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Abstract

In wireless sensor networks developed for ambient assisted

living (AAL) applications, power supply is one of the most chal-

lenging problems. To extend the duration of the operation of a

wireless sensor node, efficient utilization of the available energy

can be achieved with low duty-cycle operation, where the sensor

node is in sleep mode most of the time. In the case when mea-

surements have low cost, a method is proposed for decreasing

the usage of the most energy consuming mode (communication)

by handling the measured data locally. In AAL applications the

position tracking of a person is an essential task, and it is a good

demonstrative example for showing the solution principles. Po-

sition tracking with motion sensors requires a high number of

messages and most of them are caused by local movements. Our

suggestion is to eliminate these messages. The method is based

on a Hidden Markov Model of the motions of an observed per-

son. The model provides information based on the estimated

global state of the system, which is the position of the person in

the space of interest. This state can be forwarded to the nodes

so they locally perform the filtering to save valuable energy by

not transmitting messages which are not relevant.
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1 Introduction

Scheduling the measurements and data transmissions is re-

quired in energy constrained wireless sensor networks (WSN’s).

The wireless sensor nodes have typically limited energy; they

are operating from batteries, because the wiring required to

power the sensor network from the local power lines is usually

difficult in such applications. Extending the life time of a power

source with energy harvesting power supply (e.g. solar-cells) is

possible [2, 4], but using energy harvesting in indoor environ-

ments is still questionable.

The energy consumption can be divided into two parts:

1 the energy consumption of the hardware components;

2 the energy consumption resulting from the operation modes,

which depends on the software control of the nodes.

The operation modes are the following:

1 measurement;

2 communication;

3 sleeping.

Each mode has different energy consumption. In some cases the

measurement has similar or less consumption compared to the

consumption of the sleep mode, but in nearly all the situations

the communication is the critical phase.

According to a current survey paper [1] many previous works

deal with routing and clustering problems and a couple of re-

searches are aimed at ensuring maximal data throughput over the

wireless network considering the energy limitations. Routing

means that some of the sensor nodes are out of the range of the

central unit, so their messages are transmitted through a router

unit. Clustering means the sensor nodes are in groups, and each

group has a router which communicates with the central unit.

In ambient assisted living (AAL) applications the most common

topology is the star-shape (see Fig. 1), and in most cases routing

is not necessary because all of the nodes are in one small area

(e.g. in an apartment) so the nodes can send their measurements

directly to the central unit. Therefore our approach is different;

star topology networks are investigated for the optimization of

Scheduling data transmissions in wireless sensor networks used for position tracking 152014 58 1

http://dx.doi.org/10.3311/PPee.2081
http://creativecommons.org/licenses/by/3.0/


Fig. 1. Typical WSN topologies: “A” – Star topology; “B” – Tree; “C” – Cluster tree. (C – Central unit; S – Sensor node; R – Router)

energy consumption by applying measurement and communica-

tion scheduling.

The typical operation of this kind of wireless network is the

following: the central unit is in receiving mode initially and

the sensors are in sleep mode. If a sensor wakes up and trans-

mits a message, the central unit will receive it and answer in

an acknowledgement (ACK) message. Meanwhile the sensor

switches to receiving mode to be able to receive the ACK mes-

sage (see Fig. 2).

In [6] local scheduling methods are presented where the sam-

pling rates of the sensors were adjusted according to the mea-

sured signal’s estimated frequency, and an algorithm is shown

how to adjust the sampling rate. In many cases collaboration

of the sensors and global scheduling is required; e.g. [7] shows

a data-driven sensor selection method for power optimization

based on the actual measurements and the capabilities of a par-

ticular sensor. Sensor selection is addressed in [8]: a quanti-

tative measure is proposed to represent the actual utility of a

sensor based on a Bayesian approach, and the selection can be

performed according to this measure.

Dynamically configuring every sensor (e.g. changing a par-

ticular sensor’s sampling interval based on the actual (measured)

state of the observed system) gives a possibility to save energy.

In this case sensors or the central controlling unit can take the

global state of the system into account; to estimate this global

state, modeling of the observed system is necessary. The basic

idea of modeling with Hidden Markov Models was suggested

in [9, 10]. The HMM of the system can provide probabilistic

information about the system’s state which cannot be observed

directly. Papers [11, 12] have shown adaptive sampling meth-

ods for tracking, based on the system state. Scheduling of data

transmissions can positively affect the wireless network’s per-

formance. In [13] a method is shown for transmission schedul-

ing based on the wireless channel condition. The channel con-

dition can be measured e.g. by using Received Signal Strength

Indication (RSSI), or measuring the packet loss ratio. A similar

approach is suggested in [14] especially for small-scale WSNs.

In this paper an adaptation of these methods will be presented.

Motion sensors are widely used and cheap devices, and although

the original purpose of them are not position tracking, if the

necessary spatial accuracy is not very high (as it is the case in

several AAL applications), they could be used for that purpose

as well. This is investigated as an example application show-

ing most of the problems mentioned. The main goal is still to

reduce energy consumption, therefore extending the operation

time (battery-cycle) of the sensors in the network.

In the presented application it is assumed that only one per-

son is in the observed space. The tracking of multiple persons

with PIR sensors needs further research (only approximations

are possible), nevertheless the suggested energy saving schedul-

ing could be demonstrated in the one person case as well.

In the following the case is investigated when the consump-

tion of the measurements is irrelevant compared to the whole

energy consumption of the sensor node during the time. Using

a different PIR (Passive Infra-Red) motion sensor with very low

operation consumption in the sensor node gives the possibility of

continuous measuring. In this case, sampling the measurements

is not necessary, but it is important to filter the messages because

they may contain information which is irrelevant for the position

tracking. In the sequel, basic hardware related principles will be

presented. In section 3 motion detection and measurement filter-

ing strategies will be presented. In section 4 a novel method is

presented to extract position information from the motion mea-

surements. After that in section 5, a new method is proposed

to reduce the number of data transmissions by maintaining the

error of position tracking. Finally the results of the new method

will be analyzed. The results are simulated, but the initial data

for the simulation is real-life measured data.

2 Hardware context

The sensor node comprises 3 main components: 1) microcon-

troller (in our demonstrative cases ATMEGA88PA was used);

2) RF module (RFM12B); 3) PIR (Passive Infra-Red) motion

sensor (EKMC1601111 (case 1) or the low power version:
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EKMB1201111 (case 2). The software of the microcontroller

enables and disables these components, which determines the

power consumption. The values in Table 1 are typical, being

based on measurements of this particular sensor node.

Tab. 1. Energy consumptions of a sensor node in different modes. Case 1 is

when the measurement has a significant consumption; in case 2 this is negligible.

Operating mode Case 1 Case 2

Measure 0.2 mA 0.002 mA

Sleep 0.01 mA 0.01 mA

Communicate 12 mA 12 mA

Fig. 2. Sequence diagram of the communication between the coordinator

and two sensors. The durations are around these values: TA = 10 ms, TB = 20

ms, TC = 1 ms. Between these bursts usually many seconds elapse.

According to Table 1, in case 1 the measurements (and the

communication) are to be scheduled, because in both modes rel-

atively high consumption will occur. In case 2 only the com-

munication is to be scheduled in order to achieve lower energy

consumption. In case 1 and 2 only the motion sensing element

is different, the price of the sensor used in case 1 is significantly

smaller than the other’s price. In other ways the two sensors are

identical.

In our previous work [3] we investigated case 1 (see below).

Scheduling of the measurements highly depends on the mea-

surement type. For example a temperature monitoring sensor

network does not have to be so reactive as a typical motion sen-

sor network because rapid temperature changes are rare, and

delayed transmissions are not an issue in particular cases. It

should be emphasized that the consumption of communication

is roughly the same in receive and in transmit mode, so receiving

data also has a high cost. For this reason, when the sensors are in

sleep mode, communication towards the sensors is not possible.

Therefore the reconfiguration of the sensors (setting of sam-

pling rates) is only reasonable in the acknowledgement mes-

sage after a successful transmission from the sensor. See Fig

2. where “A” means: a motion event happened or a scheduled

transmission is done by the sensor. “B” means: coordinator pro-

cesses the new data and calculates the next wake-up time (and/or

measuring time) for this sensor and sends acknowledgement.

“C” means: the sensor processes the acknowledgement and goes

into sleep mode for the given time. This operating principle

reduces the system’s reactivity when an unforeseen new event

happens, which is usual in motion sensor networks.

In case 2, where the energy consumption of the measurement

is low, and therefore the measurement can be continuous, the

system can react to motion events. If the data is analyzed off-

line (e.g. in every hour, because a single data point cannot be

evaluated) the nodes can aggregate messages and the transmis-

sion of the aggregated messages can be done periodically. In

this case the energy usage can be calculated in advance. If the

data is volatile (e.g. security system, lighting control based on

motion) the transmission cannot be delayed, so the scheduling

of the transmissions has to be done in real time. The number of

transmissions will depend on the measured data, so it is possi-

ble that the different sensors will consume different amounts of

energy.

In our previous work [3], case 1 was examined when the mea-

surements have considerable costs. A capability of taking sam-

pled measurements by switching the sensor on and off was as-

sumed. When a sensor is turned off, only the internal timer can

wake it up, so if an external event happens (e.g. motion) the

sensor will miss that event. This operation principle can cause

considerable degradation in the precision of the motion tracking.

A method for controlling the sampling intervals by maintain-

ing the measurement precision and also considering the energy

conditions was proposed. The method was based on a Hidden

Markov Model which modeled the system to be measured. The

area where the system is operated was divided into several sub-

sections. The model calculates the probability of a new event

in every subsection based on the previous measurements and the

system model. Based on this probability vector a cost is assigned

to every sensor:

Ci, j,k =
1

R(i, j)
+

α

P0 + PS (i, k)
(1)

where i ∈ {1, 2, . . . ,m} (sensor index), j ∈ {1, 2, . . . , n} (in-

dex of the subsection with the highest probability calculated by

the HMM), R(i, j) is a relevance function, which gives how rel-

evant a sensor in a particular subsection of the area. The reader

should note that R(i, j) is independent of the k time. The rele-

vance function can be substituted with a relevance look-up table

which is used in the following. In this look-up table (matrix)

all the relevance values are higher than zero; therefore the re-

ciprocal values are always finite. PS (i, k) is the actual power

stored in the ith sensor node at time k. P0 is used to avoid the

possible zero value of the denominator. In (1) α is a parame-

ter which sets the ratio between the sensor’s relevance and the

power condition. If α is low the relevance has a higher influence

in the cost. This means higher precision, but ignoring the sen-

sor’s power conditions may lead to premature depletion of the

batteries. If α is high, the power condition will define the cost,

therefore the precision will decrease dramatically.

The sampling intervals for each sensor are assigned based on

the cost. For the sake of simplicity only two values of sampling

interval were assigned: a short interval for the l sensors with the

lowest cost, and a long interval for every other sensor. This re-
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sulted in the following behavior: a location in the observed area

is selected where the possibility of changes in the state is high.

The sensors around this area are set to a short sampling inter-

val, so the system remains reactive to new events. Meanwhile

the other sensors can save energy by using a longer sampling

interval. The proposed method was tested with simulation of a

motion sensor network. The results have shown that the battery-

cycle can be considerably extended owing to the reduced power

usage. However, a degradation in precision is inevitable because

of the under sampling of the motions.

3 Position tracking with motion sensors

In the introduction the idea of position tracking or estimation

with motion sensors is mentioned. This kind of position track-

ing differs from the traditional position tracking where the goal

is the estimate the position coordinates of the observed object.

With motion sensors exact coordinates cannot be determined,

however the region where the motion of a person has happened

is known from the sensor data. The spatial resolution of the po-

sition depends on the number of sensors (e.g. one sensor in a

room can detect that the person is in the room, 4 sensors in a

room can detect the person in several subsections of the room,

in [3] we investigated the 9 subsections/room case). The advan-

tage of this method is that there is no additional hardware which

has to be worn by the observed person.

In the actual case the motion sensor is continuously measur-

ing and the sensor node should decide whether to transmit a

message or not. This decision is based on the motion sensor’s

output. A simple timeout ( tend ) is used to filter the raw motion

data (see Fig 3): the “motion finished” message is sent only after

not having new motion signals after the last one in tend time. The

selection of the parameter tend is essential. If tend is short, there

will more transmissions (more energy is used). If tend is longer,

the detection when the motion ends will be more inaccurate. So

in this case tend acts similar to sampling time in the former case

(when the measurements are rare and scheduled). It should be

optimized for two contradictionary requirements: energy usage

and measurement precision. In a real world scenario tend cannot

be set to the best value, because the best value depends on the

motion of the person under observation; only approximate val-

ues can be used and adaptively set to enhance the performance

of the system. The tend parameter should be longer for a sensor

which is related to a zone where the observed person is stay-

ing for a longer time. To determine the actual position of the

observed person a method is proposed in the following section.

If the sensor’s output is disturbed by random impulse noise, fil-

tering should be applied also before sending the motion start

message. This filtering is out of the scope of this paper.

4 Modelling the motions of the observed person

Extracting the position information from the sensor data is

not straightforward. Here a probabilistic model is proposed – a

Hidden Markov Model (HMM) was chosen. The time series of

a person’s movement fulfills the Markov criteria, so the process

can be considered as a Markov Process [9]. The proposed model

can be described with the following notations:

• k is the (discrete) time,

• N is the number of states (possible spatial positions of the

person),

• M is the number of sensors,

• L is the number of symbols provided by the sensors,

• xk =
[
x1

k
, x2

k
, . . . , xN

k

]T
is the state probability vector at time k,

• X1:k = {x1, x2, . . . , xk} is a matrix built from all state probabil-

ities from the beginning to the current time instant,

• s = {s1, s2, . . . , sM} is the set of sensors,

• oi =
{
o1

i
, o2

i
, . . . , oL

i

}
is the finite set of symbols the ith sensor

can provide (e.g. o1
i

means motion, o2
i

means no motion, o3
i

means no measurement,i = 1 . . . M),

• yk =
[
y1

k
, y2

k
, . . . , yM

k

]T
is the observation vector of the sensors’

output values at time k,

• Y1:k =
[
y1, y2, . . . , yk

]
is a matrix containing all observation

vectors from the beginning to the current time,

• ek =
[
e1

k
, e2

k
, . . . , eN

k

]
is the output of the sensor model, which

connects the observations with the states of the system (see

equation (4)).

The elements of a state vector will represent the zones in the

observed area. The value of a single element from the vector

describes the probability that the person is in the zone:

xk =



x1
k = P(pos = 1|Y1:k)

x2
k = P(pos = 2|Y1:k)

x3
k = P(pos = 3|Y1:k)

...

xN
k = P(pos = N |Y1:k)


(2)

N∑
n=1

xN
k = 1, for every k (3)

where k is the time index, P(pos = i|Y1:k) means the probability

of the person is in the “i” coded position (see Fig. 4) if the mea-

surements were Y1:k. With the assumption of (3) a contraint is

introduced: in zones [1 . . .N] only one person can be observed.

xk is the probability vector, the elements are given by the

probabilities of the person being in the different subsections at

time k. The HMM model is described by the state transition

probabilities p (x(k + 1)|x(k)), and the measurement character-

istics (which depends on the topology of the sensors and the

measurement noise). The p (x(k + 1)|x(k)) probabilities could

be learned during a training phase. The sensor model should

be defined for the HMM. The model stores information about
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Fig. 3. Filtering the motion sensor’s output lo-

cally. Only if there is no motion for tend time the “mo-

tion end” message will be sent. The data is generated

for this demonstrative example.In the upper chart 1 on

the vertical axis means motion is present, 0 means no

motion.In the lower chart 1 and 0 means respectively

that the last message was motion start or motion end.

In both charts the horizonmtal axis (t) means the time.

Tab. 2. Conditional probabilities for the sensor model as a look-up table.

s y1
k

= o1
1

y1
k

= o2
1

y1
k

= o3
1

. . . yM
k

= o1
M

yM
k

= o2
M

yM
k

= o3
M

1 P(y1
k

= o1
1
|pos = 1) P(y1

k
= o2

1
|pos = 1) P(y1

k
= o3

1
|pos = 1) . . . P(yM

k
= o1

M
|pos = 1) P(yM

k
= o2

M
|pos = 1) P(yM

k
= o3

M
|pos = 1)

2 P(y1
k

= o1
1
|pos = 2) P(y1

k
= o2

1
|pos = 2) P(y1

k
= o3

1
|pos = 2) . . . P(yM

k
= o1

M
|pos = 2) P(yM

k
= o2

M
|pos = 2) P(yM

k
= o3

M
|pos = 2)

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

N P(y1
k

= o1
1
|pos = N) P(y1

k
= o2

1
|pos = N) P(y1

k
= o3

1
|pos = N) . . . P(yM

k
= o1

M
|pos = N) P(yM

k
= o2

M
|pos = N) P(yM

k
= o3

M
|pos = N)

how sensors are related to different zones, and the sensors’ ac-

tual output modifies the related zone (or zones) probability. In

our case three possible symbols are provided by the sensors: o1
i

means motion, o2
i

means no motion, and o3
i

means no measure-

ment (L = 3).

In Table 2 the conditional probabilities are given :

P(ym
k

o
j
m|pos = n) is the probability that mth sensor transmits

symbol o
j
m when the person is in position (subsection) n. These

conditional probability values should be measured with statisti-

cal methods a priori.

The input of the sensor model is observation (yk) vector, and

the output ek =
{
e1

k
, e2

k
, . . . , eN

k

}
gives the probabilities of the

zones (states) based on the prior probability values and the cur-

rent measurements only. It is calculated using the following for-

mula, where o
j
m is the actual output symbol given by the mth

sensor in time k:

en
k =

∑M
m=1

∑L
j=1 δm jP

(
ym

k
= o

j
m|pos = n

)
α

(4)

where δm j =

1, if ym
k

= o
j
m

0, else
(5)

and α in the denominator is a normalization factor. The nomi-

nator of equation (4) sums the probabilities of all sensors’ actual

symbols supposed that the person is in subsection n. E.g. if we

have 3 sensors and the first one gives “motion” signal (o1
1
), the

second "no measurement" (o3
2
), the third gives "no motion" (o2

3
)

at time k; and the person in position 5 case is investigated, then

the nominator gives

e5
k = P(y1

k = o1
1 |pos = 5) + P(y2

k = o3
2 |pos = 5) + P(y3

k = o2
3 |pos = 5).

The general approach known as POMDP (Partially Observ-

able Markov Decision Process) [10] is used for estimating the

probability of the actual state of the system. The estimation of

the unobservable variables can be obtained using the recursive

formula:

p (xk+1|Y1:k+1) = α·p (Yk+1|xk+1)·
∑
xk

p (xk+1|xk)·p (xk |Y1:k) (6)

where α is a normalization factor that ensures that the sum of

the probabilities of the states will be 1. (Note that xk here is the

state probability vector which was defined at the beginning of

that section. It serves as the state vector of the HMM.) We have

to calculate the probability of the next state in two cases. If there

are new measurements:

xk+1 = α · diag(ek) · AT xk (7)

where the probability of the new measured information is rep-

resented by ek ; this is calculated from Yk and the sensor model

(equations (4) and (5)). If there are no new measurements, we

can predict one step according to the state transition matrix:

xk+1 = α · AT xk (8)

The state transition matrix can be defined with a statistical

approach based on the collected data. The initial A matrix will

contain information about the layout of the zones (e.g. the tran-

sition probability between neighboring zones is higher than the

transition probability between the zones far away from each
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other). During the learning stage of the A matrix some transi-

tion probabilities will be increased, and others will be decreased

based on actual measurements of the sensors. After the learning

phase the A matrix will show the most probable routes of the

person in the observed area.

5 Distinction of position changes from other move-

ments

Most of the data transmissions from sensors are initiated be-

cause of local movements (e.g. leaning back in a chair, typing on

keyboard). These movements do not cause position changes, but

the motion sensors still detects them. The sensor node should

make a distinction between these motions. For this decision

locally available information is not enough; the sensor node

should know about other sensor states (previous output values),

or the coordinator can send the believed position of the observed

person to the sensor nodes, based on the output of the HMM.

As shown in Figure 4. there are many transmissions which

are not necessary for position tracking, so valuable energy can

be saved without the degradation of the precision. The result

of the estimation of the actual position of the observed person

will be the zone with the highest probability in the state vector

of the previously introduced HMM. If the probability reaches a

threshold (or the zone becomes the most probable location for

the observed person) the sensor in the zone should use a longer

tend (see Section 2.) time setting. Every sensor will get the actual

tend in every ACK message from the coordinator. If the proba-

bility that the person is in the zone is decreased, the tend should

be set back to smaller value. Increasing tend can reduce the pre-

cision of the position tracking (see Fig. 5.) especially when fast

zone changes happen. In this case the system cannot track the

changes fast enough. The performance of this method will be

presented in the next section.

6 Evaluation of the method using measured data in a

test environment

To analyze the efficiency of the proposed method shown in

section 4 a simulation was performed. The input of the simu-

lation was real-life measured data series. A test apartment has

been equipped with 6 identical motion sensors (m = 6) (see

Fig. 6); these sensors divide the space into 6 zones (n = 6). The

zones are not overlapping, except zone 5 and 6, but this was

neglected when the states were defined. The observation vec-

tor may contain three symbols: o1
i

means motion, o2
i

means no

motion, and o3
i

means no measurement. The o3
i

symbol is gen-

erated when there is no message from sensor i in an actual time

step. The parameters of the sensor model are defined empirically

based on the experimental results of the initial simulations. The

state transition (A) matrix is defined to reflect the relationship

between the different locations. The state transition probability

was effectively zero between states which do not represent not

neighboring zones. The A matrix may also defined by learning

if enough data points are recorded, which in this case were not

available.

Only one observed person was in the apartment during the

recording of data for the evaluation. The length of the measure-

ment was 6 hours while the observed person was active. These

measurements were recorded with small tend , used as the possi-

ble best precision for measurements investigation purposes. The

global states (spatial positions) based on these short tend data

were taken as true states; all the degradations were compared to

these ones.

The simulator implements the HMM and processes the mea-

surements. Based on the output of the HMM, longer tend times

were simulated (tend,sim = [5..30]s), and the power consumption

and degradation in precision was calculated and compared to the

original (short tend ) values.

The method described previously was applied: sensors in the

zone with the highest probability were set to a longer tend , the

other ones were set to the original value. The error was cal-

culated from the output of two HMMs for every k time-step:

HMMA ran on the original measurements; HMMB ran on the

simulated measurements. The time-step was 1 second. The er-

ror was calculated with the following formula:

Dk =

0, if Ak = Bk

1, if Ak , Bk

(9)

Drel =

∑K
k=1 Dk

K
· 100 (10)

where Ak and Bk represent the zone index with the maximal

probability from the state vector of HMMA and HMMB, K is

the time index of the end of the processes measurement series.

Drel is given as percentage value.

The energy consumption can be estimated from the number

of transmissions. To visualize the saved energy a ratio was cal-

culated:

Eliminated messages[%] =

(
1 −

Simulation message count

Original message count

)
· 100 (11)

Figure 7. shows the result of the simulation (e.g. if the longer

tend is 10 seconds, 54% of the original messages can be elimi-

nated and the relative error is still below 3%).

This result can also be interpreted as an increase in the par-

ticular sensor’s lifetime (battery life). The number of transmis-

sions is almost directly proportional to the energy consumption

(a small amount of energy is needed for the measurement and

sleep modes), e.g. if half of the transmissions are performed,

half the energy is consumed, therefore the battery life is dou-

bled. This operation is especially beneficial in AAL applica-

tions, where battery-powered long-term operation is needed for

position tracking to infer the current activity of the observed per-

son. Small degradation of the tracking performance will not af-

fect the activity detection. Notice that the method does not affect

the start-of-the-motion messages if the person enters a different

zone. And despite this small degradation in precision, the life-

time of the sensors can be extended by even 4-5 times.
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Fig. 4. Measured data from two motion sensors

in two different zones (every transition means a data

transmission). Below the real position changes are

marked with arrows. The other transmissions are gen-

erated by movements within the zone; these messages

contain no valuable information for position tracking.

Fig. 5. The effect of increasing tend : notice the

eliminated messages and the delayed motion end mes-

sages

Fig. 6. The arrangement of the test appartment

with 6 motion sensors

7 Conclusion

In this paper a new method is presented for filtering the trans-

missions of motion sensors used in AAL applications. In former

research, modeling of the motion of a person with HMM was

used to schedule the measurements of the different sensors. In

the current case the sensors have very low power consumption,

therefore they are measuring continuously and only the commu-

nication is affected. The HMM’s output is used to filter the mes-

sages from the sensor to the central coordinator node. It is useful

because most of the messages are caused by local movements

which are not relevant to the position tracking. The results have

shown that at least the half of the messages can be eliminated

with minimal degradation of the precision of position tracking.
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Fig. 7. The results of the simulation. Notice that

the scale for Drel is on the right side and for the elim-

inated messages is on the left side.
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