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Abstract

The purpose of our study is to prove that eliminating bone

shadows from chest radiographs can greatly improve the accu-

racy of automated lesion detection. To free images from rib and

clavicle shadows, they are first segmented using a dynamic pro-

gramming approach. The segmented shadows are eliminated in

difference space. The cleaned images are processed by a hybrid

lesion detector based on gradient convergence, contrast and in-

tensity statistics. False findings are eliminated by a Support Vec-

tor Machine. Our method can eliminate approximately 80% of

bone shadows (84% for posterior part) with an average seg-

mentation error of 1 mm. With shadow removal the number of

false findings dropped from 2.94 to 1.23 at 63% of sensitivity for

cancerous tumors. The output of the improved system showed

much less dependence on bone shadows. Our findings show that

putting emphasis on bone shadow elimination can lead to great

benefits for computer aided detection.
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1 Introduction

Lung cancer is one of the most concerning health problems

of the developed world. Extremely high mortality makes it the

most common cause of cancer death. It was recently shown

that mortality can be reduced with an early diagnosis [1] but

it should be done in a mostly symptomless stage of the disease.

Therefore screening has the potential to increase the success rate

of the treatment. A screening method has to be affordable and

side effect-free while being able to detect most lesions, in other

words to have high sensitivity. One of the possible methods for

screening is chest radiography as it is widespread, cheap and

poses the subject to only a low radiation dose. Its main disad-

vantage is the moderate sensitivity. According to previous stud-

ies, 30% of lung nodules can be overlooked on chest radiographs

[2]. Other results have shown that sensitivity can be improved

by using a CADe system [3–5].

An extensive amount of CADe systems have already been

published for the problem of lung nodule detection. Only a few

of the recently published ones are [6–12]. A brief description of

them can be found in [13]. The most important problem of exist-

ing CADe systems is the low positive predictive value. In other

words high sensitivity can only be reached at the cost of many

false detections. Most of these published systems can detect 60-

70% of cancerous tumours, while they also mark roughly four

false positive regions on each image. This detection capability

allows them to be used only as a second reader. Usability of

CADe systems can be improved either by reducing the number

of false detections – to give the examiner less extra work –, or

by finding more true lesions – to increase sensitivity. The detec-

tions of CADe should be also complementary to the findings of

radiologists, to better improve sensitivity when radiologists and

CADe work in cooperation.

Low detection capability on chest radiographs is partly due to

overlapping anatomical structures like shadows of bones. The

presence of the ribcage and the clavicles on the radiographs

can cause two common detection errors. They may conceal

the shadows of abnormalities by darkening the image thus re-

ducing contrast resulting in false negative cases. On the other

hand, rib crossings on the radiographs sometimes mimic con-
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vex structures appearing to be real lesions. This can introduce

false positive findings. Both of the two effects seriously affect

human examiners and CADe systems too; however, the hiding

effect is problematic mostly to radiologists and physicians while

the CADe system suffers rather from false positives due to rib

crossings. We claim that properly compensating bone shadows

has a great potential to reduce the number of a CADe system’s

false findings.

Two main approaches are known for bone shadow removal.

The first one is a hardware approach eliminating shadows based

on two images taken. It is called dual-energy subtraction radiog-

raphy (DESR) and requires special hardware [14]. This method

is not discussed in this paper. The other approach does only

software post-processing thus it works well together with con-

ventional X-ray machines.

There were several previous attempts to eliminate bone shad-

ows by software, although the problem is far from being solved.

Two main approaches exist. The first one directly suppresses

bone shadows by applying a – usually learning – filter, like in

[15] and [16]. This requires training samples from DESR meth-

ods; however, unsupervised methods also exist, like [17].

The second approach decomposes the problem into segment-

ing the bone shadows followed by the removal itself. Segmen-

tation in its simplest form involves fitting of a ribcage model to

the input image. [18] used a parabolic model and least squares

fitting. [19] preferred a mixed second order model and utilized

the Hough transform for fitting. It is one of the few solutions

targeting also at the anterior part of ribs as most solutions only

segment the more visible posterior part. [20] was the first to

restrict the search to the viewable lung field and to use vertical

intensity profiles for the search. They involved rule-based meth-

ods and introduced a refinement step after fitting the model. [21]

was the first to utilize dynamic programming for fitting vertical

profiles. Their refinement method used active contours. [22]

created a statistical model for the whole ribcage described by 10

parameters. [23] proposed to fit a point distribution model. [24]

suggested a pixel-wise classification method very different from

previous approaches.

Bone shadow removal after segmentation usually involves the

estimation of the bone intensity profile based on the contrast of

the previously determined edges and then the subtraction of this

estimated profile, like implemented in [25] and [26]. A refine-

ment of this method is used in [27].

Recent studies confirmed that bone shadow suppression can

help human examiners in finding lung nodules [28–30]. Al-

though [31] recently compared the effect of different bone

shadow elimination techniques to a commercially available

CADe system, they took a different approach. They did not

involve a solution completely omitting bone shadow removal

as the CADe system they used with unprocessed images sup-

pressed the bones at a later point in the process. Therefore their

method was not able to measure the general usefulness of bone

shadow removal. They also did not re-train the CADe system

for the different kind of images which is a fundamental step in

our approach.

We expected that cleaning the images helps our existing

CADe scheme to produce fewer false positive findings. As

the area originally hidden by bone shadows cannot be perfectly

restored based on a single radiograph, we also created fea-

tures helping a supervised classifier to eliminate falsely detected

structures caused by bones. In the sequel, we describe our ex-

isting CADe scheme, the bone shadow removal algorithm and

the modifications to improve detection. Afterwards, we demon-

strate the results and compare the system to the one without

shadow removal.

2 Materials and Methods

2.1 Overview

The main goal of our CADe system is to find as many lesions

as possible on chest radiographs with the lowest number of false

findings. The targeted lesions are primarily lung nodules ap-

pearing as approximately round shaped dark shadows. These

objects are often signs of cancerous tumors. We also try to find

infiltrated areas. These are irregularly shaped shadows with less

definite border and can also be signs of lung cancer or other in-

terstitial lung diseases (ILD), often tuberculosis (TB).

Our method for finding lung lesions can be separated into

three major steps: image segmentation, image filtering and false

positive reduction. Figure 1 shows an overview. First, the

anatomical structures of the chest are segmented. This involves

separating the viewable lung field and the segmentation of bone

shadows including the clavicle and the full ribcage. There are

several satisfactory solutions for the problem of lung field seg-

mentation [24, 32]. Our own algorithm delineates not only the

outline of the lung fields, but provides the full boundary of the

ribcage as well, as described in [33]. The viewable area is used

to assist ribcage segmentation and to reduce the possible set of

locations for lesions, as we only target the ones partly or com-

pletely inside this area.

The method we use for the segmentation of the clavicles is

discussed in [34]. The ribcage segmentation algorithm is based

on [35] and some details are discussed in [36]. Here we only

provide an overview and a detailed evaluation of ribcage seg-

mentation.

In the second major step various image filters are run to en-

hance the visibility of lung lesions. The first filter uses the result

of bone segmentation to suppress their shadows. Then three dif-

ferent filters are run in parallel to enhance different types of lung

lesions. A Constrained Sliding Band Filter (CSBF) is utilized to

detect small and circular lung nodules. A method referenced as

Large Nodule Filter (LNF) is responsible for enhancing large

and also circular nodules. Last, an Outlier Area Filter (OAF)

identifies and segments amorphous but high contrast suspicious

areas. The enhanced regions of the image are then extracted by

thresholding and lesion borders are determined.

In the last step a large fraction of false findings are removed
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Fig. 1. The main steps of the radiograph analysis.

by supervised learning methods. A hierarchy of SVM-s classi-

fies the candidates based on many texture and geometry features.

2.2 Ribcage segmentation

Looking at chest X-ray images an apparent regularity can be

observed at first glance: the ribs have a quasi parallel arrange-

ment. So it seems feasible to model the ribcage somehow. Even

though the two sides of the ribcage appear to be symmetric, it is

hard to select properties of this symmetry which stand for all the

instances of a wider image set, where occasional disorders and

irregularities may occur. Therefore we handle the two sides of

the lungs independently.

To build a complete model - as in [23] and [22] - which is

capable of enumerating the ribs one-by-one and to specify their

positions would require too many parameters and still would not

be accurate enough to handle all the anomalies that may occur

in a wider image set. The elimination requires high accuracy,

thus we chose a different approach. We restrict our model only

to the slopes of ribs. Our model assigns a slope to every point

of the area of the bounding box of a lung field, this way it ne-

glects the position information of the ribs. These slopes can

be described by a two dimensional function. Previously we in-

vestigated the applicability of analytical functions like rational

polynomials [35], but application of a simple smooth slope field

map resulted in better overall performance. The optimal slope

field is searched around an average slope field by fitting small

arcs to the image gradients.

This slope field can be applied to align and rescale vertical

intensity profiles. This approach goes back to the early times of

ribcage segmentation [20]. By aligning these profiles we get a

simple one dimensional signal on which local maxima and min-

ima selection gives the vertical positions of the upper and lower

borders of ribs. This selection process is by no means straight-

forward, because there can be much more extrema than needed.

To tackle this problem we incorporated various correlations be-

tween the position of a rib border and the distances between this

and its neighbouring rib borders. This statistics was then formu-

lated into a dynamic programming problem, which provides the

positions of the rib borders. From these positions approximate

rib borders can be generated based on the aforementioned slope

field. The final rib borders are then obtained by refining these by

a special dynamic programming based active contour algorithm.

The main steps can be followed in figure 2.

The main advantage of using a slope field over a global shape

model is, that the slope field is almost independent of the rib

thickness and spacing information of the ribcage, therefore the

search for the complete ribcage can be divided into two distinct

subproblem, which reduces the complexity of the overall search.

This solution works well for the posterior part of the ribs,

which is more visible on chest radiographs, but for the anterior

part we applied a different procedure. It launches a set of spi-

ral curves from the ribcage boundary and iteratively fits them to

the image contours by a dynamic programming active contour

algorithm. This finds the upper borders, while the lower bor-

ders are attached by a statistical point distribution model, and

the final borders are got after the same refinement step used for

the posterior parts. The details of the whole complex ribcage

segmentation algorithm is written in a forthcoming publication.

2.3 Bone elimination

The segmentation data is used to remove the bone shadows

from the images in order to enhance the visibility of the lung

structure. The elimination is based on Simko’s work [27]. He

smoothed the bone borders on vertically differentiated images,

then subtracted the smoothed areas from the original differenti-

ated image. After an integration step he got the bone shadow

free image. It worked quite fair on the clavicle, but close to the

lateral parts of the ribs it fails. To overcome this we differentiate

perpendicular to the bones’ mid-line.
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a. Average slope field b. Fitted arcs c. Fitted slope field d. Possible curves e. Selected curves

Fig. 2. Overview of posterior ribcage segmentation. Arcs are fitted to the

image to fine tune an average slope field, then some of the curves generated

from this slope field are selected. (The final refined rib borders are not included.

The difference between Fig. 2/c. and Fig. 2/a. is difficult to notice, but it is

significant for the further steps. )

2.4 Lesion detection

The main steps of lesion detection are preprocessing, lesion

enhancement by the CSBF, LNF and OAF filters, thresholding

and lesion segmentation. In the sequel we give a brief descrip-

tion of these methods, while a more detailed presentation can be

found in [13].

In the preprocessing step the bone shadow eliminated images

are first subsampled to 512 lines of height while keeping the

aspect ratio to reduce running time. Then, to spread pixel inten-

sities in [0, 1], the median value of the pixels in the segmented

lung field and the deviation from the median is set to empirical

values of 0.35 and 0.18 respectively by scaling and translation

of the pixel values.

The first nodule enhancer, the CSBF is a gradient convergence

based filter, also a member of the Convergence Index filter fam-

ily. It is our slight modification of the Sliding Band Filter de-

scribed in [37]. It is mainly capable of enhancing small and cir-

cular structures. In our current setting it aims at structures with a

diameter between 5 mm and 30 mm. The algorithm first gener-

ates image gradients with a Sobel filter, then maps the gradient

vector lengths by a bounded ramp function r.

r(x, a, b) =


0 x < a

x − a a ≤ x < b

b − a b ≤ x

, (1)

where x is the original vector length, a and b are parameters. In

our case a is set to 0 and b is set to 0.0025, a length above which

the gradient vector is unlikely to be noise. After the mapping

the CSBF filter output can be calculated as follows.

CS BF(x, y) = max
Rmin≤r≤

Rmax
c

1

N

N∑
i=1

Cmaxir, (2)

Cmaxir = max
r≤n≤r∗c

1

d

n+d∑
m=n

cos θimr(|gm,i|, a, b), (3)

where Rmin, Rmax are the bounds of the target object radius, c is

the shape constraint coefficient, N is the number of radial direc-

tions, d is the width of the band, gm,i is the mth gradient vector

along the ith radial direction, θim is the angle of gm,i and the cor-

responding radial vector and a and b are the same as above. Rmin

and Rmax were set to match the smallest and larges nodules to

be found. c controls the maximum distortion from a perfectly

circular shape and found out to be optimal around 1.2. N was

set to 16, providing a good compromise between precision and

speed. The parameter d affects noise sensitivity and was set to

5.6 mm. An example result can be seen in Figure 3a.

We created the LNF to enhance nodules with a diameter be-

tween 30 mm and 75 mm and high contrast, while letting them

to lie almost completely outside of the viewable lung field. The

latter feature enables it to find nodules mostly under the shadow

of the heart or the diaphragm. The algorithm first performs lo-

cal contrast enhancement (LCE) [38], but taking into account

the border of the viewable lung field. The output - G(x, y) - is

given by the following equations.

G(x, y) =
1

1 − exp [−(F(x, y) − 1
|R(x,y)|

∑
(u,v)∈R(x,y) F(u, v))]

(4)

R(x, y) = (5)

=

 {(u, v)|(u − x)2 + (v − y)2 < 2r2} ∩ L (x, y) ∈ L

{(u, v)|(u − x)2 + (v − y)2 < 2r2} ∩ /L otherwise

where F is the original image, L is the viewable lung field and

r is the radius of the targeted nodule. The trimming of R with L

ensures we have a homogeneous area completely inside or out-

side the lung as the contrast in these two regions can be much

different. The rationale behind using the logistic function is to

get a result in between local normalization and local threshold-

ing.

The second and last step of LNF is a top-hat filtering, which is

a simple convolution by a cylinder shaped kernel with radius r.

In our implementation the side of the cylinder is slightly tilted,
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so we get a cut-cone shaped kernel rather than a cylinder. This

reduces the noise sensitivity of the method and also better en-

hances not perfectly circular objects. The LNF algorithm is run

in multi-scale with four different values of r to find nodules of

different size. A typical positive result of the LNF can be seen

in Figure 3b.

The filter created for detecting amorphous structures is best

described as an intensity based novelty detector. Based on a

training set of healthy patients it learns the distribution of the

pixel values for each coordinate in the lung where the coordinate

system is described later. An input image is first processed by a

median filter to eliminate pixel size noise. Then every pixel with

an unprobable value – darker than 97% of the training samples –

for the given location is marked. The last step applies morpho-

logical opening and discards small hits close to the lung border.

This is to eliminate false results caused by small structures and

lung segmentation errors. The remaining outlying regions are

returned as suspicious areas. An example result of the OAF can

be seen in Figure 3c.

To describe the coordinates for the OAF we created a system

called lung polar coordinate system. The origin (O) is defined

as the center of gravity of the lung masks marking the viewable

lung areas. For a given point p the first coordinate ϕ is the angle

of the vector
−−→
Op with the vertical axis, mapped to [−π, π]. The

second coordinate is a normalized distance d(p, ϕ) depending on

the location and the first coordinate. Considering ep the half-line

starting from the origin and crossing p, d is the following.

d(p, ϕ) =
||p − I1ϕ||

||I2ϕ − I1ϕ||
, (6)

where I1 is the closest while I2 is the farthest intersection of ep

with the lung mask, ||x|| denoting the Euclidean distance. ϕ and

d are quantized to 200-200 discrete values.

After the three lesion enhancer filters have been run the out-

puts are thresholded to get the lesion candidates. For the CSBF

a dynamic threshold is used which is set to produce 35 candi-

dates for each image. The LNF output is thresholded by a con-

stant which typically produces two to three candidates per im-

age. From the OAF output all the marked regions are collected

yielding on average one result per image.

The segmentation of the lesion candidates is different for each

enhancer output. The OAF generates area borders as a side prod-

uct as connected regions will be candidates. For the CSBF and

the LNF nodule segmentation is done by an optimization algo-

rithm with preference towards circular shapes while adjusting

the border to high contrast discontinuities. The optimization is

done using dynamic programming.

2.5 False positive elimination

To reduce the number of false candidates generated in the le-

sion detection step a Support Vector Machine classifier (SVM

or SVC) is utilized [39]. The efficient application of an SVM

requires good quality training data, a careful choice of kernel

function, an appropriate input vector, and hyperparameter tun-

ing of the generalization coefficient (often denoted by C) and the

kernel parameters.

Our training data comes from a radiograph database of 282

images described later. Positive samples of lesions are both the

validated findings of pulmonologists and radiologists, and also

the candidates found by the lesion detector close enough to the

validated findings. Negative samples are candidates found only

on healthy images. On positive images, the candidates that are

far from the validated findings are not used for training. This

was necessary as physicians tend to mark only some of the lung

nodules when the image contains too many of them. Keeping

negative samples only from healthy images improved classifier

performance on independent test data. Exact thresholds used for

training data generation are described in [13]. As 30 times more

negative samples were available than positive ones, we used a

cost-sensitive version of the SVM. Balancing is achieved by us-

ing different C values for positive and for negative samples.

As for the kernel, the isotropic Gaussian function was chosen

for the SVM. The input vector of the kernel consists of various

features describing texture, geometry and location. The final set

of features described in section 2.5.1 is a result of a simple for-

ward selection algorithm selecting from 168 implemented fea-

tures. As the relevant features turned out to be different for the

output of the three nodule enhancing algorithms, separate clas-

sifiers are used for each result set. This improves classification

performance due to fewer irrelevant features and also reduces

training time.

The two hyperparameters of the resulting SVM – C and the

width parameter (σ) of the kernel – are tuned by an iteratively

refining grid search. Cross-validation was used on image level

to prevent overfitting.

2.5.1 The features for classification

The aforementioned feature selection algorithm identified 27

relevant features out of the total 168 we implemented. The short

description of these features is the following.

• Mean and maximum of the average fraction under the mini-

mum (AFUM) filter inside nodule border [40].1, 2

• The linearity of nodule border transition. This considers the

intensity profiles perpendicular to the nodule border and cal-

culates the error to the best fitting linear approximation.1

• The contrast (average intensity fraction) close to the deter-

mined nodule border.1

• The contrast between the nodule parts inside and outside the

viewable lung field.1

• Difference of minimum values inside the nodule and in the

surroundings of the nodule normalized by the intensity range

in the lung field.1

• Ratio of nodule and lung field mean intensity.2
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a. A CSBF finding. b. A LNF finding. c. An OAF finding.

Fig. 3. Typical findings of the three lesion detectors. From left to right : a. A CSBF finding., b. A LNF finding., c. An OAF finding.

• Difference of nodule and lung field intensity mean.2

• Horizontal coordinate measured from the closest point of the

lung field to the spine.1, 2

• Vertical coordinate measured from the topmost point of the

viewable lung field.1

• LPCS distance coordinate described in section 2.4.1, 2

• Standard deviation of a derivative of Gaussian filter output in

different directions [9]. The width parameter of the Gaussian

function (σG) was 3 mm.1

• Mean of a Laplacian of Gaussian (LoG) filter for the center

of the nodule (σG = 1.5mm, 6mm) [9].1, 2

• LoG filter value at nodule center (σG ∈ 3mm, 6mm).1

• LoG filter mean value inside nodule border (σG ∈

1.5mm, 3mm, 6mm).1

• LoG filter minimum value inside nodule border (σG ∈

1.5mm, 6mm).1

• LoG filter standard deviation inside nodule border (σG =

3mm).1

• The rank of the candidate in a list sorted by enhancer output

intensity.1

• Output of the LNF enhancer using the nodule border as a ker-

nel for the top-hat filter instead of the original round shaped

one.1

• Nodule enhanced image (LNF output) value.2

• Average of contrast. Described by [41] as the 2nd feature (and

referenced as H2).2

• Average of difference variance (H10).2

• Average of an information measure of correlation (H13).2

• Average of sum entropy (H8).2

• Joint entropy version one (H12-H13).2

• Joint entropy version two (H12-H13).2

• Robustness of nodule border. It restarts nodule segmentation

from centers near the original one and compares the resulting

borders.2

• Similarity of histograms inside and outside nodule, near the

border. Similarity is simply the number of bins for which

the difference between inside and outside is greater than a

predefined value.2

In the list 1 and 2 means that the feature is used for the can-

didates of the CSBF and LNF respectively. For the OAF the

feature selection could not be run due to the small number of

positive samples. As the findings of the LNF and OAF have

some similar properties, we decided to use the same feature set

for both algorithms (except for the "robustness of nodule border"

feature as the OAF has a different segmentation method).

To better exploit the results of bone segmentation, three new

features were created based on the following observations. First,

density variations in bone structure can appear as intensity ex-

trema and may produce false positive findings. Second, areas

where bones overlap on the 2 dimensional summation images

appear as dark, approximately rhomboid shaped structures fre-

quently recognized by the system as lesions. Third, in the cases

where bone shadows cause false positive candidates, the border

of the candidate follows the edge of the bone in a relatively large

portion. These three observations motivated the following three

features respectively.

The first feature calculates the area fraction of the nodule

overlapping with a bone structure. The feature can be described

formally as

BoneOverlapi =
|{(x, y)|(x, y) ∈ Ci

⋂
(
⋃

j B j)}|

|{(x, y)|(x, y) ∈ Ci}|
, (7)

where Ci contains the points of the ith candidate while B j means

the set of points inside the jth bone structure. |.| denotes the size

of the sets. The second feature calculates the overlap of candi-

dates with bone crossings – the areas where two or more bone
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segments overlap with each other. Using the previous notation,

the formula is

BoneXOverlapi =
|{(x, y)|(x, y) ∈ Ci

⋂
(
⋃

j,k(B j

⋂
Bk))}|

|{(x, y)|(x, y) ∈ Ci}|
. (8)

The third feature calculates the fraction of the nodule perimeter

that runs near to a bone shadow border. It can be calculated as

FollowBoneEdgei =

=
|{(x, y)|(x, y) ∈ δCi,min j d((x, y), δB j) < 1.5mm}|

|{(x, y)|(x, y) ∈ δCi}|
, (9)

where δCi and δB j are the endpoint set of Ci and B j, while d is

the Euclidean distance.

2.6 The radiograph database

We tested the lesion detection on a private chest X-ray

database containing images of 407 patients where 259 of the

cases contained at least one malignant lung nodule. Nodule di-

ameter ranged from 2 mm to 98 mm, the average was 23 mm.

Most of the malignant cases were validated by CT. The images

came from a TOP-X DR series digital X-ray machine by In-

nomed Medical Zrt. The detector used a maximal resolution of

3000× 3000 pixels with 0.16 mm pixel size in both dimensions.

For the evaluation of bone segmentation we used a subset

of 30 images for which reference bone contours were avail-

able from a human observer. Out of these images five were

segmented also by another independent observer for the inter-

observer tests.

For the lesion detector we separated 282 images for training

and cross-validated testing and kept the remaining 125 images

purely for testing. This way we could generate results for all

407 images without overfitting.

2.7 Bone segmentation

Numerous ways of measuring the quality of ribcage segmen-

tation have been applied in the literature. Different measure-

ments tell different things about the results. To make our results

comparable to others we had to evaluate them in various ways.

First, we show detailed results when using a strict method in-

volving the pairing of found and reference bones. Then we show

the results of a more permissive test also used in the literature,

which simply uses overlap with minimal pre-processing.

The first test was conducted on a set of 30 images. Previously

these images were manually segmented by a human observer.

His task was to delineate all the visible ribs. 5 of these images

were also segmented by another independent observer. There

was no accord between the two observers in how many ribs they

have found on each image. The ribs in the abdominal region

are often obscured, and some of them are cropped by the image

borders.

Our current algorithm segments the anterior and posterior

parts of the ribs independently, but the human observers de-

lineated the whole ones. There is a problem with this differ-

ence, the Jaccard index (J(A, B) =
|A∩B|

|A∪B|
) becomes difficult inter-

pret, as the intersection between the areas will always be much

smaller than their union, and the perfect solution will not get

100

The rib shadow elimination makes sense mainly above the

lung fields, but to make it comparable with some other results

in ribcage segmentation [23], [24] we have done two different

measurements. First, we simply compared the posterior and an-

terior parts by their manual counterparts, then we trimmed these

by the approximated complete lung field. In contrast to the gen-

eral concept of visible lung fields we included the area of the

heart as well.

Our results can be seen in Figure 4. We ordered the images

by their Jaccard index, and selected the worst, the best and the

median from the ordered list. We did this ordering separately for

the posterior and the anterior parts, and separately for the lung

field trimmed and the full results as well.

We did some quantitative measurements as well, which can

be seen on table 4 (average values), and on table 1, 2, 3 for

the worst, median and best images respectively. To make these

numbers easier to interpret we included the respective images as

well (Figure 4).

The segmentation works independently on the left and right

side, so we measured the results separately and the resulting

numbers should be interpreted per lung side. The output of our

algorithm does not provide a numbering for the ribs, only returns

a simple set of ribs. Therefore the evaluation process had to han-

dle the problem of finding the corresponding segmented rib for

each reference rib. This pairing was done based on the Jaccard

index. Every reference rib got a corresponding segmented rib,

even if that segmented rib belonged to more than one reference

rib.

We were interested in how many of the 12 ribs our algorithm

has found. For this we defined a rib being found when the Jac-

card index was above a threshold of 0.55. It may appear to be

low, but even the inter-observer results were between 0.61 and

0.84. According to Table 4 our algorithm found on average 5.93

posterior and 3.6 anterior ribs on an image, but when the con-

sidered area of both the segmented and the reference bone are

restricted to the lung fields the numbers go up to 6.16 and 4.3

respectively. This increase can be explained by the fact, that

we got higher Jaccard indices for the restricted area, because

some parts of the ribs (both the reference and the segmented)

are trimmed by the same curve (lung outline), which reduces

the part of outline where the two area can differ.

We call a reference rib missed if there is no corresponding

segmented rib which reached the threshold. We call a segmented

rib false if there is no reference rib for which the Jaccard index

is above the threshold. The average Jaccard index in Table 5

is calculated by simply averaging the values over the ribs, but

a smaller missing rib can cause less harm for the elimination

than a longer one. To incorporate this effect we introduced a
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Tab. 1. Worst case images of bone segmentation

results when CADe compared with observer1. (Fig. 6

left)

Posterior Anterior

inside lung full image inside lung full image

Number of Reference Ribs 8,50 10,00 8,00 10,50

Number of Segmented Ribs 7,00 6,50 3,50 5,50

Found 5,00 5,50 0,50 0,00

Missed 3,50 4,50 7,50 10,50

Found per All 0,59 0,55 0,06 0,00

False 2,00 1,00 3,00 5,50

False per Segmented Ribs 0,27 0,14 0,50 1,00

Average Jaccard Index 0,49 0,41 0,10 0,09

Weighted Jaccard Index 0,46 0,36 0,07 0,07

Average Sensitivity 0,60 0,48 0,15 0,22

Weighted Sensitivity 0,67 0,46 0,13 0,16

Tab. 2. Median case images of bone segmentation

results when CADe compared with observer1. (Fig. 6

middle)

Posterior Anterior

inside lung full image inside lung full image

Number of Reference Ribs 7,50 10,00 7,50 10,50

Number of Segmented Ribs 6,00 8,00 5,50 6,50

Found 6,00 6,00 4,50 1,50

Missed 1,50 4,00 3,00 9,00

Found per All 0,79 0,60 0,59 0,15

False 0,00 2,00 1,00 5,00

False per Segmented Ribs 0,00 0,25 0,20 0,79

Average Jaccard Index 0,63 0,53 0,46 0,31

Weighted Jaccard Index 0,62 0,49 0,43 0,33

Average Sensitivity 0,72 0,61 0,60 0,37

Weighted Sensitivity 0,81 0,62 0,65 0,48

Tab. 3. Best case images of bone segmentation

results when CADe compared with observer1. (Fig. 6

right)

Posterior Anterior

inside lung full image inside lung full image

Number of Reference Ribs 7,00 10,00 6,50 9,00

Number of Segmented Ribs 7,00 8,00 7,50 8,00

Found 7,00 7,50 4,50 5,00

Missed 0,00 2,50 2,00 4,00

Found per All 1,00 0,75 0,70 0,56

False 0,00 0,50 3,00 3,00

False per Segmented Ribs 0,00 0,06 0,39 0,38

Average Jaccard Index 0,81 0,60 0,64 0,48

Weighted Jaccard Index 0,82 0,63 0,67 0,48

Average Sensitivity 0,86 0,66 0,84 0,67

Weighted Sensitivity 0,88 0,72 0,83 0,67

Weighted Jaccard index, which is the following:

WeightedJaccardIndex =

∑
i |Ri

⋂
S i|∑

i |Ri

⋃
S i|
, (10)

where Ri denotes the area of the ith reference, and S i denotes the

area of the ith segmented rib. The simple averaged Jaccard index

is the following:

AverageJaccardIndex =
∑

i

|Ri

⋂
S i|

|Ri

⋃
S i|
. (11)

For the elimination it is important to have an accurate bone

outline. One can get relatively high Jaccard indices with low

outline accuracy, while if the outline is exactly the same, but the

reference rib is longer than the segmented one, the Jaccard index

degrades in a fast pace. To overcome this we introduced another

measure called Distance of Found. It is calculated by pairing the

points of the reference borders by the segmented borders. The

points without corresponding pairs are left out, and the average

distance between the points are calculated. The pairing is carried

out by launching perpendicular half-lines from the points of the

midline of the two curves, and finding the intersecting points.

E.g. for the untrimmed posterior ribs we got an average of

5.2 pixels, which means 0.83 mm in reality. These numbers are

close to the ones calculated for the inter-observer study, but it

should be noted that these were averaged over only the found

ribs. The distribution of these distances are shown in Figure 5.

Another figure of merit we calculated is the specificity and

sensitivity of the bone shadow segmentation based on area over-

lap. The area overlap is the size of the area that is included
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Tab. 4. Average bone segmentation results when

CADe compared with observer1.

Posterior Anterior

inside lung full image inside lung full image

Number of Reference Ribs 8,40 9,50 7,65 10,20

Number of Segmented Ribs 7,15 7,53 6,10 7,18

Found 6,23 5,90 4,00 3,40

Missed 2,18 3,60 3,65 6,80

Found per All 0,74 0,62 0,52 0,34

False 0,93 1,63 2,10 3,78

False per Segmented Ribs 0,12 0,20 0,35 0,53

Average Jaccard Index 0,63 0,53 0,48 0,35

Weighted Jaccard Index 0,63 0,48 0,44 0,33

Average Sensitivity 0,72 0,64 0,59 0,51

Weighted Sensitivity 0,79 0,65 0,60 0,56

Tab. 5. Inter-observer bone segmentation results

between observer1 and observer2.

Posterior Anterior

inside lung full image inside lung full image

Number of Reference Ribs 8,55 8,95 7,95 10,25

Number of Segmented Ribs 8,50 8,95 7,90 10,25

Found 8,10 7,80 6,90 7,40

Missed 0,45 1,15 1,05 2,85

Found per All 0,95 0,87 0,87 0,72

False 0,40 1,15 1,00 2,85

False per Segmented Ribs 0,05 0,13 0,12 0,28

Average Jaccard Index 0,77 0,71 0,73 0,63

Weighted Jaccard Index 0,78 0,70 0,73 0,69

Average Sensitivity 0,86 0,81 0,84 0,77

Weighted Sensitivity 0,87 0,82 0,85 0,82

in both the segmentation under investigation and the reference

segmentation. Sensitivity of a method or observer versus the

reference observer is the fraction of the overlap and the total

area of the reference segmentation, in other words the propor-

tion of correctly identified bone area according to the reference.

Specificity is the fraction of the overlap and the total area of the

method under investigation. One minus the specificity gives the

proportion of false positive bone area. We restricted the whole

calculation to the viewable lung field as the ribs below the di-

aphragm are often barely visible, misleading both the algorithm

and the human observers.

Table 6 shows the results of the segmentation tests based on

bone overlap. In the first column we compared the CADe results

to a reference human observer locating only anterior ribs. In the

second test the same human observer was asked to segment the

complete ribs including both anterior and posterior parts. The

third test involved two independent human observers both seg-

menting complete ribs. This inter-observer comparison shows

the obscurity of the problem and gives an approximate upper

bound to the achievable metrics for the CADe algorithm.

Comparing the 80.3% sensitivity for full ribs with the 94% of

the inter-observer result shows that the algorithm misses around

15% of the determinable part of the bone which equals to ap-

proximately one bone per lung field. Segmentiation of the pos-

terior part is even better with 84.1% sensitivity. Specificity of

90.3% ensures that the algorithm doesn’t produce much false ar-

eas. Furthermore, the usual error here is that the anterior rib seg-

mentation continues to follow a bone towards the mediastinum

even when it becomes hardly visible or not visible at all for a

human observer. In many of these cases the rib can be identified

retrospectively, thus these cases are rather the miss of the human

observer. Furthermore, we observed that the rib parts where the

CADe and observers disagreed are barely visible so these sec-

tions hardly disturb lesion detection. Sections with high contrast

are segmented with higher accuracy.

Figure 6 shows example results for rib segmentation and elim-

ination for the worst, an average and the best cases. It can be

seen that even for the worst segmentation the bone shadow elim-

inated image is adequate. Bone shadows are hardly visible and

other fine details are kept.

It is almost impossible to compare our results with other pub-

lished numbers as both the test samples and the methodology are

different. As an example in [23] the authors published 50% to

80% sensitivity for the posterior and 50% for the anterior part of

the ribs. These numbers best correspond to the Weighted Sen-

sitivity row in Table 4; however, only the first 10 ribs were as-

sessed in that study. In [22], where the 2nd to 10th posterior ribs

were included, the authors reached an accuracy of 0.787. Their

measurement method was most similar to the one used in the

first column of Table 6. Based on these numbers we cannot state

that our solution is better or worse, we can only say it performs

comparably.
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Fig. 4. Example results of the ribcage segmenta-

tion. The worst, the median and the best cases are

shown from left to right respectively. The overlap-

ping area is green, the false positive is cyan, the true

negative is yellow.

a. Ordered by the Jaccard index for the posterior ribs restricted to the viewable lung field.

b. Ordered by the Jaccard index for the posterior ribs for the full image.

c. Ordered by the Jaccard index for the anterior ribs restricted to the viewable lung field.

d. Ordered by the Jaccard index for the anterior ribs for the full image.

Tab. 6. Bone locator sensitivity and specificity in

% based on overlap statistics.

CADe vs Observer1 CADe vs Observer1 Observer2 vs Observer1

posterior ribs complete ribs complete ribs

Sensitivity 84.1 80.3 94

Specificity 87.6 90.3 94.1

Sample size 30 30 5

2.8 Lesion detection

For the following measurements 10-fold cross validation with

30 repetitions was used. Results are demonstrated on free-

response receiver operating characteristic (FROC) curves, show-

ing the sensitivity as a function of average number of false pos-

itives produced for each image. On the final output, a CADe

drawing was considered to be correct if its centroid – center of

gravity – was located inside a physician’s marker; otherwise it

was labeled as a false positive.

We evaluated our CADe system in three configurations to an-

alyze the effect of bone localization and removal. The first con-

figuration used no bone information at all, the second employed
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a. Segmented vs observer1 anterior ribs. b. Segmented vs observer1 posterior ribs.

c. Inter-observer anterior ribs. d.Inter-observer posterior ribs.

Fig. 5. Distribution of distances in pixel between the points of the reference and segmented rib borders restricted to the viewable lung field.

the bone shadow suppressed images on the lesion detector out-

put but still excluding the three features based on bone outlines,

while the third configuration both used the bone shadow free

images and the new features. For each configuration we re-

trained the lesion detector and generated FROC curves using

the methodology described before. The results can be seen in

Figure 7.

The improvement when using rib-shadow-free images is

clear. At constant 63% sensitivity the number of false positives

could be reduced from 2.94 to 1.4. Utilizing the new features,

the number of false positives falls further to 1.23. This means

52% of false detections could be eliminated which is a great ben-

efit for radiologists and physicians having to examine much less

false CADe results at screening. Fixing the number of false de-

tections to two yields sensitivity values of 57%, 66.7% and 68%

for the unprocessed, the bone eliminated and the feature includ-

ing configurations respectively. Finding 19% more lesions is

a huge benefit in this case. Roughly the same improvement is

valid for working points at lower false positive rates. Two ex-

Fig. 7. FROC curves of the lesion detector system omitting bone shadow

suppression (black line), the same system using preprocessed images without

bone shadows (gray line) and the system utilizing both the three new features

and preprocessed images (dashed line). The usage of cleared images greatly

improves detection accuracy, while the new features show a slight extra benefit.
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Fig. 6. The results of rib elimination. Original images (first row), result of

bone segmentation (second row), calculated bone shadows (third row) and bone

eliminated images (fourth row). Left, center and right columns show the worst,

the median and the best segmentation results respectively.
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ample changes can be seen in Figure 8. In the first case a false

negative changed into a true positive, while in the second case

a false positive finding could be removed from the output. The

majority of the changes were similar to these cases.

After seeing the benefits in detection accuracy we wanted to

see how bone shadows and their removal affect the output dis-

tribution of the CADe system. We assumed that bone shadows

and especially bone crossings cause many false positives for the

original system and less or not at all for the new version. We

conducted two tests to support our hypothesis.

In the first test we investigated the overlap of the false findings

with bone shadows. We expected the false findings to overlap

less often with bones after elimination. Moreover, in the ideal

case when no bone shadows are present, the event of falsely

marking an area as a lesion should be independent from the area

being overlapped by a bone shadow. To test this independence

we considered a simple pixel-wise model. Let li be the indicator

of marking the ith pixel falsely as a lesion and bi the indicator of

the ith pixel belonging to a bone shadow. Let’s assume that li-s

for all i are independent samples of the same indicator random

variable L and analogously bi-s are generated from the indicator

random variable B 1. The probability P(B|L) should converge to

P(B) if we weaken the connection between the two variables and

in the independent case they should be equal. Also the Pearson’s

correlation coefficient should be close to zero for weak depen-

dency. P(B|L) = P(B, L)/P(L) can be estimated as the overlap

between false positive lesions and bone shadows over the en-

tire area of false positives. P(B) is simply the total area of bone

shadows.

Table 7 shows the results of this test. The false positive area

overlapping bones clearly decreases and approaches the total

area of bone shadows as expected; however, we can still see a

gap suggesting that some false positive findings are still caused

by bone shadows. The Pearson’s correlation coefficient gets

closer to zero by an order of magnitude, although it was already

small in the original case. Table 8 shows the same numbers for

bone crossings yielding the same conclusion.

Tab. 7. Area fraction of false positive candidates overlapping with bone

shadows.

Unprocessed Rib- Rib-shadow-free

shadow-free + 3 features

Total bone area 0.542 0.542 0.542

FP area overl. bones 0.791 0.625 0.584

Pearson’s correlation 0.0413 0.014 0.0078

In the second test we analyzed the independence of a candi-

date being false positive and its overlap with bone shadows as

two random variables. We decided to use Pearson’s chi-squared

test to test independence, so we needed to discretize the vari-

1This model is obviously incorrect as neither independence nor the identity

of distributions hold, but for a big enough sample it is a close enough estimate

of reality for the purposes of this test.

Tab. 8. Area fraction of false positive candidates overlapping with shadows

of bone crossings.

Unprocessed Rib- Rib-shadow-free

shadow-free + 3 features

Total bone X area 0.121 0.121 0.121

FP area overl. bone X-s 0.317 0.166 0.134

Pearson’s correlation 0.05 0.0119 0.0038

ables. The first one is already binary while the overlap feature

was quantized to three bins: full overlap, partial overlap and

no overlap with a 5% tolerance. We demonstrated the resulting

p-values in Table 9. We ran the tests for the same three config-

urations as above. Using a predefined significance level of 1%

the first two cases are clearly significant meaning that false pos-

itiveness depends on – or at least correlates with – the overlap

with bones while in the third case we can no longer be sure that

the relation exists. However, we should note that a p-value of

0.049 suggests further investigation on a larger sample. We ran

the same test using the bone crossing overlap as the second vari-

able. Here, using the original system shows a clear correlation,

while the results for the versions exploiting bone information

are insignificant. These results do not contradict with our origi-

nal hypothesis; however, the proof of independence needs more

studies.

3 Conclusion and future work

To summarize our work, we developed a CADe system capa-

ble of automatically detecting various lung lesions. In our solu-

tion the ribcage and clavicle shadows are removed before lesion

detection. The cleaned images are analyzed by three different

filters for lesions and a hierarchy of SVM classifiers is used to

reduce the number of false findings.

We evaluated the bone shadow segmentation algorithm and

found that it can detect approximately 80% of bone shadows

with false findings around 10%. For the more disturbing poste-

rior part it can detect as much as 84%. According to our inter-

observer tests, we cannot really hope for more than 94% sen-

sitivity. When a bone is identified correctly, the segmentation

border is accurate within 1 mm. This is again close to the ap-

proximated lower bound determined by the inter observer anal-

ysis.

Our measurements showed that lesion detection performance

can be greatly improved by removing bone shadows and also a

bit more by using the bone segmentation information as classi-

fier input. The former reduced the number of false findings by

52% from 2.94 to 1.4 at 63% sensitivity, while the latter resulted

in a further decrease of 12% to 1.23 false positives per image.

We also tested if the remaining false findings are still depen-

dent on the overlap with bone shadows. The results confirmed

that dependence is much weaker on the processed images, al-

though we could not prove complete independence. This means

that some remainders of bone shadows are still causing a few
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Fig. 8. Samples of detector output before (left)

and after (right) bone shadow suppression. The first

example (top) is a true nodule while the second (bot-

tom) is a healthy region.

Tab. 9. Resulting p-values of independence tests

between bone overlapping and false positiveness.

Original image Rib-shadow-free image Rib-free

+ 3 features

Overlap w. bones 0.0001 0.0002 0.049

Overlap w. bone X-s 0.0015 0.61 0.2

false findings, but improving the accuracy of bone shadow re-

moval is not likely to result in further drastic improvements.

While evaluating our study we identified directions for further

investigation. As some of the lung lesions are under the shadow

of the heart and below the diaphragm it is a straightforward idea

to extend the search for lesions to these parts of the image. For

this we would need to balance contrast in these areas. Fortu-

nately the bone removal algorithm seems to be capable for this

task with only small modifications. Extending the search can

hopefully lead to an increase in sensitivity.

Overall we believe our study contributes to the CADe com-

munity by showing the utility of bone shadow and more gener-

ally anatomic noise removal for the purposes of automatic lung

lesion detection. Although a few other research groups are also

putting effort in this approach of image cleaning, a comprehen-

sive performance comparison for automatic lesion detection has

not been made so far. We also believe our method for segment-

ing the bone shadows is performing at least as good as alterna-

tive solutions due to its high accuracy and the inclusion of the

anterior rib segments.
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