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Abstract

The main role of maximum power point tracker (MPPT) is to adapt the optimal resistance RMPP , corresponding to the maximum power 

point (MPP) of the photovoltaic generator (GPV), to the impedance of the load for maximum power transfer. This is accomplished 

through the tuning of the duty cycle D to an optimum value DMPP , that controls a DC-DC converter applied between the GPV and the 

load Rload . This paper proposes a system that is applicable to any load and enables rapid and precise tracking under variable weather 

circumstances. The suggested scheme allows simple and direct computation of the control signal DMPP from the values of Rload and RMPP . 

Rload is computed using two voltage and current sensors, while RMPP is estimated using an artificial neural network (ANN) that employs 

the solar irradiance, temperature and the GPV internal current-voltage characteristics. Using MATLAB environment, the obtained 

simulation results reveal better and more effective tracking with nearly no oscillations compared to a relevant ANN-based technique, 

under various meteorological conditions.
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1 Introduction
Demand for electric power generated from non-renewable 
resources such as coal, natural gas, petroleum, and ura-
nium has risen in recent decades as a result of industrial 
expansion, transportation, and telecommunications [1]. 
Pollution and the threat of resource depletion have 
prompted research into the development of renewable 
energy sources such as solar and wind energy [2]. In this 
context, photovoltaic systems, which are typically com-
prised of a PV solar array, a converter, an MPPT control-
ler, and a (DC or AC) load, provide a highly competitive 
solution. However, their main drawback is their relatively 
low efficiency due to the materials used in the manufac-
ture of photovoltaic cells, imperfect mismatching caused 
by the nonlinear nature of GPV power with the unpredict-
able variations of the environmental conditions and load, 
and, eventually, faults in the GPV [3, 4].

Improving GPV efficiency is often accomplished by opti-
mizing all of the PV system components, particularly the 
matching impedance block located between the GPV and 

the load, which is usually assured by a dc-dc or dc-ac con-
verter. In order to extract the maximum possible power from 
the GPV, the literature presents different control algorithms 
that conduct maximum power point search (MPPT) [5].

In general, selecting a given available MPPT technique 
is dependent on various factors, including knowledge of 
the GPV parameters, implementation complexity, MPP 
recovery speed, and the kind and number of sensors to be 
used [6] These strategies can be split into two categories: 
classical and intelligent techniques.

The first class includes Open-circuit voltage, short cir-
cuit Current, hill climbing (HC), Perturb & Observe (P&O), 
and the Incremental Conductance (INC) [6]. The main dis-
advantages of these approaches include power loss owing 
to constant oscillation around the MPP point, power diver-
gence under rapidly changing atmospheric conditions, and 
MPP recovery time [7–9].

In the second category, optimization-based approaches 
use intelligent and evolutionary algorithms to search for 
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local and global optima in order to achieve the MPP point, 
such as the genetic algorithm (GA), particle swarm opti-
mization (PSO), ant colonies (ACO), and the artificial bee 
colony (ABC). Despite their complexity and high imple-
mentation costs, these approaches are more efficient 
and produce a higher yield [10]. Furthermore, this class 
includes artificial intelligence (AI)-based technologies 
that need massive computational resources at excessively 
high cost [11, 12]. Because of their flexibility and perfor-
mance, ANN and fuzzy logic controllers (FLC) are among 
the most commonly utilized algorithms [13].

FLC-based MPPT trackers typically employ two 
inputs, the error and the change of error, together with 
five to seven fuzzy sets. FLC has various shortcomings, 
most notably the time it takes to achieve the peak power 
point, the need for previous knowledge of the process to 
appropriately design the membership functions and con-
trol rules, and the inability to track the global MPP in par-
tial shading [13–15]. MPPT approaches based on machine 
learning algorithms, in particular, are generally presented 
via ANN to ensure a swift response to weather status vari-
ation, no oscillations around the MPP point in steady state, 
non-linear system tolerance, and offline training 

Therefore, a variety of ANN-based MPPT approaches 
have been developed, each of which differs in some aspects, 
especially the training dataset and ANN outputs. In [16], 
the authors employed experimental measurements of solar 
irradiance ( Ir ), temperature (T), and battery voltage ( VBAT ) 
as training input data and DMPP as neural network output 
for a PV system equipped with a traditional MPPT device 
and a battery as a fixed load. In [17], Vimalarani et al. pre-
sented a neural network MPPT controller where the PV 
voltages VPV and IPV were used as inputs and the modu-
lation index (MI) as the output. The training data were 
collected by simulating a PV system that employs the two 
classical controllers P&O and INC to determine the DMPP . 
Anzalchi and Sarwat [18] introduce a simple ANN-based 
MPPT structure for a PV grid connected system, simu-
lated with a fixed temperature for actual changing irradi-
ance conditions, is trained using experimental measure-
ments of VPV and IPV as inputs to estimate the optimal duty 
cycle DMPP . In [19–22], the artificial neural network ANN 
is used to estimate the MPP as a reference value ( VMPP ,  
IMPP , PMPP ) to the conventional MPPT controller (PI, P&O 
etc...) in order to insure the maximum power point track-
ing operating conditions.

In this paper, an artificial neural network based MPPT 
scheme, called RMPP-ANN, is suggested. The proposed 

simple structure ensures the direct estimation of the duty 
cycle is suitable for any load. The underlying scheme is, 
analysed and simulated, under MATLAB/Simulink envi-
ronment, using a boost converter for impedance matching. 
As depicted in Fig. 1, a GPV is connected to a load through 
the boost converter, with the MPPT block composed of 
three units: ANN predictor of RMPP , DMPP computing unit, 
and a PWM generator. The ANN estimates the optimal 
internal resistance RMPP of the GPV under any level of solar 
irradiance and temperature. The second unit calculates 
directly the optimal value of the duty cycle DMPP using the 
estimated RMPP and the value of Rload measured by means 
of two voltage and current sensors. Lastly, the pulse width 
modulation (PWM) block provides the control of the bipo-
lar transistor (IGBT) power switch of the boost converter.

The rest of this paper is structured as follows. Section 2 
explains the PV system architecture, the suggested ANN-
RMPP approach, and the creation of the training dataset. 
Section 3 discusses the obtained results through a com-
parative analysis. Finally, Section 4 provides the conclu-
sion remarks.

2 Description of the proposed system
Fig. 1 depicts a PV system that employs the proposed 
RMMP-ANN controller to produce as much energy as 
possible under varying weather conditions of solar irra-
diance and temperature. The MPPT block controls the 
boost DC-DC converter, associated with a variable load, 
by directly calculating the duty cycle D in order to operate 
the PV solar generator at the maximum power point.

2.1 Photovoltaic generator and model validation
Various models express PV module physical behavior by 
accurately simulating its I-V characteristic for changes 
in weather conditions such as irradiance and tempera-
ture [23]. The single diode model, composed of five 

Fig. 1 Block diagram of the developed system
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parameters, is widely used because it offers a good com-
promise between simplicity and accuracy, particularly for 
mono-Si and poly-Si PV modules [24].

Fig. 2 depicts the single diode model used in this work, 
which consists of a light-generated current source IL , 
a diode representing an ideal P-N junction characterized 
by the saturation current Io , the ideality factor n, a series 
resistance Rs , and a shunt resistance Rsh [25].

Therefore, the output current of the solar module is 
as follow: 

I I I V R I
RL d

s

sh

� � �
� . (1)

Where I and V are the output current and voltage of the 
PV module.

The light current IL depends on the irradiation Ir and the 
cell temperature T as 
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Where the Standard Test Conditions (STC) are 
T = 25 °C and Ir = 1000 W/m2, kIsc  is the temperature coef-
ficient of short circuit current in (%/°C).

The diode current dI  is given by 
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Where Io is the diode's reverse saturation current, VT is 
the thermal voltage of the PV module expressed by 

V N k T qT s b�� � �� � . (4)

Where Ns is the number of cells connected in series, 
q is the electron charge (q = 1,602 × 10−19 C), kb is the 
Boltzmann constant (kb = 1.380 × 10−23 J/K), and T is the 
temperature of the p-n junction in Kelvin.

Equations (5) and (6) show how temperature affects 
the band gap energy Eg and the thermal voltage VT of the 
semiconductor: 
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Where α = 0.0002677 is a given constant of the semi-
conductor, and Egstc =1 12. 1ev .

The shunt resistance is inversely proportional to the 
irradiation as 
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I
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Finally, the Eq. (8) describes the variation of Io in terms 
of the cell temperature T:

I I T
T

q
nk

E
T

E
To o

stc b

g

stc

g
T stc

stc� �

�
�

�

�
�

�

�
�

�

�
� �
�

�
�

�

�
�

�

�
�
�

�3

exp

��
�
�

. (8)

In this study, the solar module SHARP 80 W is used 
whose electrical characteristics, provided by the manufac-
turer, are listed in Table 1.

Using the PV array block of Simulink with the data of 
Table 1, the five parameters (IL , Io , Rs , Rsh , n) of the SHARP 
80 W are extracted, and used to simulate the PV module. 
It can be easily noticed that, the obtained I-V and P-V char-
acteristics, illustrated in Fig. 3, are almost identical to those 
provided by the manufacturer, depicted in Fig. 4.

2.2 Boost circuit design
The Boost converter, shown in Fig. 5, is chosen for its 
high efficiency [26], as the output voltage is always higher 
than the input voltage and the polarity of the PV voltage is 
maintained [26, 27].

In steady-state, the voltage output may be approxi-
mated by 

V V
Dout � �
PV

1
. (9)

Table 1 PV Module specifications under STC conditions

Parameters Values

Rated voltage ( VMPP ) 17.1 V

Rated current ( IMPP ) 4.67 A

Open-circuit voltage ( Voc ) 21.3 V

Short-circuit current ( Isc ) 5.3 A

Max. power ( PMPP ) 80 W

Temperature coefficient of Voc kVoc� �  in (%/°C) −0.781

Temperature coefficient of Isc kIsc� �  in (%/°C) 0.053Fig. 2 Equivalent circuit of a single diode model
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Where, VPV and Vout are the boost converter input and 
output voltages, respectively, and D is the control signal 
duty cycle.

Note that, the converter operates in continuous mode 
using the values C1 = C2 = 470 μF, and L1 = 120 μH com-
puted from the expressions defined in [26].

2.3 MPPT Controller
The two main blocks composing the MPPT system are the 
neural network-based predictor of the optimal resistance 
RMPP and the duty cycle D computing unit.

2.3.1 ANN predictor
The ANN main purpose is to estimate the GPV optimal 
resistance RMPP for given weather conditions of solar irradi-
ance and temperature. The neural network used is a Multi-
layer Perceptron (MLP) with two inputs (solar irradiance 
Ir and temperature T), two hidden layers of 8 neurons, and 
one output layer for RMPP as shown in Fig. 6.

The neurons in the two hidden layers, as well as the 
neurons in the output layer, use tangent-sigmoid and sig-
moid activation functions, respectively showing good per-
formance as employed in [28].

2.3.2 Duty cycle calculation
A dc-dc boost converter is employed in order to match the 
GPV internal impedance RPV to the load impedance Rload , 
by adjusting the duty cycle D using Eq. (10) [29]: 

R R D
PV load
� �� �1

2 . (10)

For each value of D R R� �1
PV load

, the PV I-V curve 
intersects the Rload line characteristic in a unique point rep-
resenting the operating point as illustrated in Fig. 7.

The duty cycle D is tuned to DMPP to achieve the perfect 
impedance matching such that RPV will equate RMPP .

R R D
MPP load MPP

� �� �1
2 . (11)

Hence, the optimal duty cycle is directly calculated by 

D R R
MPP MPP load

� �1 . (12)

Fig. 3 I-V and P-V curves at T = 25 C° for different irradiations

Fig. 4 Current and power versus voltage in Sharp 80 W datasheet

Fig. 5 The DC-DC boost circuit

Fig. 6 The neural network structure
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Here RMPP is estimated by the neural network ANN, and 
Rload is calculated using the Ohm's law Vout / Iout .

It is noteworthy, that this proposed method is applicable 
for any load and atmospheric conditions and requires the 
real time computation of the duty cycle. In other words, 
if the load changes, the output voltage Vout and the current 
Iout are instantly sensed, and a new Rload value is calcu-
lated. Also, if the solar irradiance or the temperature var-
ies, a new RMPP is obtained.

2.4 Dataset collection
Before designing the ANN-based control scheme, a data-
base composed of a lot of training data is required to ade-
quately train the neural network. Thus, various solar irra-
diances and temperatures, as well as their corresponding, 
RMPP , are expected in this analysis. The extraction of the 
GPV I-V characteristic for each irradiation, and tempera-
ture is the basis of the database building. It should be noted, 
that numerous methods for determining the I-V charac-
teristic have been proposed, including connecting a vari-
able power resistor, or dc electronic load to the GPV [30]. 
In our experiment, as shown in Fig. 8, the load, simulated 
by a variable dc-source, is changed to sweep through I-V 
characteristic curves beginning at 0 V (GPV short circuit), 

and ending at the open circuit voltage Voc . After obtaining 
the I-V curve for each pair of values of solar irradiance 
Ir and temperature T, the maximum power point MPP is 
identified, and its corresponding RMPP is computed.

R V
IMPP

MPP

MPP

= . (13)

Finally, Table 2, shows a training database of 
2172 records with two inputs (irradiance Ir , and tem-
perature T) and, one output (optimal impedance RMPP ), 
where the irradiance and temperature range from 1000 to 
100 W/m2 and, 20 to 75 °C, respectively.

3 Results and analysis
The neural network used for RMPP estimate, is simulated 
using 2172 data samples, of which 70% are used for train-
ing, and the remaining 30% are employed for testing. 
Fig. 9, depicts the ANN performance, which achieves 
a mean square error (MSE) value of roughly 6.7154e-5, 
indicating the network very high accuracy.

Table 2 Training dataset

Irradiation (W/m2) Temperature (°C) RMPP (Ω)

1000 20 3.832

1000 25 3.667

⁝ ⁝ ⁝

1000 75 2.0850

995 20 3.8528

995 25 3.6777

⁝ ⁝ ⁝

995 75 2.0966

⁝ ⁝ ⁝

100 20 17.344

100 25 16.471

⁝ ⁝ ⁝

100 75 15.1351

Fig. 7 Impedance matching between Rload and RMPP operating points

Fig. 8 Training dataset collection Fig. 9 Neural network performance
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A comparison with a previously reported study [17] 
is performed to assess the performance of our suggested 
system. More particularly, the proposed ANN-RMPP 
approach is compared to the more efficient strategy.

Two cases are addressed, each representing a distinct 
load profile, irradiance, and temperature.

3.1 Case 1: fixed load R = 20 Ω with varying irradiance 
and temperature
Three different irradiation and temperature patterns are 
investigated as shown in Fig. 10. To begin, the system is 
set up to operate at STC conditions of irradiance and tem-
perature (1000 W/m2, 25 °C): pattern A. The irradiance 
drops to 800 W/m2 after 2000 seconds, but the tempera-
ture remains constant at 25 °C: pattern B. Finally, the tem-
perature and irradiance of pattern C change to 800 W/m2 
and 40 °C, respectively. The three patterns A, B, and C, 
have output powers of 77.57 W, 60.95 W, and 52.27 W, 
respectively.

Note that, the maximum power of the employed panel 
should be known in advance for a precise estimation of the 
system efficiency, which is expressed by 

�% � �
P

P
out

MAXmodel

100 . (14)

In this study, the validated model is employed to com-
pute the maximum power for any condition of solar irradi-
ance and temperature. In terms of output power efficiency, 
Table 3 shows the comparative results between the two 
MPPT approaches.

In the first sequence (1000 W/m2, 25 °C), the maximum 
power given by the model is 79.86 W, while the output 
power delivered to the load by the ANN-RMPP controller 
is 77.57 W, providing an efficiency of about 97.13%, which 
is clearly greater than the INC-ANN efficiency of 91.8%. 
Under the second circumstances of solar irradiance, and tem-
perature (800 W/m2, 25 °C), the validated model maximum 
power is about 63.27 W and the generated output power is 
almost 60.95 W, resulting in an efficiency of nearly 96.37%, 
which is higher than the INC-ANN efficiency of 93.28%. 
For the third configuration, our proposed method has an effi-
ciency of roughly 96.65%, which is slightly less than the 
INC-ANN efficiency of 99.8%. As illustrated in Fig. 11.

The results for the three different configurations show 
that the ANN-RMPP method presents relatively better 
performance than INC-ANN strategy with an average 
gain of nearly 1.76%. In addition, compared to the INC-
ANN technique, the suggested ANN-RMPP approach 
demonstrates significantly reduced steady-state oscilla-
tions as illustrated in Figs. 12 and 13.

Fig. 10 Output power of the MPPT controller with fixed load
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3.2 Case 2: varying load (20 Ω to 10 Ω) with constant 
irradiance and temperature
In the second case of this study, the GPV is subjected to 
constant irradiation and temperature, while the boost con-
verter is loaded by a resistor whose value changes from 
20 Ω to 10 Ω over the simulation time. Thus, the simula-
tion starts with Rload = 10 Ω the interval [0 sec–1000 sec], 
then the load resistance is varied to Rload = 20 Ω during the 
time t ∈ [1000 sec–2000 sec], and lastly Rload is changed 
back to Rload = 10 Ω for the period t ∈ [2000 sec–4000 sec]. 
The simulation is run under these load conditions for five 

distinct Patterns of constant irradiation Ir and, tempera-
ture T, as shown in Table 4, and the output power achieved 
is shown in Fig. 14.

Note that, the maximum power, is transmitted to Rload 
for both values of 10 Ω and, 20 Ω. According to Ohms law 
(R(Ω) = V / I), a constant load, changes both voltage and cur-
rent to maintain a constant resistance. Consequently, when 
the load drops from Rload1 = Vout1 / Iout1 to Rload2 = Vout2 / Iout2 
( Rload1 < Rload2 ), requiring a larger current Iout2 ( Iout2 > Iout1 ), 
the load senses the change in current and lowers the load 
voltage Vout1 to Vout2 ( Vout2 < Vout1 ) to maintain the same 
resistance value.

Based on Fig. 14, Tables 5 and 6 report, the output pow-
ers and related efficiencies for Rload = 10 Ω, and Rload = 20 Ω 
respectively.

Figs. 15 and 16 provide a comparison of the two tech-
niques ANN-RMPP and INC-ANN in terms of power effi-
ciency for Rload = 10 Ω, and Rload = 20 Ω respectively.

The output powers, and efficiency results presented in 
Table 5 and Fig. 15 (Rload = 10 Ω), shows that our suggested 
technique outperforms INC-ANN. Also, Table 6, and 
Fig. 16 (Rload = 20 Ω) indicate, that the developed MPPT 
control method surpasses the INC-ANN technique for the 
first three patterns, but for the last two configurations, the 
two techniques are almost equal in efficiency. As a result, 
compared to INC-ANN method, an average gain in effi-
ciency of almost 29.5% is achieved.

In terms of oscillations, Fig. 17 demonstrates that the 
new methodology considerably minimizes steady-state 
oscillations.

Table 3 Comparison of the two MPPT methods

Pattern PMax (W) Pout (W) Efficiency (%) 
RMMP-ANN

Efficiency (%) 
INC-ANN

A 79.86 77.57 97.13 91.80

B 63.24 60.95 96.37 93.28

C 54.08 52.27 96.65 99.80

Fig. 11 Efficiency comparison of ANN-RMPP and INC-ANN 
with fixed load

Fig. 12 Oscillations during solar irradiance dynamic change in RMPP-ANN

Fig. 13 Oscillations occurred in INC-ANN during dynamic change in irradiation
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Table 4 Simulation patterns

Pattern Ir (W/m2) T (°C)

A 460 27

B 600 31

C 750 30

D 800 35

E 950 40

Table 5 Output powers and efficiency for Rload = 10 Ω

Pattern PMax (W) Pout (W) Efficiency (%) 
RMMP-ANN

Efficiency (%) 
INC-ANN

A 34.44 32.08 93.14 29.65

B 43.88 42.05 95.82 39.56

C 56.22 54.11 96.24 49.05

D 57.14 54.99 96.24 54.18

E 64.95 62.67 96.48 66.70

Table 6 Output powers and efficiency for Rload = 20 Ω

Pattern PMax (W) Pout (W) Efficiency (%)
RMMP-ANN

Efficiency (%)
INC-ANN

A 34.44 33.05 95.96 59.20

B 43.88 42.26 96.31 78.58

C 56.22 54.01 96.07 92.20

D 57.14 55.13 96.48 97.40

E 64.95 62.91 96.86 98.85

Fig. 14 Output power of MPPT controller with variable load

Fig. 15 Efficiency comparison of ANN-RMPP and INC-ANN 
for Rload = 10 Ω

Fig. 16 Efficiency comparison of ANN-RMPP and INC-ANN 
for Rload = 20 Ω
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Finally, it is worth pointing out that our strategy is appli-
cable for any load using the same training database, whereas 
the INC-ANN method is only valid for the two considered 
loads 10 Ω and 20 Ω employed during the database collec-
tion. So, to extend this strategy (INC-ANN) to other loads, 
it is needed to create as many databases as there are resistors 
in use. Thus, to demonstrate the robustness of the proposed 

RMPP-ANN controller with regard to load change, a sim-
ulation is performed under constant weather conditions of 
solar irradiance and temperature (800 W/m2, 20 °C) using a 
load variation pattern as indicated in Fig. 18. Hence, Fig. 18 
and Table 7 clearly illustrate that the developed controller 
can identify the MPP, which is around 63.8 W, and transfer 
this power to the load with a very high efficiency.

Fig. 17 Oscillations during load dynamic change in RMPP-ANN

Fig. 18 Output power with variable load under constant irradiance and temperature



158|Bouadjila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 67(2), pp. 149–159, 2023

References
[1] Abas, N., Kalair, A., Khan, N. "Review of fossil fuels and future 

energy technologies", Futures, 69, pp. 31–49, 2015.
 https://doi.org/10.1016/j.futures.2015.03.003
[2] Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., 

Chae, K.-J., Wilberforce, T., Olabi, A. G. "Environmental 
impacts of solar energy systems: A review", Science of The Total 
Environment, 754, 141989, 2021.

 https://doi.org/10.1016/j.scitotenv.2020.141989
[3] Venkateswari, R., Sreejith, S. "Factors influencing the efficiency of 

photovoltaic system", Renewable and Sustainable Energy Reviews, 
101, pp. 376–394, 2019.

 https://doi.org/10.1016/j.rser.2018.11.012
[4] Mellit, A., Tina, G. M., Kalogirou, S. A. "Fault detection and diag-

nosis methods for photovoltaic systems: A review", Renewable and 
Sustainable Energy Reviews, 91, pp. 1–17, 2018.

 https://doi.org/10.1016/j.rser.2018.03.062
[5] Hussaian Basha, C. H., Rani, C. "Performance Analysis of MPPT 

Techniques for Dynamic Irradiation Condition of Solar PV", 
International Journal of Fuzzy Systems, 22(8), pp. 2577–2598, 
2020.

 https://doi.org/10.1007/s40815-020-00974-y
[6] Zamora, A. C., Vazquez, G., Sosa, J. M., Martinez-Rodriguez, 

P. R., Juarez, M. A. "Efficiency based comparative analysis of 
selected classical MPPT methods", In: 2017 IEEE International 
Autumn Meeting on Power, Electronics and Computing (ROPEC), 
Ixtapa, Mexico, 2017, pp. 1–6. ISBN 978-1-5386-0820-3

 https://doi.org/10.1109/ropec.2017.8261657
[7] Bollipo, R. B., Mikkili, S., Bonthagorla, P. K. "Critical Review on 

PV MPPT Techniques: Classical, Intelligent and Optimisation", 
IET Renewable Power Generation, 14(9), pp. 1433–1452, 2020.

 https://doi.org/10.1049/iet-rpg.2019.1163

[8] Aouchiche, N., Ait Cheikh, M. S., Becherif, M., Ebrahim, M. A., 
Hadjarab, A. "Fuzzy logic approach based MPPT for the dynamic 
performance improvement for PV systems", In: 2017 5th International 
Conference on Electrical Engineering - Boumerdes (ICEE-B), 
Boumerdes, Algeria, 2017, pp. 1–7. ISBN 978-1-5386-0687-2

 https://doi.org/10.1109/ICEE-B.2017.8191986
[9] Ilyas, A., Ayyub, M., Khan, M. R., Husain, M. A., Jain, A. "Hardware 

Implementation of Perturb and Observe Maximum Power Point 
Tracking Algorithm for Solar Photovoltaic System", Transactions on 
Electrical and Electronic Materials, 19(3), pp. 222–229, 2018.

 https://doi.org/10.1007/s42341-018-0030-z
[10] Nusaif, A. I., Mahmood, A. L. "MPPT Algorithms (PSO, FA, 

and MFA) for PV System Under Partial Shading Condition, Case 
Study: BTS in Algazalia, Baghdad", International Journal of Smart 
Grid - ijSmartGrid, 4(3), pp. 100–110, 2020.

 https://doi.org/10.20508/ijsmartgrid.v4i3.113.g99
[11] Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L., Huang, H. 

"Classification and summarization of solar photovoltaic MPPT 
techniques: A review based on traditional and intelligent control 
strategies", Energy Reports, 6, pp. 1312–1327, 2020.

 https://doi.org/10.1016/j.egyr.2020.05.013
[12] Sunar, M., Nithya, C., Roselyn, J. P. "Study of intelligent MPPT 

controllers for a grid connected PV system", In: 2017 IEEE 
International Conference on Intelligent Techniques in Control, 
Optimization and Signal Processing (INCOS), Srivilliputtur, 
India, 2017, pp. 1–6. ISBN 978-1-5090-4779-6

 https://doi.org/10.1109/ITCOSP.2017.8303151
[13] Motahhir, S., El Hammoumi, A., El Ghzizal, A. "The most used MPPT 

algorithms: Review and the suitable low-cost embedded board for 
each algorithm", Journal of Cleaner Production, 246, 118983, 2020.

 https://doi.org/10.1016/j.jclepro.2019.118983

4 Conclusion
In this study, an artificial neural network-based maximum 
power point tracker (ANN-RMPP) is suggested for use in 
a photovoltaic system with a boost converter. In terms of 
power efficiency and oscillation rate, the proposed scheme 
is compared to a relevant work using the incremental 
inductance combined with ANN (INC-ANN). The two 
approaches under consideration are compared utilising the 
same irradiance and temperature conditions, as well as 
constant and variable loads. For the case of fixed load, our 

system shows better performance with 1.76% improve-
ment in efficiency. In the second condition of variable 
load, the suggested ANN-RMPP approach surpasses the 
INC-ANN methodology with an average gain in efficiency 
that amounts to nearly 29.5%. It is worth mentioning that, 
because of the employed way for estimating the control 
signal duty cycle, the suggested method is useful with any 
load, whereas the other strategy is only applicable to the 
loads considered. Furthermore, as compared to the INC-
ANN approach, the developed MPPT scheme handles 
fluctuating weather conditions and loads more effectively 
and exhibits virtually no oscillations.

Acknowledgement
This work is supported by the Directorate General of 
Scientific Research and Technological Development 
(DGRSDT), Algeria.

Table 7 Output powers and efficiencies of RMMP-ANN technique 
for various loads

Rload (Ω) PMax (W) Pout (W) Efficiency (%)

10 66.27 63.99 96.55

30 66.27 63.31 95.53

40 66.27 63.99 96.55

15 66.27 64.14 96.78

https://doi.org/10.1016/j.futures.2015.03.003
https://doi.org/10.1016/j.scitotenv.2020.141989
https://doi.org/10.1016/j.rser.2018.11.012
https://doi.org/10.1016/j.rser.2018.03.062
https://doi.org/10.1007/s40815-020-00974-y
https://doi.org/10.1109/ropec.2017.8261657
https://doi.org/10.1049/iet-rpg.2019.1163
https://doi.org/10.1109/ICEE-B.2017.8191986
https://doi.org/10.1007/s42341-018-0030-z
https://doi.org/10.20508/ijsmartgrid.v4i3.113.g99
https://doi.org/10.1016/j.egyr.2020.05.013
https://doi.org/10.1109/ITCOSP.2017.8303151
https://doi.org/10.1016/j.jclepro.2019.118983


Bouadjila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 67(2), pp. 149–159, 2023|159

[14] Al-Majidi, S. D., Abbod, M. F., Al-Raweshidy, H. S. "A novel max-
imum power point tracking technique based on fuzzy logic for 
photovoltaic systems", International Journal of Hydrogen Energy, 
43(31), pp. 14158–14171, 2018.

 https://doi.org/10.1016/j.ijhydene.2018.06.002
[15] Boukenoui, R., Mellit, A. "Applications of improved versions of 

fuzzy logic based maximum power point tracking for controlling 
photovoltaic systems", In: Precup, R. E., Kamal, T., Zulqadar 
Hassan, S. (eds.) Solar Photovoltaic Power Plants: Advanced 
Control and Optimization Techniques, Springer, 2019, pp. 143–164. 
ISBN 978-981-13-6150-0

 https://doi.org/10.1007/978-981-13-6151-7_7
[16] Issaadi, S., Issaadi, W., Khireddine, A. "New intelligent control 

strategy by robust neural network algorithm for real time detection 
of an optimized maximum power tracking control in photovoltaic 
systems", Energy, 187, 115881, 2019. 

 https://doi.org/10.1016/j.energy.2019.115881
[17] Vimalarani, C., Kamaraj, N., Chitti Babu, B. "Improved method of 

maximum power point tracking of photovoltaic ( PV ) array using 
hybrid intelligent controller", Optik, 168, pp. 403–415, 2018.

 https://doi.org/10.1016/j.ijleo.2018.04.114
[18] Anzalchi, A., Sarwat, A. "Artificial Neural Network Based 

Duty Cycle Estimation for Maximum Power Point Tracking in 
Photovoltaic Systems", In: SoutheastCon 2015, Fort Lauderdale, 
FL, USA, 2015, pp. 1–5. ISBN 978-1-4673-7300-5

 https://doi.org/10.1109/SECON.2015.7132988
[19] Kurniawan, A., Shintaku, E. "A Neural Network-Based Rapid 

Maximum Power Point Tracking Method for Photovoltaic Systems 
in Partial Shading Conditions", Applied Solar Energy, 56(3), 
pp. 157–167, 2020.

 https://doi.org/10.3103/S0003701X20030068
[20] Divyasharon, R., Narmatha Banu, R., Devaraj, D. "Artificial 

Neural Network based MPPT with CUK Converter Topology for 
PV Systems under Varying Climatic Conditions", In: 2019 IEEE 
International Conference on Intelligent Techniques in Control, 
Optimization and Signal Processing (INCOS), Tamilnadu, India, 
2019, pp. 1–6. ISBN 978-1-5386-9542-5

 https://doi.org/10.1109/INCOS45849.2019.8951321
[21] Attia, H. A. "High performance PV system based on artificial 

neural network MPPT with PI controller for direct current water 
pump applications", International Journal of Power Electronics 
and Drive System (IJPEDS),10(3), pp. 1329–1338, 2019.

 https://doi.org/10.11591/ijpeds.v10.i3.pp1329-1338

[22] Al-Majidi, S. D., Abbod, M. F., Al-Raweshidy, H. S. "Design of an 
intelligent MPPT based on ANN using a real photovoltaic system 
data", In: 2019 54th International Universities Power Engineering 
Conference (UPEC), Bucharest, Romania, 2019, pp. 1–6. ISBN 
978-1-7281-3350-8

 https://doi.org/10.1109/UPEC.2019.8893638
[23] Chaibi, Y., Allouhi, A., Malvoni, M., Salhi, M., Saadani, R. "Solar 

irradiance and temperature influence on the photovoltaic cell equiv-
alent-circuit models", Solar Energy, 188, pp. 1102–1110, 2019.

 https://doi.org/10.1016/j.solener.2019.07.005
[24] Wang, M., Peng, J., Luo, Y., Shen, Z., Yang, H. "Comparison of 

different simplistic prediction models for forecasting PV power 
output: assessment with experimental measurements", Energy, 
224, 120162, 2021.

 https://doi.org/10.1016/j.energy.2021.120162
[25] Hansen, C. W. "Parameter estimation for single diode mod-

els of photovoltaic modules", Sandia National Laboratories, 
Albuquerque, NM, USA, Rep. SAND2015-2065, 2015.

 https://doi.org/10.2172/1177157
[26] Texas Instruments "Understanding Inverting Buck-Boost Power 

Stages in Switch Mode Power Supplies", [pdf] Texas Instruments, 
Dallas, TX, USA, Application Report SLVA059B, 2019. Available 
at: http://www.ti.com/lit/an/slva059a/slva059a.pdf [Accessed: 10 
September 2021]

[27] Lange, S. "Study and Design of a DC-DC Converter for Third 
Generation Solar Cells", MSc Thesis, KTH Royal Institute of 
Technology, 2018.

[28] Khelil, K., Berrezzek, F., Bouadjila, T. "GA-based design of opti-
mal discrete wavelet filters for efficient wind speed forecasting", 
Neural Computing and Applications, 33(9), pp. 4373–4386, 2021.

 https://doi.org/10.1007/s00521-020-05251-5
[29] Rana, A. V., Patel, H. H. "Current Controlled Buck Converter 

based Photovoltaic Emulator", Journal of Industrial and Intelligent 
Information, 1(2), pp. 91–96, 2013. 

 https://doi.org/10.12720/jiii.1.2.91-96
[30] Duran, E., Piliougine, M., Sidrach-de-Cardona, M., Galan, J., 

Andujar, J. M. "Different methods to obtain the I–V curve 
of PV modules: A review", In: 2008 33rd IEEE Photovoltaic 
Specialists Conference, San Diego, CA, USA, 2008, pp. 1–6. ISBN 
978-1-4244-1640-0

 https://doi.org/10.1109/PVSC.2008.4922578

https://doi.org/10.1016/j.ijhydene.2018.06.002
https://doi.org/10.1007/978-981-13-6151-7_7
https://doi.org/10.1016/j.energy.2019.115881
https://doi.org/10.1016/j.ijleo.2018.04.114
https://doi.org/10.1109/SECON.2015.7132988
https://doi.org/10.3103/S0003701X20030068
https://doi.org/10.1109/INCOS45849.2019.8951321
https://doi.org/10.11591/ijpeds.v10.i3.pp1329-1338
https://doi.org/10.1109/UPEC.2019.8893638
https://doi.org/10.1016/j.solener.2019.07.005
https://doi.org/10.1016/j.energy.2021.120162
https://doi.org/10.2172/1177157
http://www.ti.com/lit/an/slva059a/slva059a.pdf
https://doi.org/10.1007/s00521-020-05251-5
https://doi.org/10.12720/jiii.1.2.91-96
https://doi.org/10.1109/PVSC.2008.4922578

	1 Introduction 
	2 Description of the proposed system 
	2.1 Photovoltaic generator and model validation 
	2.2 Boost circuit design 
	2.3 MPPT Controller 
	2.3.1 ANN predictor 
	2.3.2 Duty cycle calculation 

	2.4 Dataset collection 

	3 Results and analysis 
	3.1 Case 1: fixed load R = 20 Ω with varying irradiance and temperature 
	3.2 Case 2: varying load (20 Ω to 10 Ω) with constant irradiance and temperature 

	4 Conclusion 
	Acknowledgement 
	References 

