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Abstract

This paper deals with corner detection of simple geometric

objects in quantized range images. Low depth resolution and

noise introduce challenges in edge and corner detection. Cor-

ner detection and classification is based on layer by layer depth

data extraction and morphologic operations. Appearance based

heuristics are applied to identify different corner types defined in

this paper. Both computer generated and captured range images

are dealt with. Synthetic range images have arbitrary range res-

olution while captured images are based on the sensor used.

Real world data is collected using a structured light based sen-

sor to provide dense range map.
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1 Introduction

Range images encode distance or depth (Z) values in each

pixel instead of conventional intensity values. These images are

widely used to represent spatial 3D information. Compared to

other 3D model representation such as triangle meshes it has

both benefits and disadvantages. Range images offer simple,

ordered scan-line based data access compared to vertices and

triangle indices. Range images represent data seen from a view-

point, obstruction is always present thus data is incomplete and

viewpoint dependent. Multiple range images may be used to

reconstruct triangle meshes and eliminate viewpoint dependent

details. Some of our examples are based on a synthetic range im-

age consisting of simple geometric objects which may be seen

in Figure 1.

Fig. 1. Synthetic range image

A large number of range image sensors such as time-of-flight

ranging devices, offer high depth resolution images together

with low spatial resolution. Other implementations sacrifice

depth resolution while improving spatial details. In earlier sen-

sors such as the Odetics camera the resolution was 180x180

pixels and 127 steps in depth. Other, still widely used short

range sensors provide 176x144 pixels with ± 1mm depth accu-

racy. When using a single ray to scan the whole image time con-

straints show up as bottlenecks. Other solutions incorporating a
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time of flight pixel array and controlled light signals offer faster

readouts enabling to have even 320x240 range sensing pixels.

In case of calibrated stereoscopic images, range maps may

be generated from the disparity maps using triangulation. Un-

fortunately it is rather difficult to exactly identify disparity in

homogeneous regions thus the quality and denseness of the gen-

erated map depends on image content. However conventional

stereo intensity image pairs can easily have very high resolu-

tions. To overcome the problem of sparse disparity maps known

structured light based arrangements are used. The basic idea

is very similar to stereo vision, however instead of two cam-

eras one camera and a previously known pattern is projected

which behaves as a second camera. Advantages are easy match-

ing of corresponding pixels thus dense disparity maps can be

achieved even on homogeneous surfaces. Unfortunately sur-

face properties and environment lighting may affect the results.

In this paper we utilized the output of a structured light based

depth sensor. The output image of the sensor has the resolu-

tion of 640x480 pixels and 12 bits of depth. Depth values are

interpreted in millimeters, however not all possible values are

returned, the number of different output levels are much lower.

The valid depth range is approximately between 0.8-4.5m. Us-

ing intensity image sensors we are able to produce dense range

maps however the quantization of the range data may still be

high. In this paper we examine the possibilities to utilize low

depth resolution range maps to estimate interest points. The cor-

ners of simple geometric objects serve as feature points. These

points may be used later as landmark points for mapping and

localization of a mobile robot in its environment.

The following part of the paper presents related work in the

field. We present a related feature detection algorithm and other

works and issues concerning low depth resolution images. The

third section introduces our new corner detector algorithm. The

following section presents results of the algorithm applied to

both synthetic computer generated and both captured range im-

ages. The test images contain simple geometric objects. The

captured images suffer from many artifacts such as heavy quan-

tization and noise. The fifth section contains the discussion of

the results and plans for future work.

2 Related Work

Feature detectors are used to find a set of local distinctive,

unique points. One of the first and still widely used interest point

detector in 2D images is the Harris corner detector [1]. It detects

"corners" in the images, meaning significant changes are present

in both directions around the point. A Harris score is calculated

at each pixel defining a cornerness value by estimating a func-

tion of the two eigenvalues of the structure tensor. Two more

recent feature detector algorithms SIFT (Scale Invariant Feature

Transform) [2] and SURF [3] (Speeded-Up Robust Features) de-

fine both scale invariant interest point detection and descriptor

generation. Descriptors are high dimensional vectors that are

used to give identities to features thus improving matching be-

tween images to find similar or exactly the same regions. Our

long-term goal is to give a robust feature detector algorithm that

finds interest points in range images suffering from low depth

resolution, inaccurate depth estimation.

Many aspects of range images are similar to intensity images

but there are also differences. Each pixel in the depth image ex-

actly defines a surface point in 3D. Scale invariance is therefore

not an issue as in intensity images. However sampling and dis-

tance between pixels is irregular. While a homogeneous surface

appears as constant values in intensity images, constant normal

vectors define planes in depth images. Due to irregular sampling

gradient values must be corrected.

Object edges appear in several ways in range images.

Jump/step edges are discontinuities in range values. They are

simple to detect and typically found at object boundaries. Crease

edges appear where the local surface normal changes, for exam-

ple where surfaces meet. A special case is roof edge where the

gradients change signs. Smooth edges have continuity in normal

changes but discontinuity in surface curvatures. Range image

processing usually does not deal with smooth edges. In struc-

tured light based range image detection shadows may appear

because of occlusions in the path of the projected light. These

shadows have unknown depth values, which is usually indicated

by special depth values. Edges separating known and unknown

depth values are false edges and must be omitted.

There are several methods for range image edge detection and

segmentation. Coleman et. al. [4] presented a gradient based

method to characterize edge types. The procedure deals with

the irregular grid sampling but assumes smooth gradient values

along the image plane which is not given in our case. Bose et. al.

[5] presents several methods used in range image segmentation.

Both edge and region-based segmentation techniques are used.

Estimating the principal curvatures for surface points are often

used for the characterization of local geometry however it is dif-

ficult to estimate at high quantization errors. The main drawback

of edge based techniques is that edges (besides step edges) are

distorted in quantized range images thus making it difficult to

estimate surface properties near any edges. Region based tech-

niques are based on clustering similar and neighboring surface

pixels to regions. However as quantized range images appear as

flat surfaces perpendicular to the camera orientation having step

edges between layers making it difficult to differentiate regions.

Surface curvatures are also preferred because of their excellent

invariant properties. Unfortunately the estimation of the curva-

tures mean the estimation of second order derivatives thus mak-

ing it extremely sensitive to quantization noise. Usually simple

(i.e. paraboloid) surfaces are fitted first.

Ideses et. al. [6] showed the redundancy of depth data in 3D

visualization. They analyzed the human depth perception using

stereoscopic images generated using depth images with different

quantization. They showed that low depth resolution does not

affect significantly the perceived 3D image. Their results present

that only 20 depth levels are enough to generate 3D impression.
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Having less quantization steps does not degrade the perceived

visual 3D quality as much.

Viewpoint invariant patches [7] are extracted from intensity

images with known 3D geometry. It is possible to create view-

point normalized image patches from these images and apply 2D

feature detector and descriptor generation algorithms to extract

features from the viewpoint invariant patches. As the proposed

algorithm utilized a 2D feature detector, planes had to be identi-

fied in the local 3D geometry.

A recently published 3D point cloud interest point detector is

called normal aligned radial feature detector (NARF) [8]. NARF

was designed to select points where the surface is stable and

changes exist in the near vicinity while making explicit use of

unique object boundaries in LIDAR images. The algorithm con-

sists of the following steps: a, heuristics are used to find the

typical 3D distance to neighboring points that are not across bor-

ders, b, use these distances to calculate a borderness score for the

points, c, classify the border, d perform non-maximum suppres-

sion to find the exact border position. The paper also describers

a descriptor generation algorithm: a, calculate small range im-

age patch around the point with the observer looking along the

normal, b, overlay a star pattern onto this patch, where adja-

cent endpoints correspond to a value in the final descriptor, and

captures how much the pixels between the endpoints change, c

extract a unique orientation from the descriptor, d finally rotate

the descriptor according to the unique orientation value to make

it invariant to rotation.

The algorithm explicitly takes object borders into account.

Time of flight based ranging devices acquire stable border in-

formation. Stereo vision may approximate borders well if in-

tensity information may be utilized to extract borders explicitly.

Based on the utilized patterns, structured light based methods

suffer from inaccurate border estimations. The paper describes

that the most significant indicator is the distance between neigh-

boring points. Unfortunately these distances show irregularities

in case of quantized range values. Step edges break pattern con-

tinuities, crease edges are difficult to localize due to low depth

resolution. In out algorithm we took these deficiencies into ac-

count.

3 Depth layer based range image processing

In this section we introduce a method to process coarsely

quantized range images. Individual layers are extracted first as

binary maps. After simple preprocessing steps a thinning algo-

rithm is used to create skeletons of the layers. These skeletons

are further processed and based on several predefined conditions

we attempt to localize and classify corners of simple geometric

objects.

3.1 Range layer extraction

Considering a computer generated (and quantized) ideal

range image with several simple objects it is simple to detect

jump edges but not obvious to find crease edges.

In case of quantized range images jump/step edge detection

remains similar to conventional edge detection in intensity im-

age processing. In case the local gradient is larger than a thresh-

old, step edge is assumed. However crease edges also appear as

discontinuities in pixel values but these must be rejected other-

wise detection would lead to finding edges at each quantization

level border. Segmentation is also rather difficult as most pixels

in the image suggest planes perpendicular to the camera direc-

tion. Figure 2 shows a the synthetic generated image. The edges

in conventional 2D image processing manner are highlighted.

Both true step edges and false edges appear where neighboring

layers meet. The false edges are the result of the coarse quanti-

zation.

Fig. 2. The gradient operator highlights both true step edges and layer bor-

ders

Crease edge points appear where the quantization layer im-

age contains a breakage, the layer’s edges change in direction

Figure 3 . In other words where corners appear in the layer.

Usually it is not obvious which corner points belong to the same

crease edge. Based on image complexity and noise some as-

sumptions can be made: crease edge corner points appear along

the edge on each range layer thus in case the edge is along a

line the crease corner points also appear along the projection of

the edge. In low complexity images where crease edge points

are sparse, points close to each other on neighboring range lev-

els may be connected to reconstruct edges. In case the image

contains numerous crease edges that are line segments, Hough-

transformation may be used to fit lines along the crease edge

points.

Our range image processing algorithm consists of the follow-

ing steps: first, skeletons are extracted from each range layer.

These skeletons provide isodepth lines. Next, these lines are

preprocessed to remove unwanted side branches and identify

breakage points. Finally, we utilize predefined condition sets

to classify interest points in the images as corner points.
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Fig. 3. Direction changes in layers highlighted

3.2 Layer skeleton formation

Based on the pixel values we extract each range layer as bi-

nary bitmaps and continue preprocessing steps individually on

each layer. In synthetic computer generated images it would be

possible to extract only border points of the layers. Unfortu-

nately due to noise and steep surfaces where range layers are

narrow and discontinuous it would give undesired results. In-

stead of utilizing simple border points binary image morpholog-

ical operators are used.

First dilation operator is applied to each range layer image.

Dilation is a basic morphological operation on binary images.

The purpose of dilation is to increase the number of foreground

pixels in the binary image around its borders. We utilize dila-

tion as a form of noise reduction at the edge the range layers.

Although fine details at the borders shall be discarded but the

basic topology remains similar in the filtered image. We evalu-

ated different structuring elements, kernels for dilation: 2n-by-

2n size square, an n-radius circle and also the application of a

simple 3-by-3 matrix as a structural element n times. The best

results were achieved using the n-radius circle as a structuring

element. The radius depends on the noise in the range image.

The dilation algorithm is defined in Algorithm 1.

2D binary images are denoted as a quadruple P =

(Z2, 8, 4, B). Z2 identifies all possible points having integer co-

ordinates on the 2D plane, (8, 4) denotes 8- and 4-adjacency

for foreground and background points, B is a set of foreground

points. Foreground pixels are also called black, background

points may be called white points.

Algorithm 1 Pseudo code of the dilation algorithm

1: Input: picture (Z2, 8, 4, X) , radius r

2: Output: picture (Z2, 8, 4,Y)

3: for all p ∈ X do

4: N = {q|dist(p, q) ≤ r}

5: Y = Y ∪ N

6: end for

The next step of the binary range image layer processing is

skeleton extraction. Skeletons are shape descriptors of objects

in binary images. Usually they consist of continuous one pixel

wide curves which carry information about the original topol-

ogy of the object. There are numerous algorithms for skeleton

extraction. Our algorithm is based on the SI-Q-Isthmus from

Németh and Palágyi [9]. The resulting skeletons produced by

this fully parallel algorithm is 4-adjacent continuous and pro-

vides few sidebranches. Depending on the range image contents

most of the sidebranches are false skeleton parts in range im-

ages. In a following step of the algorithm we will attempt to

eliminate more unwanted sidebranches.

3.3 Skeleton segmentation

The algorithm next creates a graph of segments for each skele-

ton part (Algorithm 2). Each segment has two endpoints and

does not contain any junctions. A segment s = (E1, E2, P) is

described by the two endpoints (E1, E2) and the set of inner

points (P). Segments are connected at endpoints. One range

layer produces a set of segments (S = ({si} , {Ei})) and endpoints

(E = (x, y, {si = (E1, E2, P)|E1 = E ∨ E2 = E})) that connect the

segments. The result of the segmentation can be seen in Fig-

ure 4. Endpoints may be categorized based on the number of

segments they connect |{si}| =

• = 1: Simple endpoint, no other segments are connected

• = 2: Non-real endpoint, two segments are connected which

may be combined

• ≥ 3: Junction point

Fig. 4. Skeleton segments connect endpoints and junctions. Each segment

is colored individually.

N∗
8
(p) (p ∈ B) denotes the 8-adjacent neighbors of point p:

N∗
8
(p) = (

{
q|0 < dist(p, q) ≤

√
(2)

}
∩ B). n(p) =

∣∣∣N∗
8
(p)

∣∣∣ denotes

the number of 8-neighbors of p ∈ B. Thinning algorithms

often introduce unwanted sidebranches. In our application short

sidebranches should be eliminated. Equation (1) gives a con-

dition which segments should be removed. After the unwanted
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Algorithm 2 Pseudo code of the skeleton segmenter algorithm

1: Input: skeleton X = ({pi})

2: Output: segments S = ({si} , {Ei})

3: S = ∅

4: Pprocessed = ∅

5: for all p ∈ (X\Pprocessed)|n(p) = 1 do

6: P = ∅

7: start new segment (si), set E1 = p

8: q = p

9: continue following neighbors of p: q = next neighbor of

q

10: Pprocessed = Pprocessed ∪ q

11: if n(q) = 3 then

12: Junction reached

13: E2 = q

14: End of segment

15: S = S ∪ (E1, E2, P)

16: Start new segments from q

17: end if

18: if n(q) = 2 then

19: Intermediate point, continue

20: P = P ∪ q

21: end if

22: if n(q) = 1 then

23: Endpoint reached

24: E2 = q

25: End of segment

26: S = S ∪ (E1, E2, P)

27: end if

28: end for

29: for all p ∈ (X\Pprocessed)|n(p) = 2 do

30: only circles left

31: set first point E1 = p

32: continue adding points q until q , E1

33: P = P ∪ q

34: set endpoint E2 = E1

35: S = S ∪ (E1, E2, P)

36: end for

branches are removed, connections must be reevaluated as re-

moving a sidebranch may result in creating circles, linear seg-

ment paths etc (Algorithm 3). Results are shown in Figure 5.

s = (E1, E2, P) ∈ S |dist(E1, E2) > dmin∧

∧((ns(E1) = 1 ∧ ns(E2) ≥ 3)∨

∨(ns(E2) = 1 ∧ ns(E1) ≥ 3))

(1)

ns(E) denotes the number of segments connected to an endpoint:

ns(E) = |{s = (E1, E2, P) ∈ S |E1 = E ∨ E2 = E}|.

Connected(E, i) denotes the ith connected segment to E,

Ep1(s) is the first endpoint of segment s and Circle(s) func-

tion is defined in Equation (3). The number of circle and non

circle segments are connected to endpoint e if given by nc(e)

Fig. 5. Skeleton extraction reduces noise and creates iso-depth lines. Un-

wanted sidebranches are removed.

and nc(e) in Equation (2). The algorithm searches for endpoints

of segments which connect to exactly two segments which of

none is circle. Until such endpoints exist, the two segments are

combined.

nc(e) =

ns(e)∑
i=1

Circle(Connected(e, i))

nc(e) =

ns(e)∑
i=1

1 −Circle(Connected(e, i))

(2)

As an addition to the range layer an additional layer is created.

Equation (4) describes the points added to this layer, where R is

a range image: z = R(u, v). This layer describes step edges and

the same operations are performed as seen with range layers.

The resulting points are near step edges on the surface closer to

the viewer ensuring that the skeleton of the step edge layer is

always on the closer side of the edges (on the foreground ob-

jects). Now all the skeleton layers are produced and shall be

used afterwards.

Circle(s) =

 1|E1 = E2

0|E1 , E2

 (3)

(u, v)|max(R(u + du, v + dv) − R(u, v))du,dv∈C > stepmin

C =
√

du2 + dv2 < rmax

(4)

3.4 Skeleton segment corner detection

The next step involves the localization of corners or direc-

tion changes in the skeletons. Different methods are avail-

able for this task such as line local fitting on both directions

from a specified skeleton point or SUSAN-like corner detec-

tion, such as laying a circular mask around the center point

and measure the longest or shortest arc that does not contain

pixels from the examined skeleton. Both methods offer noise
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Algorithm 3 Pseudo code of segment combiner algorithm

1: Input: segments S = ({si} , {Ei})

2: Output: segments S = ({si} , {Ei})

3:

4: while
{
e ∈ {Ei} |nc(e) = 0 ∧ nc(e) = 2

}
, ∅ do

5: sA = Connected(e, 1) = (E1A, E2A, PA)

6: sB = Connected(e, 2) = (E1B, E2B, PB)

7: if E1A = e then

8: sA = (E2A, E1A, PA) {Reverse E1 and E2}

9: end if

10: if E2B = e then

11: sB = (E2B, E1B, PB) {Reverse E1 and E2}

12: end if

13: Ei j = (ui j, vi j, S i j)

14: PA = PA ∪ PB

15: E2A = E2B

16: if S 1A contains sB then

17: S 1A = S 1A\sB

18: S 1A = S 1A ∪ sA

19: end if

20: if S 2A contains sB then

21: S 2A = S 2A\sB

22: S 2A = S 2A ∪ sA

23: end if

24: S = S \sB

25: end while

reduction by fitting more points or evaluating multiple circu-

lar masks with different radii. Both methods yielded good re-

sults. The fitting based algorithm must be implemented as total

least squares fitting instead of simple least squares as noise is

attributed to both x and y coordinates not only y. We create

cornerness values from the angle between the two fitted lines

(Equation (5) ). To eliminate multiple detected points in a

small region non-maximal suppression is used (Algorithm 4).

Notice that a small amount of noise was added to the val-

ues previously to avoid having multiple equal maximal values.

To evaluate the suppressed cornerness values, non-suppressed

values are calculated in a specified radius around the exam-

ined point. In case the examined point returned the maximal

value in the region the value is preserved otherwise set to 0.

c = |π −max(|αi − βi|)i| + ε ∗ noise (5)

N∗
4
(p, P) (p ∈ P) denotes the 4-adjacent neighbors of point p:

N∗
4
(p, P) = ({q|0 < dist(p, q) ≤ 1} ∩ P).

3.5 Object corner classification

During the interpretation of the skeleton images for corner

detection we use the following assumptions:

• Skeletons have corners or change direction near roof edges.

• Jump edges are near simple segment endpoints (endpoints not

connecting other segments).

Algorithm 4 Pseudo code of non-maximal suppression algo-

rithm

1: Input: center point p, segment s(E1, E2, P), radius r

2: Output: non-maximal suppressed value v

3: Pprocessed = p

4: pl = p, pr = p

5: v = Evaluate(p)

6: i = 0

7: while pl , ∅ ∧ pr , ∅ ∧ i ≤ r do

8: pl = f irst(N∗
4
(pl, P\Pprocessed)

9: Pprocessed = Pprocessed ∪ pl

10: pr = f irst(N∗
4
(pr, P\Pprocessed)

11: Pprocessed = Pprocessed ∪ pr

12: if Evaluate(pl) > v ∨ Evaluate(pr) > v then

13: return 0

14: end if

15: i = i + 1

16: end while

17: return v

We use the previously extracted data such as segments, end-

points, skeleton corner points in the conditions of different types

of corner occurrences. Figure 6 and Figure 7 present the typical

corner types.

• Type A: these corners usually appear or disappear as detached

patches in the range layers.

◦ If circle and number of points in the segment is

nsegment < nCircleMax.

◦ If linear and number of points in the segment is

nsegment < nLinearMax and both endpoints are simple endpoints.

◦ Pixels around the segment are only closer or further.

◦No step edge is inside a radius from the segment center.

◦ Range layer skeleton segment corner points exist:

dist(p, pcenter) < rth ∧ |Z(p) − Z(pcenter | < Zth. This condi-

tion is needed to exclude sphere-like objects showing up as

"islands" in the range image layers

◦ Corner point is the center of mass of the segment.

• Type B: these corners appear when an edge runs into a smooth

surface.

◦ Both endpoints have more than one con-

nected segments or circular segments (ns(E1,2) >

1 ∨Circle(Connected(E1,2, 1) = 1).

◦ Number of points in the segment is less than a thresh-

old (nsegment < nConnectingMax).

◦ Corner point is the center of mass of the segment.

• Type C: these corners appear as direction changes in the step

edge layer skeleton segments.

◦ Corners are where segment points have a cornerness

value larger than a threshold. Non-maximal suppression is

applied.

• Type D: these corners appear where a crease edge point is near

Per. Pol. Elec. Eng. and Comp. Sci.14 Viktor Kovács / Gábor Tevesz



a step edge. This suggests the two edges intersecting resulting

in a corner. Due to the special view angle the step edge does

not produce a significant change in direction.

◦ Function (6) is evaluated at each step edge point

and non-maximal suppression with thresholding is applied.

Crease edge points are taken into consideration only if the

depth difference is less than a threshold. This results in points

on the step edge that have crease edge points closest.

dsc(pstep) = max(dist(pstep, pcrease)−1)|∣∣∣R(pstep) − R(pcrease)
∣∣∣ < Zth

where pcrease ∈
{
∀crease edge points

} (6)

• Type E: these corners appear where a step edge breaks runs

into a surface connecting to a crease edge. Due to the skele-

tonization and depth difference thresholding when identifying

step edges, the endpoints of step edges are misplaced.

◦ Range layer segment breakpoints and endpoints are

identified around step edge skeleton endpoints. The furthest

breakpoint is found which is closer than the step edge segment

endpoint. A range layer segment endpoint is identified which

is closest to the layer that is no f f set quantization steps further

than the breakpoint. no f f set is an arbitrary number based on

the quantization levels, step edge threshold, etc. This point is

identifies the corner point.

• Type F: these corners are (perhaps distorted) cone type cor-

ners. The detection of these corners are omitted in this pa-

per and are subject of further research. Sphere-like objects

must be omitted as these objects do not contain any real cor-

ner points.

Points that are close to the image borders should be omitted.

a b c

d e f
Fig. 6. Corner types: bold lines indicate jump edges, dashed lines indicate

crease edges.

4 Evaluation

In this section we evaluate the performance of the algorithm.

Both synthetic and real world captured data are used. Data was

captured based on a structured light based sensor.

Fig. 7. Corner types: examples from range images.

4.1 Synthetic range image

The previously described algorithm was applied to test im-

ages. Results from the example image (with 93 range levels) is

shown in Figure 8. Out of 11 real corners all were found. Addi-

tional 6 points were detected as corners. From these 6 points 4

were due to the sphere objects in the image. Spheres do not con-

tain corners, they were added to the test image for evaluation

purposes. Some points were detected multiple times. A post

processing step could be introduced to eliminate such cases.

Fig. 8. All true corners were found. False true detections are circled.

The same image was also tested at even lower depth levels

(35 layers). Still all the corners were found. Two false positive

corners appeared around spherical objects.

We also evaluated the sensitivity of the detected corners by

changing the number of layers. Figures show the real number of

corners in the image (ground truth), the number of true positive

detections (corners may be identified several times improving

reliability), the number of different true positive corners (all cor-

ners counted once), the number of false positive and false nega-

tive detections. Results show that increasing the number of lay-

ers over a point only marginally benefits the number of detected

different corners. The total number of detected corners increases

gradually (as the same corners are detected several times). This
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Fig. 9. Corners detected in image having even less range levels

effect may be used to improve credibility of corners detected

several times in a small radius.

Figure 10 shows a favorable situation: the total number of de-

tected corners are increasing with using more and more layers.

So does the number of different corners until it reaches a max-

imal value slightly lower than the ground truth. The number

of improper detections (false positive and negative) both remain

low independently from the number of layers.

Figure 11 presents a much less favorable situation. This im-

age contained not only box type of objects but spheres as well.

As the number of layers increases, details are show up. Con-

tinuous large layers break into several parts not suitable for this

method. The spherical objects also mislead the detector.
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Fig. 10. Impact of changing the number of layers to the corner detection (a)

4.2 Captured range image

The range images were captured using a structured light based

sensor. The produced image contained only approximately 50

different layers. The raw image suffered from significant noise

which was successfully reduced due to the dilation-thinning pro-

cedures. Most of the true corners were found but due to the

shadows introduced by the sensor (due to the principal of the op-

eration) led to inaccurate step edge detection. These false edges
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Fig. 11. Impact of changing the number of layers to the corner detection (b)

appeared around the shadows interfering with the conditions. To

reduce the effects of the shadows, simple inpainting was used.

Pixels in the shadow areas where no distance data was avail-

able were filled with the distance data of the first non-shadow or

missing pixel’s data to the right in the row. The direction was

based on the principal of operation. This simple operation elimi-

nated the false step edges around shadow areas while it also kept

real step edges if present. This row by row operation distorted

layers, however in case of small missing patches or shadows ar-

eas, these were filtered successfully. Dilation was used as well

to reduce noise. Compared to synthetic images, a slightly larger

filter radius was used for captured images.

Here we present the results on three test images. Figure 12

shows two boxes and the detected corners. The image consists

of only 45 layers. Out of 15 corners 12 were identified success-

fully. The furthest points on the top of the boxes were missed

due to the small breakage angles of jump edges. The rest of

corners were identified successfully sometimes even multiple

times. Depending on the error threshold 5-6 false positive cor-

ners were found (1 type B, 1 type D, 3 type E).

Figure 13-14 show the results of test image (b) and (c). Test

image (b) consists of 42 range layers. Out of 14 corners 11 were

identified. The number of false positive corners is 7. In test

image (c) the method found 9 out of 11 corners. Also 4 false

positive detections also appeared.

5 Conclusions and future work

The algorithm utilizes many parameters which must be set up

in advance based on the sensor properties (such as measurement

distance, quantization etc.). It is subject of further research to

optimize these values based on image contents to minimize user

defined parameters. The algorithm performed very well in syn-

thetic conditions. Some special cases should be handled in the

corner detection condition sets as well. Ideal images showed

that increasing the number of layer beyond a point does not pro-

vide any benefits, it is reasonable to compress range images be-

fore applying this algorithm.
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Fig. 12. Test image (a) (real)

Fig. 13. Test image (b) (real)

Real data suffers from very low number of range levels, sig-

nificant noise and other distortions which misled the corner de-

tector. Due to the principal of operation shadows may appear

near object borders introducing false step edges. Further re-

search must be carried out to improve robustness in such con-

ditions. Also parameter values required by the algorithm should

be adaptively based on image content.

Future work also aims to give a descriptor generation method

and utilize color information during corner detection. In many

cases both information sources (range and intensity) are needed

to detect and verify corner points. We look forward to uti-

lize such an algorithm for SLAM (simultaneous localization and

mapping) applications in mobile robotics.
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