLO approach. To increase detection accuracy 
and the capacity to recognize tiny objects, it incorporates 
a feature pyramid network, a better basic network termed 
DarkNet-53, and binary cross-entropy loss.

YOLOv4 model recognizes object in real-time, which 
was launched in April 2020 and reached state-of-the-art 
performances on the Data set. It works by dividing the 
object identification process into two parts: regression for 
determining object location via bounding boxes, and clas-
sification for determining the item's class. The DarkNet-53 
framework is used in this YOLOv4 implementation. In sin-
gle-stage detector models, the classes and bounding boxes 
for the full image are predicted rather than choosing the 
region of interest. They are therefore faster than two-stage 
detectors as a result. On the other hand the You Only Look 
Once (YOLO) framework approaches object identification 
in a different way. The bounding box coordinates and class 
probabilities for these boxes are predicted by taking the 
entire image into account in a single instance. Therefore, 
YOLO framework speed is enhanced while maintaining 
accuracy that is nearly identical to two stage technique. 
In contrast, two-stage object detection splits the object 
identification problem into two parts: identifying poten-
tial object regions of interest and classifying the image. 
Compared to YOLO, it takes longer to detect objects.

The real-time pattern recognition could distinguish 
many objects from a single image, frame a confined-edge 
box around nearby objects, and train and deploy in a pro-
duction system in a short amount of time. A new approach 
for detecting small objects in high-resolution photos has 

been proposed. The size of the convolutional layer and 
the resolution of the input image determine the number 
of pyramid layers. To enhance the accuracy of detecting 
small objects, breaking the overlapping blocks on each 
layer of the pyramid except the top one. If two detected 
regions belong to the same class and have a high overlap-
ping value, they are merged into one. In high-definition 
video, the method outperforms YOLOv4 in recognizing 
small objects [6]. Object detection applications require 
the ability to interpret data in real time in high-resolution 
monitoring systems. Real-time moving object recognition 
is difficult to do due to the vast the volume of data needed 
for high-resolution images. There are numerous hurdles, 
including complicated backgrounds, varying lighting, 
local motion from moving trees or items hidden by dust. 
The resolution of recording devices is steadily improving, 
necessitating the development of new ways for process-
ing high-resolution data for Object detection and tracking 
from static image or video.

1.1 Research contributions
We presented an innovative technique for processing high- 
resolution video data that keeps a balance between accu-
racy and speed performance. We implemented a scaled 
YOLOv4 lite model for Object detection and tracking from 
static image or video. The model was trained on the CO- 
CO 2017 dataset. To create the YOLOv4-CSP-P5-P6-P7-P8 
networks, the Scaled YOLOv4 applied efficient network 
scaling strategies. The P8 layer is incorporated as an extra 
layer in the YOLOv4 light model, which enhances accu-
racy especially for small object detection. During train-
ing, the Exponential Moving Average (EMA) is employed 
for weight-averaging. The neural network must be trained 
independently for each resolution, whereas YOLOv4 sim- 
ply needs to be trained once for all resolutions. En- 
hanced normalizer is employed in YOLO layers. Width 
and Height activations have been changed, allowing for 
faster network training. The CSP DarkNet-53 model was 
combined with the YOLOv4 light model.

When compared to ResNet-based architectures, the 
CSPDarkNet-53 backbone has a greater accuracy in object 
recognition while also having a superior categorization 
performance. It is more suitable to real-time object iden-
tification, especially for embedded device development. 
After scaling the proposed target detection method, the 
subsequent stage is to address the quantitative features that 
will vary, such as the number of parameters with qualita-
tive factors. Model inference time, average accuracy, and 
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other characteristics are among them. Qualitative elements 
will have varying gain effects depending on the equipment 
or database used. The model was trained on a desktop PC 
with a processor i7 in Google Colab and evaluated on a free 
GPU given by Colab.

2 Related work
Srivastava and Srivastava [1] employed background re- 
moval, Gabor filters, objectness, and minimum direction- 
al backgroundness to tackle the problem of significant ob- 
ject recognition. Researchers haven't looked at deep learn- 
ing techniques. Hosaka et al. [2] offer a method for identi-
fying moving objects using a Markov random field (MRF) 
model. The goal is to resolve two major problems in previous 
methods: false positives from dynamic background changes 
like fluctuation trees and camera motion, and false negatives 
from the actuality of similar colors in objects and their back-
grounds. Lawal [3] demonstrated the YOLOMuskmelon 
model, which included a ReLU activated ResNet43 back-
bone, a new 2,3,4,3,2 residual block arrangement, spatial 
pyramid pooling (SPP), Complete Intersection over Union 
(CIoU) loss, feature pyramid network (FPN), and Distance 
Intersection over Union-based distance. Pestana et al. [4] 
proposed a core that is configured for real-time YOLOv3 
and YOLOv4-Tiny execution, is implemented in a RISC-
V-based system-on-chip architecture, and prototyped in 
FPGA (Field Programmable Gate Array). By merging back-
ground subtraction with Convolutional Neural Networks, 
Redmon et al. [5] introduce YOLO, a unified model for 
object detection. The provided model is simple to build and 
can be immediately trained on the full frame. Zhu et al. [6] 
explored real-time object detection in high-resolution 
video frames with remarkable accuracy. Moving object 
detection employing Background subtraction and a blend 
of Gaussian algorithms was proposed by HariPriya and 
Aman [7]. Moving object detection is done with a back-
ground subtraction approach, while moving object classifi-
cation is done with a blend of Gaussian algorithms. In order 
to address the issues with floating-point-based quantization 
methods for YOLOv3 and YOLOv4, Kim and Kim [8] sug-
gested a fixed-point-based quantization technique tailored for 
embedded platforms. An enhanced penalty function based on 
the Complete Intersection over Union loss function is sug-
gested by Wang et al. [9] to boost the positioning accuracy.

Sambolek and Ivasic-Kos [10] investigated state-of-
the-art person detectors in drone photos and presented 
a model for detecting people during SAR operations. CNN-
based object detectors, including the Cascade R-CNN, 
Faster R-CNN, RetinaNet, and YOLOv4, were trained 

and evaluated on selected drone images. Bhatti et al. [11] 
demonstrated a unique real-time automatic weapon detec-
tion system. The work does undoubtedly aid in enhancing 
security, law and order for the betterment. Maddalena and 
Petrosino [12] described a detailed assessment of algorithms 
that use RGBD data for object recognition based on back-
ground removal, which is a basic block for many computer 
vision applications. Shaikh et al. [13] presented a common 
technique background subtraction for accurately detect-
ing moving objects in videos taken by stationary cam-
eras. Zheng et al. [14] offer an enhanced YOLOv3 network 
model and build a large-scale bearing-cover defect dataset. 
Wang et al. [15] addressed the issue of image background 
and foreground imbalance by incorporating the foreground 
and background balance loss function into the YOLOv4 
loss function component. Srivastava et al. [16] compared 
the most recent and sophisticated CNN-based object detec-
tion techniques and concluded thatYOLOv3 shows the best 
overall performance. In order to categorize different sorts 
of crises and deduce the necessary emergency measures, 
Asif et al. [17] offered an automatic analysis of social media 
images. The YOLOv2 Convolutional Neural Network was 
used by Saponara et al. [19] to demonstrate real-time vid-
eo-based fire and smoke detection in antifire surveillance 
systems. To account for the needs of embedded devices, 
YOLOv2 is built with a light-weight neural network archi-
tecture. In order to enhance the framework for manag-
ing garbage in smart cities, Kumar et al. [20] developed 
a novel YOLOv3 algorithm application for garbage segre-
gation and YOLOv4 for detection of tomato [21]. To address 
the issues of low accuracy, low real-time performance and 
other issues, the modified YOLO-v4-based face mask iden-
tification [22] method were utilized. New architectures of 
YOLO for Vehicle License Plate Detection is proposed [23]. 
Wu et al. [24] developed an enhanced YOLO v4 and data 
augmentation techniques to help the apple picking robot. 
Schütz et al. [25] proposed using YOLOv4 to detect and 
monitor Red Foxes' movements.

Based on the YOLOv4 algorithm, Lee and Lin [26] and 
Janardhan et al. [27] proposed using the sense of hearing to 
view an object held in front of a person and a camera. Růžička 
and Franchetti [28] suggested an attention pipeline approach 
that limits the total number of necessary assessments by 
using two staged evaluations of each image or video frame 
under rough and refined resolution. Convolutional Neural 
Networks are used by Ammar et al. [29] to solve the problem 
of car recognition from aerial images. Cao et al. [30] pre-
sented face mask object detection in real time. Liu et al. [31], 
proposed a YOLOv4-based model for sea surface object 
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detection scheme. Ma et al. [32] reported an improved 
YOLOv4 small algorithm. The simulation results reveal that, 
when compared to YOLOv4-tiny, the upgraded network 
structure has a 3.3% higher accuracy and a detection speed 
of 251 frames per second, which meets the real-time detec-
tion criteria. Liu et al. [33] suggested a CNN-based technique 
for detecting tiny drones. High Resolution Low-latency 
Block-wise Object Recognition Method Using SSD was 
introduced by Magalhães et al. [34]. Using certain pre-ex-
isting adjustments and methodologies, Mahto et al. [35] 
fine-tuned the new state-of-the-art object recognition sys-
tem YOLOv4 to especially fit the needs of vehicle detection. 
Bochkovskiy et al. [36] presented YOLOv4 for Optimal 
Speed and Accuracy in Object Detection. 

Kim et al. [37] established a hybrid framework to detect 
and recognize moving objects. A new object detection model, 
YOLOv4-FPM, is proposed by Yu et al. [38] for real-time 
detection. Zhang et al. [39] offer Smart-YOLO, a new real-
time object detection system. It has a small model magnitude, 
a rapid detection speed, and is better suited to being promoted 
to some edge or mobile end devices. The technique proposed 
by Bohusha et al. [40] for recognizing objects in 4K and 
8K images and it has a great efficiency in recognizing small 
objects in 4K and 8K quality images. Kadadi et al. [41] shows 
how to use the background subtraction (BGS) method to find 
and follow the intended moving objects (MOs). The BGS 
method offers the possibility of cost savings because data 
storage begins as soon as motion is detected. Effective MO 
detection was the goal of the BGS method.

Summary of Literature Review: Even though research-
ers developed a variety of background subtraction tech-
niques, there are still certain problems, such as accuracy and 
speed in high resolution images. The researchers suggested 
a few methods for object detection, such as YOLOv3 and 
YOLOv4, which can increase speed but have relatively low 
recall and accuracy. They also struggle to recognise small 
objects and close objects because each grid can only sug-
gest two bounding boxes. The author suggests the SSD or 
Fusion technique for object detection in high resolution, but 
the model will still not run in real time to detect the objects. 
So we proposed object classification and tracking using sin-
gle stage detector, improved YOLOv4 in Full HD Video.

3 Materials and methods
Fig. 1 shows proposed architecture for Scaled YOLOv4 
with P8 for object detection from static image and video.

In the proposed architecture the following are the 
abbreviation used:

1. A = conv k = 3, s = 1;
2. B = (conv k = 3, s = 2) → (m × CSP);
3. C = (rCSP) → (SPP) → (rCSP) → (rCSP);
4. D = (conv k = 1, s = 1) → (up s = 2) }  

(conv k = 1, s = 1) } (Concat) → (m × rCSP);
5. E = (identity) 

(Conv k = 3, s = 2) } (Concat) → (m × rCSp);
6. F = (conv k = 3, s = 1) → (YOLOv4).

Fig. 1 Scaled YOLOv4 with P8 architecture for object detection
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3.1 Improved scaled YOLOv4 architecture
YOLOv4 scaled to create the YOLOv4-CSP-P5-P6-P7-P8 
networks, YOLOv4 applied with efficient network scal-
ing approaches. The Neck is employed Cross-stage-partial 
(CSP) connections and Mish activation, and the backbone 
has been optimized. During training, the Exponential 
Moving Average (EMA) is employed for weight-averag-
ing. The neural network must be trained independently 
for each resolution, whereas YOLOv4 simply needs to be 
trained once for all resolutions. Enhanced normalizer is 
employed in YOLO layers. Width and Height activations 
have been changed, allowing for faster network training.

Changing the depth of the model, that is, adding more 
convolutional layers is the standard model scaling strategy. 
Simonyan et al. built VGGNet, which superimposed addi-
tional convolutional layers at various stages and used this 
notion to design the VGG11, VGG13, VGG16, and VGG19 
designs. The model scaling method is typically used in 
subsequent methods. In the ResNet extended depth can be 
employed to build very deep networks, such as ResNet-50, 
ResNet-101, and ResNet-152. Later, altered the amount 
of convolutional layer cores to accommodate for the net-
work's width in order to achieve scalability. As a result, 
they created a wide ResNet (WRN) with the same pre-
cision. Despite the fact that WRN has more parameters 
than ResNet, its inference time is substantially faster. 
Following that, DenseNet and ResNeXt created a com-
posite zoom version that took both depth and width into 
account. Enhancement at runtime is a common strategy for 
image pyramid reasoning. It takes an input image, scales it 
to various resolutions, and then feeds these pyramids into 
a trained CNN. In the end, the network will The final result 
incorporates multiple sets of outputs. The size scaling of 
the input image is performed by Redmon et al. [5] using the 
above technique. To fine-tune the trained DarkNet-53, they 
employed a greater input image resolution.

The field of network architecture search (NAS) has seen 
a lot of development in recent years, and NASFPN looks 
for the combined path of the feature pyramid. NAS-FPN 
can be thought of as a model scaling technology that is 
mostly used at the stage level. Efficient Net employs a com-
pound zoom search that takes into account depth, width, 
and input size. EfficientNet's core design concept is to 
break the target detector module into several functions, 
then scale the picture size, width, BiFPN layer, and #box/
class layer. Spine Net, which focuses on network architec-
ture search for the overall architecture of the fish-shaped 

target detector, is another design that leverages the NAS 
principle. This design approach can finally result in 
a structure that is proportionally arranged. Another NAS-
designed network, RegNet, fixes the number of stages and 
input resolution while also taking into account the depth, 
width, bottleneck ratio, group width, and other features 
of each stage in depth, initial width, slope, quantization, 
and group width. Finally, utilize these six factors to find 
the composite model's scale. The methods described above 
are all excellent, but there are only a few ways to examine 
the relationship between distinct parameters. The subse-
quent phase is to concern with the measureable aspects that 
change, such as the number of parameters with qualitative 
factors, after scaling the proposed target detector.

Our aim when building an effective model scale 
approach is that the lower/higher the quantitative cost, we 
wish to raise or decrease is better when the scale increases 
or decreases. In Section 3.1, we illustrate and examine 
a variety of standard CNN models in order to better under-
stand their quantifiable costs as image size, layer count, 
and channel count change. ResNet, ResNext, and Darknet 
are the CNNs we've chosen. The size, depth, and width of 
the image, all increases the computing cost. Quadratic, lin-
ear, and quadratic growth are the three types of growth. 
The CSPNet introduced by Wang et al. [9] can be used to 
reduce parameters and calculations in a variety of CNN 
designs. It also enhances accuracy and cuts down on rea-
soning time. We tested it on ResNet, ResNeXt, and DarkNet 
and discovered a difference in calculation amount. Table 1 
shows the calculation amount (flop) for Res Layer, ResX 
Layer, Dark Layer, and ResDark Layer.

The new design can lower ResNet, ResNeXt, and 
Dark-Net's calculation amount (flop) by 23.5%, 46.7%, 
and 50.0%, respectively, and ResDark layer's calculation 
amount (flop) by 72%.

Table 1 Calculation amount (flop) for Res Layer, ResX Layer, Dark 
Layer and ResDark Layer

Model Original To CSP

Res Layer

ResX Layer

Dark Layer 5 w h k b2

ResDark Layer

17

16

2w h k b w h b k2 3

4

13

16
��

�
�

�
�
�

137

128

2w h k b w h b k2 3

4

73

128
��

�
�

�
�
�

w h b k2 3

4

5

2
��

�
�

�
�
�

22

16

2w h k b w h b k2 3

4

27

8
��

�
�

�
�
�
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3.2 Scaled-YOLOv4
Scaling YOLOv4 for general GPUs, low-end GPUs was 
our main focus. On general-purpose GPUs, YOLOv4 is 
designed for real-time target identification. We redesign 
YOLOv4 to YOLOv4-csp in this area to acquire the opti-
mum speed/accuracy trade-off.

Backbone: The residual block in the architecture of CSP 
DarkNet-53 does not include the cross-stage processing 
down-sampling convolution calculation. As a result, the 
amount of computation in each level of the CSPDarkNet is 
w h b 2(9/4 + 3/4 + 5 k/2). The preceding formula shows that 
the CSPDarkNet stage has a larger computational advan- 
tage than the Darknet stage only when k > 1. SPDarknet53 
has a total of 1-2-8-8-4 residual layers in each stage. To ob- 
tain a better speed/accuracy trade-off, we switched the first 
CSP stage to the original DarkNet residual layer [44].

Neck: to effectively reduce the amount of calculation 
in YOLOv4, we incorporate the CSP structure into the 
PAN design. Table 1 depicts the PAN architecture calcu-
lation list (the column of "Original"). It primarily com-
bines features from various feature pyramids before pass-
ing through two sets of inverse DarkNet residual layers 
with no shortcut links. Table 2 shows the architecture of 
the new calculation list after cspization (the column of 
"To CSP"). This new update effectively cuts the number of 
calculations by 40% [44].

SPP: in the neck, the SPP module was initially placed 
in the midst of the first calculation list group. As a result, 
we also place the SPP module in the first CSPPAN calcu-
lation list group's middle position [44].

Finally, the inference time is used as a limitation for 
extra width scaling. Experiments reveal that YOLOv4-P8 
can achieve real-time performance in 62 frames per sec-
ond video when the width scaling factor is 1. On an edge 
device, the width scaling factor is equivalent to 1.25, 
allowing for real-time performance in 32 fps video.

Half of the output is carried via the main path (gen-
erating more semantic information with a large receptive 
field). The second half of the signal, on the other hand, 
takes a detour (retaining more spatial information with 
a small receptive field).

3.3 Scaled YOLOv4 lite loss function
The loss functions is calculated by using Eqs. (1) to (4):

bx tx cy� � �� � �� 2 0 5. ,  (1)

by ty cy� � �� � �� 2 0 5. ,  (2)

bw ty pw� � ��� � � �� 2 0 5
2

. ,  (3)

bh t ph h� � ��� � � �� 2 0 5
2

. .  (4)

4 Results and discussion
The suggested scaled-YOLOv4 was tested using the 
MSCOCO 2017 target detection dataset. The SGD optimizer 
is used to train the scaled-YOLOv4 models from scratch. 
The Google Colab server was used to train and test the sug-
gested model. YOLOv4-tiny has 600 epochs of training, 
YOLOv4-CSP has 300 epochs of training, and YOLOv-CSP 
ResDark 154 has 300 epochs of training before using stron-
ger data augmentation methods to train 150 epochs. We use 
k-means and evolutionary algorithms to calculate the hyper-
parameters of Lagrangian multipliers, such as anchor points, 
learning rate, and varying degrees of data augmentation 
approaches. Genetic algorithms, genetic programming, dif-
ferential evolution, evolution methods, particle swarm opti-
mization, and evolutionary programming are a few exam-
ples of the various forms of evolutionary algorithms. The GA 
approach is used, in which the algorithms update the param-
eters (called multipliers) adaptively so that the corresponding 
penalized function dynamically changes its optimal from the 
unconstrained minimum point to the constrained minimum 
point with iterations [43]. This avoids the need for a constant 
penalty parameter throughout the optimization process.

We investigated into how CSPization affected the num-
ber of parameters, the quantity of work, throughput, and 
average accuracy of several models. We use DarkNet-53 
as the backbone for ablation experiments, as well as 
FPN with SPP (FPNSPP) and PAN with SPP (PANSPP). 
The Average Precision is calculated after CSPization of 
several DNN model for validation of the results.

We used the Leaky ReLU (Leaky) and Mish activation 
functions to compare the parameters used in the amount 
of calculation and throughput, respectively. The CSPized 
model has enhanced Batch 8 throughput and AP while 
reducing the amount of parameters and calculations 
by 32%. If you want to keep the frame rate the same after 
CSP, you'll need to add more layers or use a more com-
plex activation method. The Batch 8 throughput of CD53s-
CFPNSPP-Mish and CD53sCPANSPP-Leaky is the same 
as D53-FPNSPP-Leaky, but they perform better when 
computational resources are limited. Table 2 shows the 
results of the YOLOv4 light model analysis for different 
backbone, neck, and activation. Table 3 shows the ablation 
analysis of the training plan with and without fine-tuning 
of Scaled YOLO with P8.
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All YOLOv4 models, including the YOLOv4-CSP, 
YOLOv4-P5, YOLOv4-P6, and YOLOv4-P7, are the fin-
est in every metric. The inference speed of YOLOv4-
CSP is 1.9 times faster than EfficientDet-D3 with the same 
accuracy (47.5% vs. 47.5%). When YOLOv4-P5 and Effi- 
cientDet-D5 are compared, the accuracy is the same (51.4% 
vs. 51.5%), and the inference speed is 2.9 times faster. 
For YOLOv4-P6 and EfficientDet-D7 accuracy is 54.3% 
vs. 53.7%, YOLOv4-P7 and EfficientDet-D7x accuracy is 
55.4% vs. 55.1%, and YOLOv4-P8 and ResDark-D8x accu-
racy is 58.2% vs. 55.0%.

YOLOv4-P6, YOLOv4-P7, and YOLOv4-P8 are 3.7 
times, 2.3 times, and 4.2 times faster, respectively, in 
inference speed. The comparison of our model with 
YOLOv3-SPP and YOLOv4-CSP is as shown in Table 4. 
The experimental results of the YOLOv4 large model and 
for modified YOLOv4 research are compared in Table 5.

Fig. 2 shows plot of mAP0.5:0.95 vs. number of epochs, 
Fig. 3 shows plot of classification_loss vs. number of 
epochs, Fig. 4 shows plot of GIOU_loss vs. number of 
epochs and Fig. 5 shows plot of object_detection_los vs. 
number of epochs.

Figs. 6 and 7 shows results for testing model on testing 
dataset. Figs. 6 and 7 shows plot of Precision and recall vs. 
number of epochs.

Table 2 Analysis of YOLOv4 lite model is done for different backbone, 
neck and activation

Back-
bone Neck Acti-

vation
#Param-

eters FLOPs Batch 
8 FPS AP val

D53 our 
model CPANSPP Mish 48M 102B 216 52.8%

D53 FPNSSP Leaky 63 M 142B 208 43.5%

D53 FPNSSP Mish 63 M 142B 196 45.3%

CD53s CFPNSSP Leaky 43M 97B 222 45.7%

CD53s CFPNSSP Mish 43M 97B 208 46.3%

D53 PANSSP Leaky 78M 160B 196 46.5%

D53 PANSSP Mish 78M 160B 185 46.9%

Table 3 Ablation study of training schedule with and without fine-
tuning of Scaled YOLO with P8

Model Scratch Fine 
tune AP val AP val 50 AP val 75

YOLOv4-P5 300 – 50.5% 68.9% 55.2%

YOLOv4-P5 300 150 51.2% 69.8% 56.2%

YOLOv4-P6 300 – 53.4% 71.5% 58.5%

YOLOv4-P6 300 150 53.9% 72.0% 59.0%

YOLOv4-P7 300 – 50.5% 72.4% 59.7%

YOLOv4-P7 300 150 54.6% 72.9% –

YOLOv4-P8 
our model 300 150 58.2 % 74.8 % 64.12%

Table 4 Comparison of our model with YOLOv3-SPP and YOLOv4-CSP

Method Back bone Size FPS AP AP50 AP75 APS APM APL

YOLOv3-SPP D53 608 73 36.2 60.6 38.2 20.6 37.4 46.1

YOLOv4-CSP CD53s 512 97 46.2 64.2 50.2 24.6 50.4 61.9

Ours CD53s 512 140 50.8 63.6 52.5 28.4 51.5 62.7

Table 5 Comparison of P5, P6, P7 and scaled P8 model

Model AP Ap50 AP75

YOLOv4-P5 with TTA 52.5% 70.3% 58.3%

YOLOv4-P6 with TTA 58.2% 73.8% 63.3%

YOLOv4-P7 with TTA 58.2% 73.8% 63.3%

YOLOv4-P8 with TTA 58.2% 73.8% 63.3%

Fig. 2 Plot of mAP_0.5:0.95 vs. number of epochs

Fig. 3 Plot of classification loss vs. number of epochs

Fig. 4 Plot of GIOU loss vs. number of epochs
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The analysis of proposed model for HD and Full HD 
video in terms of FPS and Accuracy is as shown in Table 6, 
which indicates the HD and full HD video can be real 
time for detection. The plot of various metrics vs. number 
of epochs is as shown in Fig. 8. The original and output 
images (detected images) by the proposed technique are 
as shown in Fig. 9.

5 Conclusion
Object detection, which combines object categorization 
and object location within a scene, is regarded one of the 
most difficult challenges in this subject of computer vision. 
Deep Neural Networks (DNNs) have recently been shown 

Fig. 5 Plot of object detection loss vs. number of epochs

Fig. 6 Plot of precision vs. number of epochs

Fig. 7 Plot of recall vs. number of epochs

Table 6 Performance analysis of proposed scaled YOLOv4 lite model 
when tested on real time HD and Full HD video

Video resolution FPS Accuracy %

1920 × 1080 28 86.09

1280 × 720 32 73.3

Fig. 8 Plot of various metrics vs. number of epochs

Fig. 9 Original and output images of proposed model
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to perform better than other approaches in terms of object 
detection. To get YOLOv4-CSP-P5-P6-P7-P8 networks, 
we suggested the Scaled YOLOv4 that utilizes optimal net-
work scaling strategies. When compared to ResNet-based 
architectures, CSPDarkNet-53 backbone has a higher accu-
racy in object detection while also having a superior catego-
rization performance. The results of the experiments reveal 
that our YOLOv4 lite model outperforms the state-of-the-
art technique. The proposed scaled model, which uses the 
backbone CSP DarkNet-53 and the neck CPANSPP, has 

48 M parameters and 216 B flops, which is better than the 
current state-of-the-art. When evaluated on the testing data 
set, it too runs at 216 frames per second and has a mAP 
of 52.8%. It can run up to 28 fps and has an accuracy of 
86.09% when tested on real-time video with resolutions 
1920 x 1080 (full HD). AP = 50.81%, AP @50 = 63.6%, 
and AP @75 = 52.5% for CSPDarkNet-53 backbone.

The future scope is to increase FPS (Speed) of object 
detection in high-resolution video using next version 
YOLO model and one or two GPUs.
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