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Abstract

The application of Bayesian network based methods is in-

creasingly popular in several research fields where the inves-

tigation of complex dependency patterns are of central impor-

tance. Bayesian networks provide a rich, graph-based language

for the refined characterization of relevance types, and has a

built-in mechanism for the correction of multiple testing. In the

paper we discuss two main topics: the effects of priors and the

applicability of Bayesian structure based odds ratio. The se-

lection of an adequate prior is generally required by Bayesian

methods and yet there is no general method for prior selection

in the multivariate case. Here we analyze the effects of different

priors and propose a method for prior selection based on ex-

pected effect size. In the second part of the paper we investigate

structural and parametric aspects of relevance, and demonstrate

a hybrid effect size measure that allows an integrated analysis

of these aspects.
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1 Introduction

Graphical models, especially Bayesian networks, became in-

creasingly popular in several fields such as biomedicine, when

the need for modeling potentially complex dependency struc-

tures between genomic, environmental, and clinical factors and

disease state indicators emerged. Rapidly evolving measure-

ment technologies led to new approaches unraveling the genetic

background of multifactorial diseases. Genome-wide associa-

tion studies (GWAS) for example, created a seemingly data rich

environment with data sets of tens of thousands of measured fac-

tors, and of relatively large sample size. Using standard frequen-

tist statistical methods however, the interpretation of the results

was problematic in many cases, due to the strict thresholds on

significance levels, which were used to cope with the multiple

testing problem. Clearly, new methods were required to alle-

viate the problem, and to provide a meaningful analysis. The

application of Bayesian network based Bayesian methods was

motivated by two of its main properties: the ’built-in correction’

for multiple testing, and the multivariate modeling capability of

dependency relations.

First, the correction is expressed by the overall flatness of a

posteriori probabilities (posteriors). By flatness we mean that

even the posteriors of relevant factors (i.e. relevant with respect

to a target e.g. a disease state) are moderate (or low), and are

relatively closer to the posteriors of less relevant factors. Note,

that in case of Bayesian methods, this is the usual symptom of

insufficient or moderately sufficient sample size. The advantage

of this approach is, that at least some characteristics of promis-

ing factors can be identified, whereas according to the principle

of standard statistics, all factors with a p-value above a given

threshold are discarded. Therefore, Bayesian methods may en-

hance the process of selecting candidates for further investiga-

tion, particularly when highly significant results are not present.

On the other hand, one might argue that without a firm thresh-

old, the selection of promising results rests solely in the hands

of a subjective expert. The debate on this matter seems never-

ending, and can only be overcome by openly describing the of

criteria of selection.

Second, the capability of modeling multivariate relationships
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is essential, since mostly multifactorial diseases (i.e. illnesses

with complex genetic background and related environmental

factors, e.g. asthma, rheumatoid arthritis) are targeted by gene

association studies. Although the assumption of independence

of factors is highly improbable, in many cases the univariate ap-

proach is acceptable. Especially it is so, when the aim is to iden-

tify only the most significant factors that might lead to efficient

biomarkers (i.e. indicators of the presence or the severity of a

disease), and the discovery of interactions and other features is

secondary. The relative simplicity and efficiency of univariate

methods compared to more complex, computationally intensive

multivariate methods frequently tip the balance in favor of the

former. The application of univariate methods is usually justi-

fied, if highly significant results are found. However, when only

weakly significant factors are present (and subsequently dis-

carded due to a strict significance threshold), then multivariate

methods seem much more appealing. Bayesian network based

Bayesian methods provide a solution to discover the interactions

among factors, and to identify their joint effects. Furthermore,

under certain conditions even causal relationships can be identi-

fied [18].

Another characteristic of Bayesian methods is a hypothesis

free analysis. In case of gene association studies this is an im-

portant aspect since most investigations are conducted using ge-

netic models, such as additive, dominant or recessive models as

alternative hypotheses. Frequently, the statistics are computed

for several models and then the most significant one is selected.

A Bayesian solution to this problem would be to average over

possible models. In a univariate framework this can be achieved

by using a weighted mixture of models as described in [24]. The

assessment of weights, which reflect the beliefs of the investiga-

tor in certain possible models however, is not straightforward. In

contrast, the model averaging in a Bayesian multivariate frame-

work is done automatically.

Previously, we applied a full Bayesian approach, the Bayesian

network based Bayesian Multilevel Analysis (BN-BMLA) in a

candidate gene association study to analyze the relevance of sin-

gle nucleotide polymorphisms (SNPs) at a structural level [27].

In this paper, we investigate two important topics: first, the effect

of different priors on the overall learning process, and second,

the extension of BN-BMLA to facilitate the Bayesian analysis

of effect size parameters at a parametric level.

The selection of an appropriate prior (i.e. a suitable type and

adequate hyperparameters) for Bayesian methods is a tradition-

ally well known problem, which is relatively overlooked nowa-

days. There are no general methods for prior selection in the

multivariate case, especially not for moderate or small sample

size with respect to the number of variables. According to pre-

viously reported empirical results, some priors work well in the

latter case, while others perform better in an asymptotic case. In

this first main section, we overview the effects of different pri-

ors, including known analytic biases and anomalies we observed

in finite sample cases.

The BN-BMLA method provides posteriors for structural

properties at different abstraction levels, such as edges, so called

Markov blanket sets (a variable X is part of the Markov blanket

of the ’target variable’ Y , which means, that the node that repre-

sents X is either a parent, a child or another parent of a child of

node Y). However, in most real-world applications, particularly

in genomics, apart from the information on structural properties,

parametric information, such as effect size is also required. Al-

though there are methods for the calculation of effect size for

known causal structures, so far it was not used in a Bayesian

context with posteriors of structural properties. In this section

we demonstrate how a Bayesian version of odds ratio can be

computed based on the structural properties.

2 Overview of priors

The basic paradigm of Bayesian methods is that using a prior

probability distribution P(A) and a likelihood P(B|A) the poste-

rior probability P(A|B) can be computed according to the Bayes’

theorem. In case of Bayesian network structure learning, given

a data set D and a directed acyclic graph G that represents

the joint probability distribution of discrete random variables

V = X1, ..., Xn having a multinomial distribution, the aim is to

estimate the posterior of

p(G|D) =
p(G)p(D|G)

P(D)
. (1)

Neglecting P(D) as a modeling constant results in

p(G|D) ∝ p(G)p(D|G), (2)

that is in order to get the posterior of a certain structure given the

data, a prior distribution of the possible structures p(G) and a

likelihood p(D|G) is needed. Note, that the typical goal of struc-

ture learning is to find the maximum a posteriori (MAP) struc-

ture, i.e. the one with the highest posterior. This practical view-

point somewhat contradicts the Bayesian philosophy of defin-

ing distributions instead of thresholds, i.e. a ’truly’ Bayesian

method would aim to identify the posterior distribution of pos-

sible structures instead of only finding the best. For practical

reasons however, this is infeasible in most real-world applica-

tions.

The first term is responsible for the incorporation of a priori

knowledge, i.e. an expert may judge some structures more prob-

able than others. There are two opposing approaches towards

this notion: permissive and restrictive. The former states that

existing a priori knowledge is valuable and should be used to

guide the search. In case of gene association studies this could

mean the incorporation of results of previous studies. The latter

approach argues the viability of this concept. What if previous

experiments had unknown faults? The incorporation of false

knowledge might influence the analysis in an improper way and

thus hinder present efforts. Therefore, the restrictive approach

advocates the use of uniform priors, i.e. that the prior probabil-

ity should be the same for all possible entities. This way no harm
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is done, although nothing is gained from previous expert knowl-

edge. The counterargument is that Bayesian analysis should be

data driven and not prior driven, and the effect of a prior should

be overridden by the data if sufficient sample size is available. In

real cases however, sample size is often close to the limit of suf-

ficiency or even below, thus making the learning process highly

sensitive to the selected prior.

The second term is the likelihood score, which measures that

given the structure how probable the data is. There are several

possible choices for this scoring metric such as Bayesian Dirich-

let (BD), information criteria (e.g. Akaike information criterion

[2], Bayesian information criterion [19], and minimum descrip-

tion length (MDL) based metrics [7]). Bouckaert defined these

as quality measures, and investigated their asymptotic and finite

sample based behavior [8]. While no difference was found in

the former case, in the case of finite sample size the Bayesian

Dirichlet prior allows structures with parental sets as large as

N/2 to have the highest score, while MDL and information cri-

teria measures limit this to logN, where N is the size of the

database.

2.1 The Bayesian Dirichlet prior

The most popular prior is Bayesian Dirichlet (BD) prior, since

it is a so called conjugate prior for multinomial sampling, and al-

lows the finding of the maximum a posteriori (MAP) structure

(i.e. assigns the highest score to the MAP structure) [6, 9, 12].

Being conjugate means that the distribution function of the prior

and the posterior belongs to the same family under a given sam-

pling model. This is a key property, because it enables analytical

computation. The Bayesian Dirichlet prior takes the following

form.

Definition 1. Given S = {X1, X2, ..., Xn} a set of random discrete

variables that take values from the set of possible states 1...ri

(e.g. X1 = k means that X1 is in state k), let G be a Bayesian

network structure that contains only variables from S . Each

variable Xi ∈ S has a set of parents PAi with qi possible con-

figurations. Let pai j denote the jth instantiation of the parents.

Then given a data set D let Ni jk be the number of cases in D in

which Xi = k and PAi = pai j. Furthermore, let Ni j =
∏ri

k=1
Ni jk

and let θi jk denote a corresponding conditional probability pa-

rameter of G for Ni jk. In case of a Dirichlet distribution θi jk can

be given as

θi jk =
Ni jk + N′

i jk

Ni j + N′
i j

(3)

where N′
i jk

is the virtual sample size with respect to Ni jk [9].

Note that PAi = pai j, Ni jk and N′
i jk

are the hyperparameters of

the Dirichlet distribution. Given these assumptions the Bayesian

Dirichlet metric is given as follows:

p(D,G) = p(G)

n∏
i=1

qi∏
j=1

Γ(N′
i j

)

Γ(N′
i j

+ Ni j)

ri∏
k=1

Γ(N′
i jk

+ Ni jk)

Γ(N′
i jk

)
(4)

In addition, if the hyperparameters satisfy the following condi-

tion:

N′i jk = N′ · p(Xi = k, PAi = pai j|G
′) (5)

then the metric ensures likelihood equivalence and thus it is

called the Bayesian Dirichlet equivalence (BDe) metric [12]. G′

is a hypothetical Bayesian network structure that encodes the

prior knowledge and N′ is the equivalent sample size (ESS), a

free parameter determined by the user. A special case of BDe

was described by Buntine [9], and termed as "BDeu" by Heck-

erman et al. [12], in which the same value N′
i jk

= N′

ri·qi
is applied

for all N′
i jk

hyperparamaters for a variable. A further variant,

the Cooper-Herskovits (CH) prior uses a fixed value of virtual

sample size N′
i jk

= 1 for all variables [10].

Several papers were devoted to analyze BDeu and to investi-

gate its properties. Bouckaert observed that when a database is

relatively small compared to the number of variables, then the

resulting network structures will likely contain a large number

of excess arcs [7]. Steck and Jaakkola demonstrated that as the

ESS asymptotically went to zero in case of a large sample, the

deletion of arcs in a Bayesian network structure was favored by

the metric, and in the opposite case when ESS became large,

then the addition of arcs was favored resulting in structures with

several extra arcs [23]. Silander and Myllymaki investigated the

role of ESS, and compared the CH and BIC scores [21]. The

results confirmed that increasing the ESS causes the addition

of several arcs in the structures when the sample size is large.

Subsequently, Silander et al. conducted a series of experiments

to find the optimal ESS, and demonstrated that the results were

highly sensitive to the selected ESS [20], with the conclusion

that averaging out ESS (that is computing the BDeu metric for

several ESS values and taking the average of the scores) would

be a possible, though computationally expensive solution. Later,

Steck showed that the optimal ESS value is approximately inde-

pendent of sample size and of the number of variables in the

domain. It was also demonstrated that if the data implies a

skewed distribution or strong dependencies between the vari-

ables, then the optimal ESS-value is small [22]. Furthermore,

Ueno provided an asymptotic analysis of both the general form

of BDeu and the log-BDeu [26]. In the latter case, the score is

decomposed into a log-posterior reflecting the non-uniformity

of the distribution and a penalty term. The paper investigated

the complex behavior of ESS, which participates simultaneously

in blocking and adding arcs via the log-posterior and penalty

terms respectively. Ueno stated that ESS should be small in case

of skewed conditional distributions to prevent the overfitting of

BDeu, while in the opposite case of non-skewed distributions a

large ESS value is recommended to avoid underfitting.

To provide further insight into the application of BDeu prior

and its other variants, such as CH, we conducted experiments

with BN-BMLA on an artificial data set that was generated using

real-world data. Results are explained in a subsequent section.
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2.2 Priors for genetic association studies

Balding investigated the issue of priors for univariate

Bayesian methods used in genetic association studies [24]. Two

family of priors were investigated: priors with a normal distribu-

tion or a mixture of normal distributions, and priors with a nor-

mal exponential gamma (NEG) distributions. The priors were

defined in terms of effect size (log odds ratio). The normal pri-

ors required a hyperparameter, the proportion π of SNPs having

a non-zero effect size (e.g. Balding suggested π = 10−4 that is

1 out of 10,000 [24]). These priors provided acceptable proba-

bilities for SNPs with moderate and small effect size, but were

overly strict in case of a large effect size. This was explained

by the ’small tail’ property of normal distributions. In order

to alleviate this problem, [24] applied NEG priors of different

shape and scale parameters that have ’fat tails’, thus increasing

the probability of larger effect size values. The use of NEG pri-

ors is a more flexible Bayesian approach, since it avoids the need

of a null-hypothesis (i.e. defining π) as it is necessary in the case

of normal priors under the hypothesis testing paradigm.

However, these priors follow a univariate approach, and are

defined on the abstraction level of log-odds ratios. In contrast, in

Bayesian networks usually such priors are used that are related

to conditional probabilities in local, multinomial models (e.g.

Dirichlet prior). Therefore, we investigated a prior for log-odds

derived from Dirichlet priors defined at the level of conditional

probabilities, i.e. derived from a lower abstraction level.

Definition 2. Let X1, X2, ..., Xn denote discrete variables that en-

code SNP states 0,1,2 that refer to common homozygote, het-

erozygote, rare homozygote genotypes respectively. Then X
(s)

i

denotes SNP Xi in state s. In case of a disease indicator Y , the

non-affected and the affected states (control and case) are de-

noted with Y (0) and Y (1) respectively. An odds is defined as

O
X

(s)

i

=
p(Y (1)|X

(s)

i
)

p(Y (0)|X
(s)

i
)

(6)

Consequently an odds ratio e.g. heterozygous (1) versus com-

mon homozygous (0) is given as

OR
X

(1,0)

i

=
O

X
(1)

i

O
X

(0)

i

(7)

Therefore, a log OR has the following form:

log OR
X

(1,0)

i

= log O
X

(1)

i

− log O
X

(0)

i

(8)

= log
p(Y (1)|X

(1)

i
)

p(Y (0)|X
(1)

i
)
− log

p(Y (1)|X
(0)

i
)

p(Y (0)|X
(0)

i
)

(9)

= log
ν

Y (1) |X
(1)

i

ν
Y (0) |X

(1)

i

− log
ν

Y (1) |X
(0)

i

ν
Y (0) |X

(0)

i

,

where νY (i) |X(i) denotes a specific conditional probability value.

In case of a multinomial distribution the parameters defining the

distribution correspond directly to the conditional probability

values. Thus we need to apply the transformation t(ν) = log ν
1−ν

to the parameters ν(.) defining the multinomial distribution of a

categorical variable W.

The probability density function over these parameters for

variable W having k different values is typically defined by a

Dirichlet distribution which has the following general form

Dir(ν1, ..., νk−1|α1, ..., αk) =
1

Beta(α)
·

k∏
i=1

ναi−1

i
, (10)

where νi denotes p(W = wi) (i.e. the probability that W is in-

stantiated with value wi). Note that in case of a finite data set

νi is typically estimated by maximum likelihood estimates
Ni

N
,

where Ni is the number of observations in which W = wi and N

is the size of the data set. The Beta(α) function can be expressed

in terms of the Γ(.) function as

Beta(α) =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1(αi))
. (11)

The transformed function g(z) is as follows

g(z) = Dir(t−1(z)) · (t−1(z))′. (12)

The inverse function and its derivative is given by

t−1(z) =
1

1 + e−z
(13)

(t−1(z))′ =
e−z

(1 + e−z)2
(14)

The transformed distribution arises in the following form

g(z) =
Dir( 1

1+e−z |αi) · e
−z

(1 + e−z)2
(15)

In a binary case of 2 hyperparameters (α and β) the transfor-

mation results in the following form:

g(z, α, β) =
Γ(α + β)

Γ(α) · Γ(β)
·

( 1
1+e−z )α−1 · (1 − 1

1+e−z )β−1 · e−z

(1 + e−z)2
(16)

Then applying the uniform (structure) prior assumption (all

structures are equally possible), implies that hyperparameters

are equal (α = β).

g(z, α) =
Γ(2α)

Γ(α)2
· (

1

1 + e−z
)α+1 · (1 −

1

1 + e−z
)α−1 · e−z (17)

However, this formula is analytically intractable (e.g. estima-

tion of the high probability density region), thus we sampled the

distribution for the αi = 1, 5 and 10 case.

The importance of this formula is that it allows the investi-

gation of the effect of the virtual sample size on the probabil-

ity density function of odds ratios. In other words, it provides

means to analyze the effect of a selected prior on the resulting

probabilities for odds and odds ratios. Figure 1 indicates that as

the virtual sample size increases the probability of a large odds

decreases.

Proposition 1. In a practical approach, this notion can be used

to define the prior according to an expected a priori distribution

of odds ratios.
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Fig. 1. Probability density function of log odds given various prior settings.

VSS denotes virtual sample size, log odds are shown on the horizontal axis, and

the probability density function (pdf) is displayed on the vertical axis.

2.3 An empirical study on the effect of priors

We investigated the effect of priors using BN-BMLA on a

semi artificial data set containing 115 variables and 10,000

samples. The data set was generated using a model learned

from real-world data of a candidate gene association study of

asthma [14]. We used BDeu and CH for priors, since they

are popular choices in Bayesian learning. We applied the BN-

BMLA method on the data set using different parameter settings,

such as varying virtual sample size (VSS), and varying sample

size (100 . . . 10000). Data sets of various sizes (100, 300, 500,

800, 1000, 2000, 5000) were created by truncating the original

data set of 10,000 samples in order to investigate the small sam-

ple size case. In case of BDeu prior the equivalent sample size

(ESS) α parameter was set to α = 1, 5, 10, 20, 50 resulting in

a virtual sample size of N′
i jk

= α
ri·qi

. In case of the CH prior

the value of the VSS was set directly (N′
i jk

= 1, 5, 10, 20, 50).

Every combination of parameters was considered as a setting,

and for each setting five parallel runs of BN-BMLA were exe-

cuted. The results were averaged out (per setting) in order to

provide a robust base for the analysis. Although the BN-BMLA

method is capable of estimating posteriors for several types of

structural features, in this analysis only Markov Blanket Mem-

berships (MBM) were investigated.

Definition 3. A set of variables X′ is called a Markov Blanket

Set (MBS) of Y if conditioned on X′ the ’target’ variable Y is

independent of all other variables. Formally, given the set V

containing all variables X1, . . . , Xn, a subset of variables X′ ⊂ V

is a Markov blanket set of Y with respect to the distribution

p(X1, . . . , Xn,Y) if (Y ⊥⊥ V \ X′|X′)p, where ⊥⊥ denotes condi-

tional independence [17].

Note that the reason for learning MBS of a target variable

Y (denoted as MBSY ) is that given the stability condition and

the faithfulness condition [18] the elements of the MBSY are

strongly relevant with respect to Y (see subsequent sections). In

other words, the MBS provides a multivariate characterization

indicating the strong relevance of a set of variables.

In order to characterize the individual relevance of a vari-

able, the Markov Blanket Membership (MBM) concept was pro-

posed [11].

Definition 4. The Markov Blanket Membership MBM(Xi,Y)

holds if Xi ∈ MBS Y .

In practice the identification of the unique minimal Markov

blanket is frequently not feasible due to data insufficiency and

to the inherent noise in the data. Therefore we developed a

Bayesian approach, the BN-BMLA method, which provides

posteriors for these relations [5]. The limitation of the data can

be seen by the low or moderate maximum a posteriori (MAP)

value for MBSs. Even in case when there is only a small number

of MBSs (e.g.: 3) that have a relatively high posterior, by investi-

gating only the MAP MBS valuable information contained in the

other MBSs with relatively high posteriors would be neglected.

Furthermore, in case there are hundreds of MBSs with similarly

low posteriors, analyzing only the MAP MBS would lead to

improper results. Therefore, in accordance with the Bayesian

principle, instead of considering only the MAP MBS, the whole

distribution of MBSs should be analyzed.

The Markov blanket set of the model, which the data set was

generated from, was identified and was used as a reference. In

order to assess the effect of the priors standard statistical mea-

sures of performance, such as sensitivity, specificity, accuracy

and AUC score, were computed based on the comparison of

MBM posteriors and the reference. For the sake of simplicity

we treated p(MBMY (Xi)) ≥ 0.5 as a positive result, that is ev-

ery Xi having a posterior above 0.5 was identified as strongly

relevant. This threshold was an appropriate choice for this data

set, but in general this threshold has to be chosen based on the

distribution of posteriors. For example in case of a relatively

small sample size with respect to the number of variables the

MAP MBM posterior can be lower than 0.5, and yet indicate

that certain variables are relevant.

Performance measures for the basic case of CH prior

(VSS=1) and the BDeu prior (ESS=1) are summarized in Ta-

ble 1 and in Table 2 respectively. Data sets with sample sizes

below 1000 resemble the small sample size cases with respect

to the number of variables (115). That is the sample size should

be at least an order of magnitude higher than the number of vari-

ables. Depending on the strength of dependencies between the

variables within the data set, that is the skewedness of the under-

lying distribution [26], the practical limit may be lower. On the

other hand, the complete data set with 10,000 samples can be re-

garded as an asymptotic case. Figure 2 compares the sensitivity,

specificity and area under the ROC curve (AUC) respectively for

CH and BDeu priors.

For the CH prior, the case of 100 samples is definitely a small

sample size scenario. Only the third of the relevant variables are

identified correctly and the AUC score (0.71) is relatively low.

The case with 300 samples is at the limit of data sufficiency,

since approximately half of the relevant variables are correctly
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Tab. 1. Performance measures for CH prior (VSS=1) for various sample

sizes. AUC refers to the area under the ROC curve.

Sample size Sensitivity Specificity Accuracy AUC

100 0.33 0.85 0.78 0.71

300 0.53 0.90 0.85 0.92

500 0.67 0.94 0.90 0.89

800 0.60 0.95 0.90 0.91

1000 0.53 0.99 0.93 0.97

2000 0.87 0.99 0.97 0.99

5000 1.00 0.99 0.99 0.99

10000 1.00 0.99 0.99 0.99

identified (0.53) and the number of false positives is relatively

high (specificity: 0.9). In a practical case, when the ratio of rel-

evant variables (with respect to all variables) is typically lower

than 0.1, this would mean that the majority of the variables iden-

tified as relevant would be false positives. The next case, the

data set containing 500 samples, could be considered as a mod-

erate sample case. The specificity (0.94) is acceptable and a

significant portion (0.67) of the relevant variables is identified

correctly.

Tab. 2. Performance measures for BDeu prior (ESS=1) for various sample

sizes. AUC refers to the area under the ROC curve.

Sample size Sensitivity Specificity Accuracy AUC

100 0.07 0.95 0.83 0.59

300 0.13 1.00 0.89 0.58

500 0.27 1.00 0.90 0.65

800 0.40 1.00 0.92 0.77

1000 0.47 1.00 0.93 0.79

2000 0.80 1.00 0.97 0.95

5000 0.87 1.00 0.98 0.99

10000 0.93 1.00 0.99 0.99

For more than 500 samples one would expect a gradual in-

crease in both the sensitivity and specificity measures. Instead,

as Table 1 and Figure 2 shows, an interesting anomaly is en-

countered. Though the specificity increases (from 0.90 to 0.93)

as expected, the sensitivity decreases (from 0.67 to 0.53). This

is due to a characteristic feature of the data set, in which not

all relevant variables in the reference MBS have a direct rela-

tionship with the target, i.e. there are variables that are in pure

interaction with the target. This means that it is possible, that

by excluding false positives some true positives (that form a de-

pendency structure with them) are also excluded temporarily.

For 2000 samples this effect vanishes and the sensitivity signif-

icantly increases (0.81), and a nearly perfect specificity (0.99)

is achieved. The last two cases are almost ideal having AUC

scores above 0.99.

In case of the BDeu prior, the results in Table 2 for sample

sizes ranging from 100 to 1000 indicate a poor performance in

terms of sensitivity, which is also reflected by the AUC scores.

Even in case of 800 samples only the 40% of the relevant vari-

ables are identified correctly, having an AUC score of 0.77. An

Fig. 2. The comparison of sensitivity (top), specificity (middle) and AUC

measures (bottom) in case of CH and BDeu priors for different sample sizes.

acceptable sensitivity is achieved only at the sample size of 2000

(0.80), which increases as high as 0.93 at 10,000 samples, thus

it does not reach the ideal performance. In contrast, an ideal

specificity is reached above 300 samples, which means that the

result is free of false positives.

Comparing the performance of the two priors (see Figure 2)

BDeu performs poorly in the small sample region, when the

sample size is not an order of magnitude higher than the number

of variables. In terms of sensitivity, CH definitely performs bet-

ter than BDeu both in the small sample case, and interestingly it

also outperforms BDeu in the asymptotic case. Considering the

specificity, BDeu is less prone to false positives than CH, partic-

ularly in the small sample region. Furthermore, CH seems to be

more sensitive to the strength of dependencies between variables

defined by the data. Based on AUC scores, CH prior should be

used in domains with small and moderate sample size. For a
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Fig. 3. Posteriors of the ten highest ranking MBSs in case of BDeu (left) and CH (right) priors for different sample sizes.

relatively large data set both the CH and the BDeu priors are

appropriate choices, however, the parallel use of CH and BDeu

priors could also be beneficial. Note that this notion is consis-

tent with the Bayesian approach since it means averaging over

priors.

In order to illustrate the necessity of Bayesian model averag-

ing and the validity of the MBM based approach Figure 3 dis-

plays the posteriors of the ten highest ranking MBSs. Based on

the evaluation of MBM posteriors, the CH prior performed well

in small and moderate sample sized domains. In terms of MBS

posteriors however, the MAP MBS is lower than 0.05 even for

2000 samples. In these cases, which we called as the ’flat poste-

rior’ case, a partial multivariate aggregation is a viable solution,

apart from the aggregation into univariate MBM posteriors. The

partial multivariate aggregation aims to find the most probable

k size subsets of MBSs [4]. This enables the identification of

the common elements of MBSs, that is relevant variable pat-

terns. Note that an MBM is the k = 1 size subset of an MBS.

The posterior distribution becomes peaked only in the nearly

asymptotic case of the complete data set. In contrast, the MBS

posterior in case of BDeu prior is relatively peaked for all sam-

ple sizes, although the MAP posterior is still relatively low for

large samples. However, the relatively high MBS posteriors of

the BDeu case, compared to the MBS posteriors in case of CH

prior, are misleading in terms of sensitivity, as there are fewer

relevant variables in these MBSs. This also confirms the neces-

sity to apply the partial multivariate approach.

Apart from the basic setting of CH prior, other cases with

different virtual sample size (VSS = 1,5,10,20,50) were exam-

ined. Figure 4 shows the sensitivity and the specificity measures

for different sample sizes in case of CH prior with various VSS

values. Interestingly, a distinct effect of VSS parameters is not

observable in performance measures. A possible explanation is

that the effect of varying sample size is far greater than that of

VSS settings, dominating these measures. On a numerical level

however, the larger the VSS is, the closer the posteriors get to

extremes, i.e. the posterior of irrelevant variables is shifted to-

wards 0, whereas the posterior of relevant variables approaches

1. This can be partially seen for the CH prior case in Figure 6

Fig. 4. Sensitivity (top) and specificity (bottom) measures based on MBM

posteriors in case of CH prior for different sample sizes. VSS denotes the virtual

sample size parameter for CH.

for larger sample sizes.

Figure 5 shows the sensitivity and the specificity measures for

different sample sizes in case of BDEu prior with various ESS

values. Similarly to the CH case, the effect of varying sample

size seems to dominate the effect of ESS in the performance

measures.

The average of MBM posteriors shown in Figure 6 is a rough

approximation to characterize the MBM posterior distribution.

In case of greater uncertainty, as in case of small sample size,

the posterior values are relatively close to 0.5, thus the average

is relatively high. As the data provides evidence for either rel-

evance or irrelevance the posteriors get differentiated. Relevant
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elements contribute the most to the average, as their posterior

gets close to 1. Above 1000 samples, settings with VS S ≥ 1

increase the average posterior as they ’push’ the posteriors to-

wards extremes.

Fig. 5. Sensitivity (top) and specificity (bottom) measures based on MBM

posteriors in case of BDeu prior for different sample sizes. ESS denotes the

equivalent sample size parameter for BDeu.

3 Effect size and relevance

Effect size measures are a group of descriptors that aim to

characterize the relevance of variables. Although there are many

possible methods for assessing relevance, we distinguished three

main approaches [13]:

• the association based approach neglecting structural aspects,

• the causal approach assuming a fixed structure,

• the existential approach assuming structural uncertainty.

The widespread association based approach uses effect size

measures that do not take structural, multivariate relationships

into account. Odds ratio is the most widely used such measure,

especially in case-control studies.

The causal approach measures the effect of a variable X on

another Y given a structure describing causal relationships, i.e.

the nature and the strength of a relationship between variables X

and Y . Structural equation modeling and the average causal ef-

fect measure [18] are two related methods providing a measure

of effect size assuming a known causal structure. The obvious

drawback of these methods is the lack of learning structures.

Fig. 6. Average of MBM posteriors in case of BDeu (top) and CH (bottom)

priors for different sample size and virtual sample size parameters. ESS denotes

the equivalent sample size parameter for BDeu, VSS denotes the virtual sample

size parameter for CH.

The structural (existential) uncertainty based approach uses

Bayesian networks, which provide a graph based language for

encoding relevance and representing dependency relationships.

Each of these approaches focus on a different aspect of rele-

vance, which we call respectively as

• parametric relevance,

• causal relevance,

• structural (existential) relevance.

These aspects appear to be separate dimensions of relevance,

that is parametric relevance does not imply structural relevance

(e.g. strong relevance explained below), and vice versa. For

example an odds ratio is a quantitative measure of parametric

relevance, that is a variable X can be relevant with respect to

a selected target Y just by being over a certain threshold e.g.

OR(X,Y) ≥ 2.5, even though the structural relation between X

and Y is unknown and has no influence on this aspect of rele-

vance.

An advantage of the Bayesian network (BN) based Bayesian

framework is that it allows to connect these two aspects by

a structure based Bayesian effect size measure OR(X,Y |θ,G)

based on p(θ,G|DN), where θ denotes the parametrization and

G the structure of an underlying BN, and DN denotes data

(i.e. OR(X,Y |θ,G) is a random variable with distribution

p(θ,G|DN)).
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A further reason for using a structure based Bayesian effect

size measure is that there is no closed form for the posterior of

effect size measures, such as odds ratio. Thus, the posterior has

to be estimated, e.g. by sampling the log-odds ratio of a Dirich-

let distribution based on the data. Another possible solution is

to use the structural properties of BNs to guide the estimation

process. Though instead of learning a whole BN from the data,

which is computationally unfeasible in practical scenarios, the

learning of relevant variables with respect to a target is suffi-

cient.

Although relevance is a central concept, its relation to struc-

tural properties and to the concepts of association and effect size,

seemed previously unclarified. We investigated various struc-

tural properties of BNs related to relevance and demonstrated

the Bayesian application of BNs in relevance analysis [3].

Relevance can be defined formally in multiple ways. On one

hand, it can be defined using conditional probability distribu-

tions without being specific to the applied model class used as a

predictor, the optimization algorithm, the data set, and the loss

function [15].

Definition 5 (Strong and weak relevance). A feature Xi is

strongly relevant to Y , if there exist some Xi = xi,Y = y and

si = x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0 such that

p(y|xi, si) , p(y|si). A feature Xi is weakly relevant, if it is not

strongly relevant, and there exists a subset of features S ′
i

of S i

for which there exist some xi, y and s′
i

for which p(xi, s
′
i
) > 0

such that p(y|xi, s
′
i
) , p(y|s′

i
). A feature is relevant, if it is either

weakly or strongly relevant; otherwise it is irrelevant.

On the other hand, relevance can also be defined by using

Markov blankets as structural properties of BNs. The following

theorem gives a sufficient condition for the unambiguous BN

representation of the relevant structural properties [25].

Theorem 1. For a distribution p defined by Bayesian network

(G, θ) the variables bd(Y,G) form a Markov blanket of Y , where

bd(Y,G) denotes the set of parents, children and the children’s

other parents of Y [17]. If the distribution p is stable with re-

spect to the DAG G, then bd(Y,G) forms a unique and mini-

mal Markov blanket of Y , denoted as MBSp(Y). Furthermore,

Xi ∈ MBSp(Y) iff Xi is strongly relevant.

We also refer to bd(Y,G) as the Markov blanket set for Y in

G using the notation MBS(Y,G) by the implicit assumption that

distribution p is Markov compatible with graph structure G [18].

This theorem means that an MBS(Y,G) contains all the strongly

relevant variables X j with respect to Y , thus we can rely on this

set of variables and corresponding parameters instead of taking

the whole BN structure into consideration (under the conditions

of multinomial sampling and global parameter independence).

3.1 Effect size in known causal structures

In case of a new domain that needs to be explored, most re-

search studies aim to identify the mechanisms, which define re-

lationships between the entities of that domain, and the over-

all behavior. In terms of Bayesian network learning, the first

step is the learning of structures with high probability, that is

identifying the direct and indirect relationships between entities

of a domain, i.e. between the variables of a data set. In order

to characterize the relationships, a second step, the learning of

conditional distribution parameters is needed. The identifica-

tion of this parametric level is necessary to calculate effect size,

which describes the strength of a relationship between two vari-

ables. More specifically, in a mechanism centered approach, one

is interested in the causal relationships that form the mechanism.

Given a causal relationship A → B the effect size descriptor de-

fines the amount of effect a value of variable A has on specific

values of B. Note, that the Bayesian network representation un-

der the Causal Markov Condition (for details see [18]) can be

interpreted in a causal context, in which an edge between ver-

tices Xi and X j denotes a causal relationship Xi → X j.

In case of a known causal structure the structural equation

modeling (SEM) methodology [18] provides a straightforward

way of defining cause-effect relationships.

Despite the fact that the whole methodology of SEM was de-

vised in order to quantitatively describe causal relationships and

to assess effect size, the constraints on its applicability prohibits

its wide-spread usage. In most practical cases (e.g. in gene

association studies) there is no a priori causal structure, or the

number of possible a priori structures makes this approach in-

feasible.

Due to the difficulties of applying methods based on causal-

ity, most researchers turn towards other methods, in which the

causal interpretation is either omitted or prohibited. Interest-

ingly, in case of gene association studies one of the usual long

term goals is to identify causal biomarkers or to link a disease

to a causal pathway, in terms of applied methods however the

causal interpretation seems forbidden.

3.2 Bayesian effect size estimation

A possible multivariate Bayesian approach to effect size es-

timation is to utilize the underlying BN(G, θ) that is a graph

structure G and its parametrization θ for odds ratio computa-

tion OR(Xi,Y, θ,G). More specifically, we are interested in such

structures G j where Xi is strongly relevant with respect to Y .

This is the basic step towards the integration of structural and

parametric aspects of relevance.

Definition 6. The Bayesian structure based odds ratio is defined

as

p(OR(Xi,Y)|IMBM(Xi,Y |G)) =
p(OR(Xi,Y), IMBM(Xi,Y |G))

p(IMBM(Xi,Y |G))
, (18)

where IMBM(Xi,Y |G j) means whether Xi is a member of

MBS(Y,G j), in other words whether Xi is strongly relevant or

not.

By applying Bayesian model averaging over structures and

parameters this can be estimated using computationally inten-
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sive Markov chain Monte Carlo simulation, see e.g. [16]. How-

ever, given the number of possible structures G j and their pa-

rameterizations (assuming a Dirichlet prior θk ∼ Dir(νk |αk)),

this computation is highly redundant. Therefore, we propose

to sample the parameters in the ’relevant part’ of the BN, in-

stead of the whole structure. The structural property in which

the relevant structural elements (with respect to the target) are

encoded is called the Markov blanket graph [1, 3].

Definition 7. A Markov blanket graph MBG(Y,G) of a variable

Y is a subgraph of a Bayesian network structure G, which con-

tains the nodes of the Markov blanket set of Y , that is MBS(Y,G)

and the incoming edges into Y and its children. Given a target

node, which corresponds to the target variable Y , MBG(Y,G) as

a (sub)graph structure consists of nodes that are (1) parents of

Y , (2) children of Y or (3) "other parents" of the children of Y .

In contrast with a graph structure G containing all the de-

pendency relationships of variables, a Markov blanket graph

MBG(Y,G) includes only the mechanisms, in which Y is in-

volved. This property makes the MBG(Y,G) an ideal candidate

to serve as a base for measuring effect size. Since the goal is to

measure the effect of a factor Xi (e.g. SNPs) on a target vari-

able Y (e.g. disease susceptibility) the fact that Xi is a member

of MBG(Y,G) is a relevant information. The following proposi-

tion allows the derivation of an efficient sampling scheme using

MBGs.

Proposition 2. The Bayesian structure based odds ratio (see

Definition 6) can be computed using the posterior of MBGs pa-

rameterized by the data set.

Proof: The first step is to expand Eq. 18 by averaging over all

possible structures G.

1

p(MBM(Xi,Y))
·
∑
∀G

p(OR(Xi,Y),G, IMBM(Xi,Y |G))), (19)

where the first term serves as a normalization factor. The joint

distribution of the odds ratio, the structure and the indicator

function of strong relevance can be factorized according to the

chain rule

p(OR(Xi,Y),G, IMBM(Xi,Y |G)) =

= p(OR(Xi,Y)|G, IMBM(Xi,Y |G)) · p(IMBM(Xi,Y |G)|G) · p(G), (20)

where p(G) is the prior probability of a given structure G, and

p(IMBM(Xi,Y |G))|G) is 1 if Xi ∈ MBS(Y,G) for a given G and 0

otherwise. This means that all those structures can be omitted,

in which Xi is non-relevant.

1

p(MBM(Xi,Y))
·
∑
∀G j

p(OR(Xi,Y)|G j) · p(G j), (21)

where G j denotes all those structures for which IMBM(Xi,Y |G j) = 1.

If Xi is a member of the Markov blanket, then the probability

of a certain value of the target Y (e.g. in case of Y as a dis-

ease state, the values are: "case" and "control") can be estimated

based on the MBG(Y,G) and a specific instantiation of Xi [17].

This in turn allows the estimation of the structure based odds

ratio by substituting graph structures G with MBGs in Eq. 21

p(OR(Xi,Y)|θ,G) ∼
1

p(MBM(Xi,Y))
· (22)∑

∀MBG j(Y)

p(OR(Xi,Y |MBG j(Y))) · p(MBG j(Y)),

where MBG j(Y) denotes all those MBG(Y,G) for which

IMBM(Xi,Y |G) = 1, that is Xi is a member of a given Markov blan-

ket of Y .

Note, that from all the possible edges between these nodes,

MBG(Y,G) only contains those that end in Y or one of its chil-

dren. Mechanism boundary graph is another term for Markov

blanket graphs due to its significant role in describing causal re-

lationships (i.e. mechanisms). From this perspective given that

the causal Markov assumption holds [18], MBG(Y,G) describes

the direct causal relationships of Y (i.e. edges from nodes of type

(1) and edges to nodes of type (2)), and also some of the indirect

relationships of Y that form a special dependency pattern, called

a v-structure [18]. This pattern X → Z ← Y consist of X a node

of type (3) having an edge to Z a node of type (2), and the target

Y also having an edge to Z.

Even though it is practical to use Markov blanket graphs to es-

timate structure based odds ratios instead of whole graph struc-

tures, their cardinality is even greater than that of Markov blan-

ket sets, which is super exponential in the number of variables.

This means that the sufficient sample size for the estimation of

posteriors of Markov blanket graphs is also higher. Therefore,

in a practical scenario the distribution of Markov blanket graph

posteriors is even flatter than that of Markov blanket sets. Typ-

ically, in such a practical case there are thousands of Markov

blanket graphs with relatively low posteriors. Therefore, select-

ing the MAP MBG is typically not the best solution, thus we

resort to model averaging (see Algorithm 1).

Algorithm 1 Calculation of BOR(Xi,Y) and its credible interval

Require: n,m,MBG(Y,G),D

for MBG1...n do

for θ1...m do

draw parametrization θk = (Xk1 = xk1, . . . , Xkr = xkr)

for all Xk ∈ MBG j, so that Xk , Xi.

estimate P(Y = 0|Xi = xi, θk)

compute Odds(Xi = xi, θk) =
P(Y=1|Xi=xi,θk)

P(Y=0|Xi=xi,θk)

compute OR(Xi, θk) =
Odds(Xi=x1

i
,θk)

Odds(Xi=x0
i
,θk)

end for

compute ORMBG(Xi|MBG j) =
∑m
θk=1 OR(Xi, θk)

update ORhistogram(Xi)

end for

BOR(Xi,Y) =
∑n

MBG j=1 ORMBG(Xi|MBG j) · p(MBG j)

calculate credible interval for BOR(Xi,Y) based on

ORhistogram(Xi)
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Definition 8. The Bayesian MBG-based odds ratio (BOR) is

computed by averaging over the estimates of odds ratios based

on possible MBGs as follows

BOR(Xi,Y) =

m∑
j=1

ORMBG(Xi|MBG j(Y,G))

· p(MBG j(Y,G)) · I(Xi,MBG j(Y,G)), (23)

where m is the number of MBGs with a posterior

p(MBG j(Y,G)) > 0. The indicator function I(Xi,MBG j(Y,G))

is 1 if Xi ∈ MBG j(Y,G) and 0 otherwise.

Assuming a binary target variable Y the MBG-based odds can

be computed as

OddsMBG j(Y,G)
(Xi = xk,Y) =

p(Y = 1|MBG j(Y,G), Xi = xk)

p(Y = 0|MBG j(Y,G), Xi = xk)
,

(24)

where xk is an instantiation of Xi. The computation of MBG-

based odds ratio is based on these odds using instantiation val-

ues xk depending on the used genetic model for inheritance (e.g.:

dominant). Though averaging over genetic models is a possibil-

ity, comparing the calculated odds ratios and their credible inter-

vals (i.e. Bayesian analogue of confidence intervals in standard

statistical hypothesis testing framework) is generally preferred

by experts.

This Bayesian measure of effect size can be extended to a set

of variables, allowing the assessment of the joint effect size of

multiple factors.

Definition 9. Given a set of predictors V = {X1, X2, . . . , Xn} the

multivariate BOR is calculated as

BOR∗(V,Y) =

m∑
j=1

ORMBG(V|MBG j)(Y,G)

· p(MBG j(Y,G)) · I∗(V,MBG j(Y,G)), (25)

where the indicator function I∗(V,MBG j(Y,G)) is 1 if for any

Xi ∈ V it is true that Xi ∈ MBG j(Y,G), and 0 otherwise.

Correspondingly, the MBG-based odds for a set of variables

V is given as

Odds∗MBG j(Y,G)(V,Y) =

=
p(Y = 1|MBG j(Y,G), Xn1 = xn1, . . . , Xnr = xnr)

p(Y = 0|MBG j(Y,G), Xn1 = xn1, . . . , Xnr = xnr)
, (26)

where xn1 . . . xnr are instantiations of variables Xni ∈ V that are

in MBG j(Y,G). Note that if only one variable Xni out of |V| = n

elements of the set V is in MBG j(Y,G) then Eq. 26 reverts to

Eq. 24. Though the computation of odds for a given value con-

figuration of variables of the set V is straightforward, the calcu-

lation of odds ratios presents a problem. In case of a univariate

odds ratio the number of possible denominators is limited by

the cardinality of one variable. In the multivariate case however,

the odds for any subset of value configurations can serve as a de-

nominator, theoretically. Practically, there are two basic choices:

(1) the odds in case of "zeros" (X1 = 0, X2 = 0, . . . , Xn = 0) and

(2) the odds for all configurations except the one used in the

numerator (Xn1 , xn1, . . . , Xnr , xnr).

3.3 Properties of the Bayesian odds ratio

We investigated the properties of Bayesian odds ratio on an

artificial data set similar to the data set used for the prior case

study (5000 samples, 115 variables).

Tab. 3. Comparison of Bayesian credible intervals (95% CR) and confi-

dence intervals (95% CI) in case of a data set of 1000 and 5000 samples. Suffixes

L and U denote the Lower and the Upper half of the interval respectively.

S-1000 OR CI-L CI-U CR-L CR-U

S1 1 vs 0 6.71 3.79 11.87 4.42 5.08

S2 1 vs 0 3.23 1.76 5.91 2.93 3.49

S-5000 OR CI-L CI-U CR-L CR-U

S1 1 vs 0 5.60 4.41 7.12 5.05 5.73

S2 1 vs 0 3.38 2.54 4.51 3.32 3.46

Bayesian odds ratios and related credible intervals (CR) were

estimated based on Markov blanket graphs learned by the BN-

BMLA method using 300, 500, 1000 and 5000 samples. We

also computed odds ratios and corresponding confidence inter-

vals (CI), which were corrected for multiple hypothesis testing

using the number of a priori known, strongly relevant variables

(11). Table 3 compares the properties of two selected variables

(S 1 and S 2) which are both strongly relevant and have high odds

ratios. In case of 5000 samples the length of Bayesian credi-

ble intervals is smaller and are contained within the corrected

confidence intervals (see Figure 7), e.g. OR
(1,0)

S 1
95% CI: 4.41-

7.12, whereas 95% CR: 5.05-5.73. As expected, in case of a

smaller data set of 1000 samples the length of the corrected con-

fidence intervals increase, since the data provides less evidence

(e.g. OR
(1,0)

S 2
95% CI for 5000 samples is 2.54-4.51, while it is

1.76-5.91 for 1000 samples). A similar effect can be observed

in case of the Bayesian credible interval for variable S 2, but not

for S 1. Apart from the change of interval length, another sig-

nificant effect is the drifting towards the neutral odds ratio of 1

(e.g. OR
(1,0)

S 1
95% CR : 5.05-5.73, and 4.42-5.08 for 5000 and

1000 samples respectively). A possible explanation is related

to the ’flat posterior’ case of relevance posteriors. As the sam-

ple size decreases, the sufficiency of the data decreases as well,

which results in the vanishing difference between the posteriors

of relevant and non-relevant variables. The increasing structural

uncertainty may cause the ’degradation’ of the credible interval

of the Bayesian odds ratio.

Furthermore, Bayesian odds ratio has its own limitation for

small sample sizes. This is due to the insufficiency of the data

for learning Markov blanket graphs. This results in remarkably

different Markov blankets, which may imply significantly differ-

ent structure based odds ratios and corresponding credible inter-

vals. Figure 8 illustrates the case when the Bayesian odds ratio

is computed separately for the 10 most relevant Markov blan-
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Fig. 7. Comparison of confidence intervals (CI)

and credible intervals (CR) of selected variables based

on the data set of 5000 samples. S1:1 vs.0 and S2: 1

vs. 0 denote odds ratios of heterozygous (1) versus

common homozygous (0) cases of variable S1 and S2

respectively.

ket graphs for 300 samples. A joint (i.e. based on all MBGs)

estimation of a Bayesian credible interval is rather problematic

in this case, although a possible solution is to cover the whole

concerned region.

In addition, the posterior distribution curves of Bayesian odds

ratios provide a further tool for the characterization of effect

size. Figure 9 shows such distribution curves for Bayesian odds

ratios of three trichotomous variables (V3,V10,V11) with val-

ues 0, 1, 2. The Bayesian odds ratios were computed with re-

spect to the target variable T , which is a binary disease state

descriptor. The odds corresponding to value 0 was used as a

basis for odds ratio calculation. Each plot shows the posteriors

within the 95% credible interval of a Bayesian odds ratio. Each

curve depicts the outline of a histogram of possible odds ratio

values (only those parts of the curve are shown that are within

the 95% credible interval). A highly peaked curve indicates a

distinct value with high certainty, while a flat curve indicates

several possible values with moderate or low certainty. Curves

may have different forms that reflect possible dependency mod-

els of analyzed factors (i.e. MBGs). On one hand, multiple

peaks indicate that the possible models entail remarkably dif-

ferent odds ratio values (e.g. a model emphasizing synergistic

effects versus a model focusing on main effects). On the other

hand, large plateaus indicate that possible models entail similar

odds ratio values.

In case of V3 both variants 1 and 2 highly increased the risk of

the disease with credible intervals of (3.32-3.47) and (7.81-8.38)

respectively. The posterior distribution curve related to variant

1 is highly peaked, which means that all possible dependency

models of factors support that V3 has a strong effect on the sus-

ceptibility to the disease. The curve corresponding to variant 2 is

relatively flat indicating that different dependency models entail

somewhat different odds ratios, although the two local maxima

(7.81 and 8.0) are close to each other.

Variable V11 is also relevant (such as V3) with respect to the

target, though its effect size characteristics are remarkably dif-

ferent. The posterior distribution curve of the Bayesian odds

ratio of variant 1 (V11) is similarly peaked as in case of variant

1 (V3), its effect size however is less significant (1.34-1.40). In

contrast with this narrow credible interval, variant 2 (V11) has

an extremely large credible interval of (4.0-12.0), and its distri-

bution curve is flat. This means that possible dependency mod-

els entail remarkably different odds ratio values. Furthermore,

the flatness of the posterior distribution curve of variant 2 indi-

cates insufficient sample size, that is the ratio of variant 2 (V11)

is low within the sample. Note that the flatness of the posterior

distribution is a proper Bayesian response to low sample size.

The Bayesian odds ratios of variable V10 show a protective

effect, i.e. odds ratios less than 1 with respect to the target.

Both in case of variants 1 and 2 of V10 the posterior distribu-

tion curves are relatively flat, whereas the credible intervals are

narrow, (0.22-0.37) and (0.039-0.065) respectively. This indi-

cates that the ratio of both variants are relatively low in the data

set.

4 Conclusion

Bayesian networks and the Bayesian statistical framework

provide multiple advantages in feature subset analysis, partic-

ularly in the exploration of interactions and in the characteri-

zation of relevance types [27]. Beside the multivariate aspect,

Bayesian networks in the Bayesian statistical framework can

also be used to explore the quantitative aspect of relevance by

estimating the distribution of effect size parameters. This full

Bayesian approach allows the joint modeling of structural and

parametric aspects of relevance. The combination of these as-

pects offer refined concepts of relevance such as the proposed

Bayesian structure based odds ratio.

In the paper we discussed the effects of priors and the ap-

plicability of Bayesian structure based odds ratio. Preliminary

results confirm the general opinion that the theoretically sound

BDeu parameter prior is more sensitive to virtual sample size

selection, whereas the CH prior is proved to be surprisingly ro-
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Fig. 8. Bayesian Markov blanket based odds ra-

tios of a selected variable in case of a data set of

300 samples. The 10 credible intervals shown on the

horizontal axis correspond to the 10 highest ranking

Markov blankets. The additional 11th item illustrates

a hypothetical joint credible interval.

Fig. 9. Bayesian Markov blanket based odds ratios of selected variables.

Bayesian odds ratio values are shown on the horizontal axis, whereas corre-

sponding probability values are displayed on the vertical axis. Each curve de-

picts the outline of a histogram of possible odds ratio values (only those parts of

the curve are shown that are within the 95% credible interval)

bust. The posterior distribution of odds ratio in the Bayesian

statistical framework provides an easily interpretable overview,

and allows the formulation of arbitrary probabilistic statements

related to effect size, which is in sharp contrast with the limited

usage of confidence intervals provided by the frequentist frame-

work. Furthermore, the probabilistic statements can be further

enriched by structural aspects. The proposed Bayesian structure

based odds ratio can be seen as a first step along this line.
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