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Abstract

In this manuscript, an Adaptive and Efficient Hybrid In-loop Filter based on Enhanced Generative Adversarial Network Deblocking Filter 

(EGANDF) with Sample Adaptive Offset filter (EGANDF-SAO-HEVC) is proposed for High Efficiency Video Coding (HEVC)/H-265. In this, 

the proposed hybrid in-loop filter involves EGANDF and Sample Adaptive Offset (SAO) filter that lessens the blocking artifacts caused 

by block-wise processing for coding unit (CU), which is mainly used for improving the video quality. Initially, EGANDF is proposed 

for HEVC/H-265 for removing blocking artifacts along low computation. Here, the output of EGANDF is given to the SAO filter for 

reducing ringing artifacts by diminishing high-frequency components during quantization. Thus, the proposed method efficiently 

reduces artifacts for improving video quality performance. The proposed EGANDF-SAO-HEVC method is implemented in the working 

platform of HEVC reference software with MATLAB. Finally, the proposed EGANDF-SAO-HEVC model has attained 27.26%, 29.65%, 

12.45% higher accuracy, 33.56%, 31.8%, 28.7% higher sensitivity, 34.7%, 33.5%, 32.6% higher specificity, 46.92%, 35.7%, 41.3% lower 

MSE, 25.7%, 29.7%, 35.6% higher PSNR, and 25.6%, 28.9%, 13.6% higher SSIM for using basketball video sequence when compared to 

the existing methods.

Keywords

blocking artifacts, deblocking filter, generative adversarial network, high efficiency video coding, in-loop filter, sample adaptive offset

1 Introduction
Any coding method that works on block-based predic-
tion and transform coding produces discontinuity at block 
boundaries in the restoring signal [1]. Hence, the observ-
able discontinuity at the block boundary is known as 
blocking artifacts [2]. Such blocking artifacts are arising 
based on coarse quantization method and block transform 
of error prediction method [3]. Further, motion compen-
sated prediction produces visible discontinuity closer to 
block boundary, while predict the adjoining blocks for 
current frame [4]. Also, variety of compression meth-
ods brings different classes of deblocking artifacts [5]. 
By deeming the compression in JPEG, discontinuity 
in adjacent 8 × 8 block experience blocking artifacts. 
Moreover, higher frequency coarse-quantization module-
sundergo the effects of blurring and ringing [6]. 

Similarly, discontinuity near the block boundary pre-
dicts adjoining blocks that is different [7, 8]. Here, various 
methods utilized for minimizing the blocking artifacts, 

such as in-loop, post-filtering [9, 10]. Moreover, in-loop 
filtering method is implemented in H.265 video coding 
standards, sometimes it is implemented in display buf-
fer [11]. Moreover, filters are recognized along liberty of 
designing algorithm for the necessity of particular appli-
cation [12–16]. Also, the in-loop filters works in encoder 
loops and decoder loops [17, 18]. 

HEVC is the latest video coding standards attains 50% 
bit rate reduction that is assessed with prior H.264/AVC 
standard [19–21]. While executing the block based video 
coding, these lossy compression methods creates differ-
ent artifacts, such as blurring, distortion, ringing, and 
contouring effects on output frames, especially at less 
bit rates [22]. To less those compression artifacts, HEVC 
adopts with in-loop filtering method, such as DF and SAO 
is used as encoder and decoder. Whereas, using deblock-
ing filters in HEVC uses in-loop filtering technique, block-
ing artifacts are occurred, so computational complexity 
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is increased; this reduces the overall performance of the 
architecture [23–29]. 

To address the above-mentioned problems, new objec-
tive function is formulated in this work that considers adap-
tive and efficient hybrid in-loop filter for HEVC/H-265. 
Thus, EGANDF-SAO-HEVC is proposed for removing 
artifacts effectively. 

The main contributions of this manuscript are:
• In this work, Adaptive and Efficient Hybrid In-loop 

Filter Based on Enhanced Generative Adversarial 
Network with SAO filter is proposed for HEVC/H-265.

• Here, hybrid in-loop filter is intended for reduc-
ing compression artifacts by block-wise quantiza-
tion and at the same time obtains bit-rate savings by 
restoring the damaged frame as nearer to the origi-
nal. It contains DF and SAO filter [23].

• Deblocking filter decreases the blocking artifacts 
caused using block-wise processing for CU. By this, 
it improves the video quality [23, 25].

• But normal DF produces blocking artifacts and 
leads to high computation. To overcome this issue, 
Enhanced Generative Adversarial Networks [30] 
based DF is proposed in this research work for 
HEVC/H-265 that eliminates the blocking artifacts 
along low computations. 

• Moreover, blocking artifacts are identified effec-
tively using pre-processing unit called 1st convolu-
tion layer [23, 25]. 

• Then, the output of EGANDF is given to SAO fil-
ter. This SAO filter reduces the ringing artifacts 
by lessening high-frequency components during 
quantization [23, 26].

• The proposed method is implemented in the work-
ing platform of HEVC reference software with 
MATLAB.

• Then, the performance of EGANDF-SAO-HEVC 
method is analyzed with evaluation metrics, like 
MSE, PSNR, accuracy, sensitivity, specificity, recall, 
precision, and structural similarity index measure-
ments (SSIM).

• Then, comparison of the proposed EGANDF-SAO-
HEVC evaluation metrics is analyzed with various 
existing methods, like enhanced deep convolutional 
neural networks in HEVC (EDCNN-HEVC) [23], 
Content-aware CNN in HEVC (CACNN-HEVC) [24], 
and CNN based deblocking filter in SHVC (CNN-
DF-SHVC) [25] respectively.

Remaining manuscript is organized as: the related 
works are reviewed in Section 2, Section 3 illustrates 
about the proposed method, Section 4 proves the results 
and discussion, Section 5 concludes this manuscript.

2 Related works
Various research mechanisms were previously presented 
in the literature related to HEVC. A few recent works are 
exhibited here. 

Pan et al. [23] have suggested EDCNN for HEVC. Here, 
the presented in-loop filtering in HEVC lessens the arti-
facts. Also, aneffective in-loop filtering framework based 
EDCNN inspired by deep learning model was presented 
for enhancing the in-loop filtering performance in HEVC. 
Here, CNN model involves the processes, like normaliza-
tion method, network learning ability and loss function 
were investigated. Finally, EDCNN effectively eliminates 
the artifactsusing weighted normalization method, feature 
information fusion block, accurate loss function but mean 
square error was very high.

Jia et al. [24] have suggested a CACNN for in-loop 
filtering in higher efficacy video coding. Here, the main 
focus of CNN technology was integrated by image resto-
ration for enabling video coding performance in HEVC. 
Subsequently, coding tree unit (CTU) was preserved in 
independent region for further processing, andpresented 
content-aware multimodal filtering model wasrecognized-
through the restoration of various regionsbyvarious CNN 
methods. Thus, presented method was donebased on the 
discriminative network of CACNN model, which are 
reducingartifacts but accuracy was lesser. 

Dhanalakshmi and Nagarajan [25] have presented 
a CNNDF for scalable HEVC in H-265. Here, a CNNDF 
removes the blocking artifacts and provides low compu-
tation. Initially, the CNN framework identifies the input 
frame samples in video sequences in blocking artifacts 
were identified using pre-processing unit. Additionally, the 
normalization processed base layer to enhancement layer 
for preserving sharpness in video througheliminatingthe 
artifacts. Finally, artifacts are removed by CNNDF model 
that provides better accuracy but PSNR value was low.

Singhadia et al. [26] have suggested a fast integrated 
DF and sample-adaptive-offset (SAO) parameter estima-
tion architecture for HEVC. Here, the suggested model 
performs the hardware-effective executionusing inte-
grated DF and SAO in HEVC. Further, it delivers rate–dis-
tortion performance compared with HEVC standard and 
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reports MSE, SSIM, and multi-scale SSIM index for 4K 
video structures.Finally, the suggested method consumes 
less power, area, energy. However, the model attained 
minimum accuracy value for reducing artifacts. 

Baldev et al. [27] have presented directional streaming 
hardware architecture for DF of HEVC. Also, the archi-
tecture utilized adaptive parallel as well as pipeline pro-
cessing strategies. It was processedusing less power with 
higher performance applications that involvesbroadcast-
ing, virtual reality, and so on. Also, restructured block 
size was used for removing dependency from neighboring 
blocks. Thus, DF model of HEVC effectively reduced the 
artifacts but the accuracy of the model was low.

Dhanalakshmi and Nagarajan [28] have presented the 
combined residual network (CResNet) in-loop filterbased 
on scalable extension of HEVC. Here, the presented com-
bined residual network in-loop filter uses layer informa-
tion that waspresented in localized temporal domain for 
blocking the visualartifacts, such as blogging, ringing. 
In particular, block datawas connected with currentblocks 
and associated blocks of spatial and temporal base layer 
reference frames were measured for enhancing in-loop 
filtering. Also, rate distortion optimization (RDO) model 
utilized in-loop filter for sensing control flagand CTU. 
Thus, CResNet attained better reduction in bit rate and 
improved PSNR but the accuracy of the model was low.

Dhanalakshmi and Nagarajan [29] have presented 
group-normalized deep convolutional neural network 
(gDCNN) to improve performance of SHVC in-loop filter. 
Initially, problems encountered during traditional CNN 
modeling include normalization process, learning ability, 
and loss functions. Subsequently, gDCNN was presented 
effectively to remove artifacts based on statistical analy-
sis, which are achieved through group-wise normaliza-
tion method, feature extraction process, fusion method, 
and precision loss function. Finally, gDCNN provides 
improved outcome in PSNR. However, the mean square 
error of gDCNNmodel was higher than other models.

3 Proposed EGANDF-SAO-HEVC methodology
In this manuscript, the Adaptive and Efficient Hybrid 
In-loop Filter is designed based on Enhanced Generative 
Adversarial Networks for HEVC/H-265. Here, the Adaptive 
and Efficient Hybrid In-loop Filter includes DF and SAO fil-
ter. To reduce the blocking artifacts, EGANDF is proposed 
for HEVC/H-265. Initially, EGANDF detects the blocking 
artifacts by pre-processing unit and the features are extracted 
from the video frames. Moreover, the network model is 
trained by LRA for performing nonlinear mappings. 

Additionally, EGANDF attains low computation based 
on max-pooling layers and soft-max layers. Subsequently, 
output of EGANDF is given to the sample adaptive off-
set (SAO) filter, which decrease the ringing artifacts by 
diminishing high-frequency components during quan-
tization. While, EGANDF is applied to the samples that 
is placed at the boundaries of Prediction Unit (PU) or 
Transform Unit (TU) and sample adaptive offset is applied 
effectively with all samples by satisfying certain condi-
tions to less the mean sample distortion region. Fig. 1 
shows the block diagram of the proposed EGANDF-SAO-
HEVC methodology.

3.1 Enhanced Generative Adversarial Networks based 
deblocking filter (EGANDF)
In this manuscript, an Enhanced Generative Adversarial 
Networks based deblocking filter (EGANDF) is proposed 
for reducing blocking artifacts. The aim of EGANDF is to 
reduce the artifacts that areoccurred by block-based cod-
ing. The proposed EGANDF method is the combined form 
of deep convolutional generative adversarial networkand 
modified CNN that rebuildsloss of quality that is suffered 
using blocks of reference frames is somewhat same asthe 
blocks of original frame. Initially, the deep convolutional 
generative adversarial network generates the vibration sig-
nals in multiple fault conditions under sample imbalanced 
situation. Subsequently, the modified convolutional neu-
ral network enhances the feature learning performance of 
detection by removing artifacts. By this, generated sam-
ples attained effective employment, accuracy is higher for 
artifacts diagnosis.

3.1.1 Sample generation in EGANDF
In this step, the input samples are generated by EGANDF 
that is located at PU or TU boundaries. Here, EGAN 
deblocking filter uses the same process in all layers for 
performing up-sampling process in generator (G) and 
down-sampling in discriminator (D).  Additionally, the 
generator part involves Rectifier Linear Unit (ReLU) and 
batch normalization. Also, output layer includes activation 
function as hyperbolic tangent (Tanh). Moreover, input 
samples are generated and sampled from the uniform dis-
tribution that is controlled to [−1, 1]. Subsequently, pseu-
do-samples are generated with fixed length after learning 
internal distribution of inventive vibration signals. Finally, 
pseudo-samples are generated along original input sam-
ples into discriminator for its training. Additionally, the 
batch normalization of EGANDF is applied in discrimina-
tor to diminish gradient vanishing. In this, video dataset 
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is developed that involves 39 video sequences. Here, the 
initial convolutional layer takes 64 × 64 blocks of less 
quality frames, such as input, kernel size as 7 × 7, stride 
value as 2 and 4 for base layer and enhancement layer. 
Therefore, resultant layersize as 8 × 8, kernel size as 3 × 3, 
stride value of 1, 2 for base layer including enhancement 
layer. After the convolution procedure, ReLU is employed 
for performing nonlinear mapping. Hence, rectified linear 
unitsis engaged with 1 pixel value for the feature maps in 
every convolution layers. Likewise, except fully connected 
layer, every convolutional layers are applied stride 4 and 
kernel size as 5 × 1. For discriminator, original and cre-
ated vibration signals along label data are represented as 
input data. After experiencing 4 convolution layers, input 
samples are down-sampled as less resolution feature maps 
along strong semantic data. Then, feature maps along flat-
ten layer, fully connected layer, and the network outputs 
the final discriminant outcome. Thus, from baselayer to 
enhancement layer, batch normalization (BN) is utilized 
in improved generative adversarial networks framework 
for preserving sharpness in video by eliminating artifacts 
produced based on inter-layer prediction and quantization

3.1.2 Artifact detection in first convolution layer
The convolution layer shows great potential for extract-
ing the intrinsic features from original vibration signals. 
For detecting blocking artifacts, one dimensional convo-
lution model is adopted with baseline method for finding 
the features of discriminative time-series signals. Feature 
vectors along various channels from pooling layer are flat-
tened with 1-D vector. 

In this, the pooling layer is utilized for reducing the 
visual artifacts based on the reduction of spatial dimen-
sion results in low computational power byreducing the 
dimension. Furthermore, to effectively maintain the train-
ing process, important aspect values are needed to be 
extracted. In pooling operation, the average pooling is 
stated as average values of each pixel enclosed with image 
patch and kernel. Similarly, max pooling is defined as the 
maximum value of each pixel enclosed with image patch 
and kernel. Thus, the pooling operation performs reduc-
tion of noise by diminishing the spatial dimension, which 
can denoise the frame. Subsequently, the weight parame-
ters of feature optimization are acquired with the flattened 
vector. Also, extract the features from the frames in video 

Fig. 1 Block diagram of the proposed EGANDF-SAO-HEVC methodology
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related to patch by engaging kernel along stride to scan 
whole frames in video. Then, feature extraction is done in 
the convolution and max pooling layers that is flattened for 
feature vector, which is given in Eq. (1):

k_feai iF conv k� � ��� ��max , (1)

where the current input samples are represented as ( ki ), 
F denotes the flatten operation, conv is the function of 
convolution operation, and max denotes the max pooling 
function. Additionally, high-level feature vector of train-
ing set ( k_feaT ) is mentioned in Eq. (2):

k_feaT T
i
T

b N
Tk fea k fea k fea

T
�� ��_ , _ ,..............., _

1
, (2)

where k_feaT denotes the feature vector that denotes the 
spatial feature depiction of ( ith ) sample, the block bound-
aries are denoted as b, and total number of training sam-
ples are denoted as NT . Subsequently, block boundaries b 
of ( ith ) balanced input samples are detected by extracting 
the feature vectors, which is given in Eq. (3):

C
Nb
T

b i
T

i

NT
�

�
�1
1

k_fea
, , (3)

where Cb is the detection parameter of (b) block boundar-
ies, and k_feab i

T
,  represents the feature vector. 

Therefore, block boundaries are identified by enhanc-
ing the feature learning ability to improve the artifacts 
reduction. Thus, the feature vector of total input samples 
by identified block boundaries are based on Eq. (4):

k_feab i
T

b TC i N, ,� � . (4)

The weight matrix (φ) of the samples are attained by 
the calculation of two feature matrixes, which is expressed 
in Eq. (5):

�� � � � �� � � ��k_fea k_fea I k_fea k_feab i b i b i, , ,
� 1 T , (5)

where δ represents the biased coefficient, I denotes the iden-
tity matrix. Thus, optimized features of the block boundar-
ies are identified by the calculation of weight matrix.

3.1.3 Removing blocking artifacts
In EGANDF, the initial layers are utilized for calculat-
ing feature matrix of input training samples for detect-
ing blocking artifacts at block boundaries. Then, feature 
matrix k_feab,i of each training samples are attained by 
the process of hierarchical feature extraction in the ini-
tial layers. Additionally, the combined class labels xT

label of 
extracted features are utilized for removing blocking arti-
facts. Particularly, fully connected layers extracts needed 

content from previous feature maps and combines to form 
higher-level representation that is same as matrix multipli-
cationmeans feature transformation. Thus, the nonlinear 
transform is based on the activation unit RLUby utilizing 
2 fully connected layers in EGANDF that tells whether the 
block has artifacts/not.

Here, EGANDF is processed in the convolution layer 
after the completion of feature fusion for channel trans-
formation. Hence, the long shortcut connection is from 
the original input without processing convolution layer to 
final output, whichisprovenby exception of shortcut con-
nections in blocks to attain previous mapping relationship. 
Also, the proposed in-loop filtering method is embedded 
in HEVC reference softwarefor improvingencoding per-
formance of HEVC. Finally, Enhanced generative adver-
sarial networks based DF reduced the blocking artifacts.
Additionally, EGANDF model attains low computation 
using max-pooling layers and soft-max layers in EGAN. 
Subsequently, output of EGANDF is given to SAO filter.

3.2 Sample Adaptive Offset (SAO) filter
Sample adaptive offset is placed after EGANDF and it 
belongs to in-loop filters, which specifies samples after 
EGANDF. Here, the concept of sample adaptive offset 
filter classifies reconstructed pixels into various types, 
attainingoffset for every kind, and adds with everykinds 
of sample that is achieved on largest coding unit basis 
in HM 9.0 (reference software of HEVC). Moreover, the 
main objective of the Sample adaptive offset model is less 
the ringing artifacts by diminishing high-frequency com-
ponents during quantization.

Additionally, two types of SAO are assumed in HEVC, 
they are, Edge offset (EO) and band offset (BO). Therefore, 
in edge offset, sample classification is comparison among 
current samples and neighboring pixels. Also, in band 
offset, classification of samples is related to sample val-
ues. Therefore, current largest coding unit reuses the SAO 
parameters from left largest coding unit/upper largest 
coding unit by SAO merging modeless the data that is to 
be coded using entropy coding.

The detailed description regarding the types of SAO are 
given as follows: 

• Edge offset (EO):
In this, edge offset uses 4 one dimensional direction 
patterns for pixel classification, such as edge offset-0 
class as horizontal manner, edge offset-1 class as 
vertical manner, edge offset-2 class as 135° diagonal 
manner, edge offset-3 class as 45° diagonal manner. 
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Based on these patterns, 4 edge offset classes are 
mentioned and every class is corresponds to 1 pat-
tern. For a given edge offset class; every sample is 
categorized into one of 5 kinds by likening its own 
value along 2 neighboring samples' value. If current 
sample not belongs with any of thesekindsof classes, 
then SAO is not applied to it.

• Band offset (BO):
Band offsetexecutes the sample classification related 
with the sample's of own value. Also, it categoriz-
esevery pixels of largest coding unit into multiple 
bands, where every band has pixels in same intensity 
interval in HM 9.0. Thus, the idea of band in edge off-
set is similar with edge offset method. Hence, pixel 
intensity range is split in the same wayas 32 uni-
form bands is from 0 to higher values (for example, 
255 for 8-bit pixels), every band contains offset by 
themselves. Moreover, only 4 offsets of 4 consecu-
tive bands,starting band position arecoded through 
entropy coding that is transmitted to decoder. Here, 
the aim for choosing only 4 bands is the region of 
sample range that is quite restricted after regions 
lessens from the picturequad tree partitions with 
coding tree blocks.

• SAO merging:
Current largest coding unit reuse SAO parameters 
(SAO type and 4 offsets) from left largest coding 
unit (merge-left)/upper LCU (merge-up). If current 
largest coding unit chooses merge-left or merge-up, 
eachSample Adaptive Offset data of current largest 
coding unit are reused from left/upper largest cod-
ing unit. Thus, the SAO merging mode reduces side 
datathat is coded using the entropy coding effective.

• Fast distortion estimation:
Sample Adaptive Offset type selection and offsets 
are executed on fast distortion estimation tech-
nique related to the region of largest coding unit in 
HM 9.0. Also, the fast distortion estimation tech-
nique is the executionof Sample Adaptive Offset 
that needs to add the offsets to pre-Sample Adaptive 
Offset sample (post-deblocking filter samples) for 
generating post-Sample Adaptive Offset sample and 
again measure distortion among original sample 
and post-Sample Adaptive Offset sample. Consider 
the pixel positions as p1 (t) and original pixel as p(t) 
input video sequence with set of pixels (t). Therefore, 
these pixels are represented as SAO types and distor-
tion among original pixels and pre-Sample Adaptive 
Offset pixels is measured using Eq. (6):

d p t p t
t

pre
� � � � � �� �� 1

2

. (6)

The distortion among original pixels and 
post-Sample Adaptive Offset pixels is calculated 
using Eq. (7):

d p t p t
t

post
Offset� � � � � � �� �� �� 1

2

. (7)

Subsequently, the delta distortion of the model is 
described in Eq. (8):

�d d d nO OS� � � �
post pre

2
2 , (8)

where n denotes the total number of pixels in the 
given set, S represents the total quantity of differ-
ences among pre-SAO pixels and original pixels that 
is given in Eq. (9):

S p t p t
t

� � � � � �� �� 1 . (9)

Subsequently, delta rate-distortion cost of the 
model is described using Eq. (10):

� �J d E� � � , (10)

where Lagrange multiplier is denoted as λ, and 
the estimated bits of side data for specified 
Sample Adaptive Offset type are represented as E. 
Subsequently, the calculation of λ is accomplished 
using entropy coding that represents the time-con-
suming process in HM 9.0. Finally, the proposed 
EGANDF-SAO-HEVC approach model has effec-
tively reduced the blocking artifacts and ringing 
artifacts in the compressed videos. Thus, proposed 
EGANDF-SAO-HEVC approach has efficiently 
improves the video quality.

4 Results and discussion
Here, the performance of EGANDF-SAO-HEVC approach 
is evaluated. The proposed EGANDF-SAO-HEVC 
method is simulated by utilizing the working platform of 
HEVC reference software with MATLAB. Here, simula-
tions are carried out in PC with Intel Core i5, 2.50 GHz 
central processing unit, 8 GB random access memory, 
and Windows 7. The performance of EGANDF-SAO-
HEVC method is calculated using performance metrics. 
The attained outcomes are likened with exiting methods to 
evaluate the efficiency of the proposed method.

4.1 Dataset description
In this work, the video database is developed along 
39 video sequences as datasets. In this, 1st frame for 
32 video sequences are taken as training set and randomly 
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chosen video sequenceas validation set, which are 
Basket Ball Drill, Basket Ball Pass, Race Horses C, Race 
Horses D, Basket Ball, Blowing Blubbles and Race Horse. 
Table 1 tabulates the random frame analysis of some of the 
test video sequences.

Fig. 2 (a) represents input basketball, blowing bubbles, 
and race horse images from HEVC test sequences utiliz-
ing EGANDF-SAO. The obtained MSE images are shown 
in Fig. 2 (b). Finally, the artifacts reduction using proposed 
EGANDF-SAO-HEVC approach is shown in Fig. 2 (c).

Fig. 3 shows the PSNR value of test video sequence 
by proposed EGANDF-SAO-HEVC method. In this, 
PSNR value for test video sequences as basketball drill, 

basketball pass, race horses C, and race horses D are 
analyzed. Here, PSNR values of the test sequences are 
increased by improving the bit rate value. In this, basket-
ball drill has attained high PSNR as 47 dB and race horses 
D has attained low PSNR value as 40.7 dB. 

Fig. 4 shows the SSIM value of test video sequence by 
proposed EGANDF-SAO-HEVC approach. In this, SSIM 
value for test video sequences as basketball drill, basket-
ball pass, race horses C, and race horses D are analyzed. 
In this, the SSIM value of basketball drill, and basketball 
pass are increased by increasing the value of bit rate but the 
race horses C, and race horses D SSIM values are stable.

4.2 Performance metrics
Here, the efficacy of EGANDF-SAO-HEVC method is 
analyzed with the performance metrics, such as accuracy, 
precision, recall, sensitivity, specificity, MSE, PSNR and 
SSIM. Subsequently, to compute the confusion matrix 
values, True positive, False positive, True Negative, False 
Negative is considered.

Table 1 Random frame analysis

Test video sequence PSNR Bit rate 
in bps

Encoding 
time in sec

Decoding 
time in sec

"Basket Ball Drill" 40.875       10454 101.23 2.5

"Basket Ball Pass" 40.316      967.52 5421.3 6.33

"Race Horses C" 41.654      1123.2 99.243 1.56

"Race Horses D" 41.345      865.25 124.21 4.562

(a) (b) (c)

Fig. 2 Artifacts removal using proposed EGANDF-SAO-HEVC method, (a) input images from HEVC test sequences utilizing EGANDF-SAO, 
(b) the obtained MSE images, (c) artifacts reduction using proposed EGANDF-SAO-HAVC approach



Moji and Murugavelu
Period. Polytech. Elec. Eng. Comp. Sci., 67(2), pp. 216–228, 2023|223

4.2.1 Computation of accuracy
Accuracy is identified the efficacy of the proposed 
EGANDF-SAO-HEVC method while removing blocking 
artifacts from samples, which is calculated using Eq. (11):

Acc A T T
T F T F

P N

P P N N

� � �
�

� � �
, (11)

here ( TP ) implies true positive, ( FP ) implies false positive, 
( TN ) implies true negative, ( FN ) implies false negative.

4.2.2 Computation of precision
Precision measures the efficacy of the proposed EGANDF-
SAO-HEVC approach during artifact detection are evalu-
ated using Eq. (12):

P T
T Fr

P

P P

�
�

. (12)

4.2.3 Computation of sensitivity
Sensitivity is utilized to identify the presence of block-
ing artifacts in the video sequences, which is calculated 
using Eq. (13):

Se T
T F

P

P N

�
�

. (13)

4.2.4 Computation of specificity
Specificity identifies the presence of ringing artifacts in 
the video sequences, which is calculated using Eq. (14):

Sp T
T F

N

N P

�
�

. (14)

4.2.5 Computation of recall
Recall has the ability of proposed deblocking filterreduce 
total blocking artifacts in the video sequences that is cal-
culated using Eq. (15):
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4.2.6 Mean Square Error (MSE)
The calculation MSE denotes error among signals that is 
expressed in Eq. (16):
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where input and output signals are represented as h and w 
respectively. Initial values of input signal is denoted as g'p 
and the terminal value of the signal is denoted as gp .

4.2.7 Peak Signal to Noise Ratio (PSNR)
It is defined as the ratioto measure the quality among orig-
inal images and compressed images, which is calculated 
using Eq. (17):
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4.2.8 Structural Similarity Index Matrix (SSIM)
It is used to measure the difference among 2 similar imag-
eries. Additionally, Structural Similarity Index Matrix is 
used on the gradient of images.

4.3 Comparative analysis of performance metrics
Here, the efficiency of EGANDF-SAO-HEVC method 
under performance metrics, like accuracy, precision, recall, 

Fig. 3 PSNR value of test video sequence by EGANDF-SAO-HEVC 
approach

Fig. 4 SSIM value of test video sequence by EGANDF-SAO-HEVC 
approach
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sensitivity, specificity, MSE, PSNR and SSIM are com-
pared with existing methods, like EDCNN-HEVC  [20], 
CACNN-HEVC [21], and CNN-DF-SHVC [22]. Table 2 
shows that the comparative analysis outcomes for all per-
formance metrics.

Fig. 5 shows the accuracy measurement of the EGANDF-
SAO-HEVC method with existing methods. For basket-
ball video sequence, accuracy of the proposed EGANDF-
SAO-HEVC method has attained 27.26%, 29.65%, and 
12.45% higher than the existing methods, like CNN-DF-
SHVC, EDCNN-HEVC and CACNN-HEVC respectively. 
For blowing bubbles video sequence, the accuracy of the 
proposed EGANDF-SAO-HEVC method has attained 
19.62%, 21.43%, and 17.9% higher than the existing meth-
ods, like CNN-DF-SHVC, EDCNN-HEVC and CACNN-
HEVC respectively. For race horse video sequence, accu-
racy of the proposed EGANDF-SAO-HEVC method has 
attained 15.7%, 19.75%, and 11.57% higher than the exist-
ing methods, like CNN-DF-SHVC, EDCNN-HEVC and 
CACNN-HEVC respectively.

Fig. 6 shows the sensitivity measurement of the 
EGANDF-SAO-HEVC method with existing methods. 
For basketball video sequence, the sensitivity of the pro-
posed EGANDF-SAO-HEVC method has attained 33.56%, 
31.8%, and 28.7% higher than the existing methods, like 
CNN-DF-SHVC, EDCNN-HEVC and CACNN-HEVC 
respectively. For blowing bubbles video sequence, the 
sensitivity of the proposed EGANDF-SAO-HEVC method 
has attained 21.45%, 33.5%, and 23.5% higher than the 
existing methods, like CNN-DF-SHVC, EDCNN-HEVC 
and CACNN-HEVC respectively. For race horse video 
sequence, sensitivity of the proposed EGANDF-SAO-
HEVC method has attained 24.6%, 26.87%, and 22.4% 
higher than the existing methods, like CNN-DF-SHVC, 
EDCNN-HEVC and CACNN-HEVC respectively.

Fig. 7 shows the specificity measurement of EGANDF-
SAO-HEVC method with existing methods. For basketball 
video sequence, specificity of the proposed EGANDF-
SAO-HEVC approach has attained 34.7%, 33.5%, 
and 32.6% better than the existing CNN-DF-SHVC, 

Table 2 Accurate value of each metrics

Performance metrics Video sequences CNN-DF-SHVC EDCNN-HEVC CACNN-HEVC EGANDF-SAO-HEVC (Proposed)

Accuracy (%)

Basketball 0.73 0.68 0.85 0.962761

Blowing bubbles 0.79 0.71 0.79 0.98121

Race horse 0.82 0.75 0.81 0.998435

Sensitivity (%)

Basketball 0.67 0.76 0.86 0.977304

Blowing bubbles 0.69 0.64 0.79 0.965524

Race horse 0.73 0.71 0.85 0.963549

Specificity (%)

Basketball 0.69 0.73 0.76 0.984468

Blowing bubbles 0.64 0.69 0.73 0.980169

Race horse 0.68 0.78 0.75 0.997392

Precision (%)

Basketball 0.69 0.75 0.67 0.923077

Blowing bubbles 0.67 0.72 0.68 0.923077

Race horse 0.71 0.78 0.72 0.923077

Recall (%)

Basketball 0.629 0.65 0.68 0.964962

Blowing bubbles 0.687 0.67 0.75 0.95034

Race horse 0.651 0.63 0.73 0.957887

MSE

Basketball 6.7 4.8 5.8 2.01

Blowing bubbles 6.4 4.9 5.6 2.05

Race horse 6.3 5.1 5.7 2.04

PSNR

Basketball 33.8 28.9 23.5 45.12

Blowing bubbles 37 25 27 45.1

Race horse 36 27 29 45.07

SSIM

Basketball 0.73 0.68 0.83 0.97

Blowing bubbles 0.75 0.67 0.75 0.96

Race horse 0.76 0.69 0.76 0.96
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EDCNN-HEVC and CACNN-HEVC methods respec-
tively. For blowing bubbles video sequence, specificity of 
the proposed EGANDF-SAO-HEVC method has attained 
33.8%, 34.79%, and 35.67% higher than the existing meth-
ods, like CNN-DF-SHVC, EDCNN-HEVC and CACNN-
HEVC respectively. For race horse video sequence, spec-
ificity of the proposed EGANDF-SAO-HEVC method has 
attained 28.8%, 19.7%, and 23.7% better than the existing 
CNN-DF-SHVC, EDCNN-HEVC and CACNN-HEVC 
methods respectively.

Fig. 8 shows the precision measurement of EGANDF-
SAO-HEVC method with existing methods. For bas-
ketball video sequence, the precision of the proposed 

EGANDF-SAO-HEVC method has attained 32.45%, 
23.46%, and 28.7% higher than the existing methods, like 
CNN-DF-SHVC, EDCNN-HEVC and CACNN-HEVC 
respectively. For blowing bubbles video sequence, the 
precision of the proposed EGANDF-SAO-HEVC method 
has attained 31.8%, 24.5%, and 27.8% higher than the 
existing methods, like CNN-DF-SHVC, EDCNN-HEVC 
and CACNN-HEVC respectively. For race horse video 
sequence, the precision of the proposed EGANDF-SAO-
HEVC method has attained 32.5%, 27.6%, and 28.9% 
higher than the existing methods, like CNN-DF-SHVC, 
EDCNN-HEVC and CACNN-HEVC respectively. 

Fig. 9 depicts the recall measurement of the EGANDF-
SAO-HEVC method with existing methods. For basket-
ball video sequence, the recall of the proposed EGANDF-
SAO-HEVC approach has attained 34.7%, 32.6%, and 
35.8% higher than the existing methods, like CNN-DF-
SHVC, EDCNN-HEVC and CACNN-HEVC respectively. 
For blowing bubbles video sequence, the recall of the 
proposed EGANDF-SAO-HEVC approach has attained 
36.7%, 32.9%, and 35.7% higher than the existing meth-
ods, like CNN-DF-SHVC, EDCNN-HEVC and CACNN-
HEVC respectively. For race horse video sequence, the 

Fig. 5 Comparison of accuracy

Fig. 6 Comparison of sensitivity

Fig. 7 Comparison of specificity

Fig. 8 Comparison of precision

Fig. 9 Comparison of recall
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recall of the proposed EGANDF-SAO-HEVC method has 
attained 38.9%, 34.6%, and 39.9% higher than the exist-
ing methods, like CNN-DF-SHVC, EDCNN-HEVC and 
CACNN-HEVC respectively.

Fig. 10 shows the MSE measurement of EGANDF-SAO-
HEVC method with existing methods. For basketball video 
sequence, MSE of the proposed EGANDF-SAO-HEVC 
method has attained 46.92%, 35.7%, and 41.3%lower than 
the existing methods, like CNN-DF-SHVC, EDCNN-
HEVC and CACNN-HEVC respectively. For blowing bub-
bles video sequence, the MSE of the proposed EGANDF-
SAO-HEVC method has attained 45.7%, 38.9%, and 41.6% 
lower than the existing methods, like CNN-DF-SHVC, 
EDCNN-HEVC and CACNN-HEVC methods. For race 
horse video sequence, MSE of the proposed EGANDF-
SAO-HEVC method has attained 48.5%, 41.4%, and 45.7% 
lower than the existing methods, like CNN-DF-SHVC, 
EDCNN-HEVC and CACNN-HEVC respectively.

Fig. 11 depicts the PSNR measurement for EGANDF-
SAO-HEVC method with existing methods. For basketball 
video sequence, PSNR of the proposed EGANDF-SAO-
HEVC approach has attained 25.7%, 29.7%, and 35.6% 
higher than the existing methods, like CNN-DF-SHVC, 

EDCNN-HEVC and CACNN-HEVC respectively. 
For blowing bubbles video sequence, PSNR of the pro-
posed EGANDF-SAO-HEVC approach has attained 
21.7%, 31.6%, and 37.8% higher than the existing meth-
ods, like CNN-DF-SHVC, EDCNN-HEVC and CACNN-
HEVC respectively. For race horse video sequence, 
PSNR of the proposed EGANDF-SAO-HEVC approach 
has attained 20.9%, 28.9%, 34.6% higher than the exist-
ing methods, like CNN-DF-SHVC, EDCNN-HEVC and 
CACNN-HEVC respectively.

Fig. 12 shows the SSIM measurement of EGANDF-
SAO-HEVC method with existing methods. For basket-
ball video sequence, SSIM of the proposed EGANDF-
SAO-HEVC approach has attained 25.6%, 28.9%, and 
13.6% higher than the existing methods, like CNN-DF-
SHVC, EDCNN-HEVC and CACNN-HEVC respec-
tively. For blowing bubbles video sequence,  SSIM of the 
proposed EGANDF-SAO-HEVC approach has attained 
27.8%, 32.6%, 21.7% higher than the existing methods, 
like CNN-DF-SHVC, EDCNN-HEVC and CACNN-
HEVC respectively. For race horse video sequence, the 
SSIM of the proposed EGANDF-SAO-HEVC approach 
has attained 26.7%, 31.5%, 27.8% higher than the exist-
ing methods, like CNN-DF-SHVC, EDCNN-HEVC and 
CACNN-HEVC respectively.

5 Conclusion
In this work, the in-loop filtering model based on Enhanced 
Generative Adversarial Network with Sample Adaptive 
Offset filter (EGANDF-SAO-HEVC) effectively reduced 
the artifacts for HEVC encoded videos. Here, EGANDF 
is used for removing blocking artifacts, and SAO filter is 
utilized to reduce the ringing artifacts. Finally, the pro-
posed method efficiently reducesartifacts for improv-
ing video quality performance. Here, the implementa-
tion of the proposed method is done in working platform 

Fig. 10 Comparison of MSE

Fig. 11 Comparison of PSNR Fig 12 Comparison of SSIM
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