
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

57/2 (2013) 57–64

doi: 10.3311/PPee.2090

http://periodicapolytechnica.org/ee

Creative Commons Attribution

RESEARCH ARTICLE

Improvements to the Hopfield Neural

Network Solution of the TWT

Scheduling Problem

Kálmán Tornai / Norbert Fogarasi / János Levendovszky

Received 2013-04-10, revised 2013-06-02, accepted 2013-06-03

Abstract

This paper explores novel, polynomial time, heuristic, ap-

proximate solutions to the NP-hard problem of finding the op-

timal job schedule on identical machines which minimizes to-

tal weighted tardiness (TWT). We map the TWT problem to

quadratic optimization and demonstrate that the Hopfield Neu-

ral Network (HNN) can successfully solve it. Furthermore, the

solution can be significantly sped up by choosing the initial state

of the HNN as the result of a known simple heuristic, we call this

Smart Hopfield Neural Network (SHNN). We also demonstrate,

through extensive simulations, that by considering random per-

turbations to the Largest Weighted Process First (LWPF) and

SHNN methods, we can introduce further improvements to the

quality of the solution, we call the latter Perturbed Smart Hop-

field Neural Network (PSHNN). Finally, we argue that due to

parallelization techniques, such as the use of GPGPU, the ad-

ditional cost of these improvements is small. Numerical simula-

tions demonstrate that PSHNN outperforms HNN in over 99% of

all randomly generated cases by an average of 3-7%, depending

on the problem size. On a specific, large scale scheduling prob-

lem arising in computational finance at Morgan Stanley, one of

the largest financial institutions in the world, PSHNN produced

a 5% improvement over the next best heuristic.

Keywords

Scheduling · Optimization · Quadratic programming · Neural

networks

Kálmán Tornai

Pázmány Péter Catholic University, Faculty of Information Technology,

Práter u. 50/a., H-1083 Budapest, Hungary

e-mail: tornai.kalman@itk.ppke.hu

Norbert Fogarasi

Department of Networked Systems and Services, Budapest University of

Technology and Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary

Managing Director, Morgan Stanley Hungary Analytics, Lechner Ödön

fasor 8., H-1095 Budapest, Hungary

János Levendovszky

Department of Networked Systems and Services, Budapest University of

Technology and Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary

1 Introduction

The recent increase of interest in classical problems of

scheduling theory can be attributed to the improvements in com-

puter hardware over the last two decades, which have made

applications of distributed computing possible to a variety of

new disciplines, including telecommunication, computational

biology, chemistry and finance (Brucker [2], Pinedo [13]).

Running large scale Monte-Carlo simulations in real-time, re-

quires thoughtful distribution of tasks on identical machines, so

scheduling receives a central interest in financial computing. In

our earlier work (Fogarasi et al [5]), we outlined some specific

current applications in computational finance as motivation for

examining the problem of scheduling jobs with predefined dead-

lines and weights, allowing pre-emption (the stopping and re-

sumption of work items), on identical machines in a way that

the total weighted tardiness (TWT) of all jobs is minimal. In

that paper, we gave a detailed review of previous work on this

problem, dating back to the 1970’s. An important result is the

proof by Du and Leung [3] that even the single machine, total

tardiness problem is NP-hard. This finding has directed many

researchers to take the approach of finding approximate solu-

tions to the problem in polynomial time. Akyol and Bayhan

[1] provide an excellent recent review of artificial neural net-

work based approaches to scheduling problems and proposes a

coupled gradient network to solve the weighted earliness plus

tardiness problem on multiple machines. The feasibility of the

method is illustrated on a single 8-job scheduling problem, but

there is no mention about the scalability of the method to larger

problem sizes which is the focus of our study. Although there

have been many other attempts (e.g. Maheswaran [11], there

is no traceable work on empirically demonstrated reliable poly-

nomial time heuristic which scales to over 100-job scheduling

problems and outperforms the existing simple heuristics. To fill

this gap, we suggested a novel approach based on the HNN ap-

proach which is based on mapping the problem into quadratic

optimization and we showed empirically that it reliably outper-

forms the Earliest Due Date (EDD), Weighted Shortest Process-

ing Time (WSPT) and our own Least Weighted Process First

(LWPF) heuristics.

Improvements to the Hopfield Neural Network Solution of the TWT Scheduling Problem 572013 57 2

http://periodicapolytechnica.org/ee
http://creativecommons.org/licenses/by/3.0/


In this paper, we take the HNN approach as our starting point,

and we examine improvements by intelligent selection of the

initial state for the algorithm (SHNN) and considering pertur-

bations to this initial state (PSHNN). We compare this to the

approach of simply perturbing the results of simpler heuristics

(PLWPF) and we also study the runtime characteristics of these

methods, taking into consideration parallelization possibilities

offered by technologies such as GPGPU. In order to demon-

strate the practical viability of our methods, we examine a large-

scale scheduling problem arising at Morgan Stanley with the

overnight batch of interest rate derivatives hedge computations.

This is a critically important practical application, as investment

banks spend millions of dollars each year on hardware to per-

form these daily calculations which are required by the trading

desks, senior risk management and most recently by external

regulators. We demonstrate that the improvements provided by

PSHNN are significant when compared to other heuristic meth-

ods, and thus has the potential of decreasing hardware spend by

up to 5% by the financial services companies.

The paper is organized as follows: in Section 2, we give a

formal definition of the problem; in Section 3, we review ex-

isting heuristic methods; in Section 4 the novel heuristics are

introduced; in Section 5, numerical results are presented includ-

ing a practical case study on a large problem size; and finally in

Section 6, some conclusions are drawn and directions for future

research are outlined.

2 Problem Formulation

In this section, we give a formal presentation for the prob-

lem of optimally scheduling jobs on identical processors with

the purpose of minimizing total weighted tardiness relative to a

prescribed job deadline schedule.

Given N jobs with sizes

x = {x1, x2, x3, . . . , xN} ∈ N
N ,

we assume that the processing of the jobs can be stopped and

resumed at any time on any machine. In the literature this con-

dition is known as preemption (Brucker [2]). An ordered set of

cut-off times:

K = {K1,K2,K3, . . . ,KN} ∈ N
N

is also given, which defines the time within which the jobs are

to be completed. The constant number of identical machines

available for scheduling is denoted by V ∈ N . Vector

w = {w1,w2,w3, . . . ,wN} ∈ R
N ,wi > 0,∀i = 1, . . . ,N

denotes the relative priority (or weight) of each job. A schedule

is represented by a binary matrix C ∈ {0, 1}N×L where Ci, j = 1 if

job i is being processed at time slot j, and L denotes the length of

the schedule. An example is given in (1), where the parameters

are the following:

V = 2,N = 3, x = {2, 3, 1} ,K = {3, 3, 3}

C =


1 0 1

1 1 1

0 1 0

 (1)

The first row in (1) denotes the fact that under this schedule C,

the first job is processed in time steps 1 and 3 (note that pre-

emption is used as the processing of this job is not continuous)

and therefore the processing unit size 2 of this job completes

within the prescribed cut-off time of time step 3. Similarly, the

3 units of the second job complete within the cut-off time of

3 and the third job is completed ahead of the cut-off time on

time step 2. Summing the columns of matrix C, we see that the

maximal capacity of V = 2 is fully utilized on each time step.

In order to evaluate the effectiveness of a given schedule C,

we define tardiness of a job as follows (Naderi et al. [12]):

Ti = max (0, Fi − Ki) (2)

where Fi is the actual finish time of job i under schedule C :

Fi = argmax j

{
Ci, j = 1

}
, the position of the last 1 in the ith row

in scheduling matrix C .

The problem to be solved can now be stated formally as find-

ing the optimal schedule for which

Copt := argmin
c

N∑
i=1

wiTi (3)

under the following two constraints:

1 The sum of each row in the scheduling matrix is equal to the

given job sizes, i.e.

L∑
j=1

Ci, j = xi,∀i = 1, . . . ,N (4)

2 The number of scheduled jobs at any given time instant does

not exceed the capacity of the system:

L∑
i=1

Ci, j ≤ V,∀i = 1, . . . ,N (5)

We now revisit our previous example with a minor change:

V = 2,N = 3, x = {2, 3, 2} ,K = {3, 3, 3} and a weight vector

w = {3, 2, 1}. It can be observed that there is no solution, in

which all jobs are completed before their cut-off times. A mini-

mal weighted tardiness solution is the following:

C =


1 0 1 0

1 1 1 0

0 1 0 1

 (6)

In this case, the first two jobs are as in the previous example,

but job 3 could not be completed by the cut-off time of 3 and

because one unit of work is finished after the cut-off time and

the weight associated with this job is 1, the schedule has a TWT

measure of 1.

Per. Pol. Elec. Eng. and Comp. Sci.58 Kálmán Tornai / Norbert Fogarasi / János Levendovszky



Fig. 1. Block diagram of the SHNN method

3 Existing Heuristic Methods

Given the NP-hard nature of the scheduling task as proven by

Du and Leung [3], to find the exact, optimal solution, in most

real-world settings is not feasible. Thus we follow a pragmatic

approach of finding a fast, sub-optimal, but good solution. We

outline the recently developed Hopfield Neural Network (HNN)

based solution as well as the Largest Weighted Process First

(LWPF) heuristic.

3.1 Largest Weighted Process First (LWPF) Heuristic

This heuristic re-labels the sequence of jobs to be executed

in non-decreasing order of weights. Using the notation of Sec-

tion 2, we re-label the job indices so that following inequality

holds:

w1 ≥ w2 ≥ . . . ≥ wn. (7)

Once this re-indexing is completed, the jobs are allocated to the

machines in this order, always utilizing the maximum available

capacity. When a job finishes and capacity is thus freed up for

the next time step, the next job in the queue is scheduled. This

heuristic has been empirically proven to have very good rela-

tive performance, compared to other simple heuristics such as

the Earliest Due Date (EDD) and Weighted Shortest Processing

Time (WSPT) methods (Fogarasi et al. [5]).

3.2 Hopfield Neural Network (HNN) based solution

This approach transforms the original constrained optimiza-

tion into a quadratic optimization problem, which is then solved

with a HNN. The HNN is described by the following state tran-

sition rule (Hopfield [7]):

yi(k + 1) = sgn

 N∑
j=1

Ŵi, jy j(k) − b̂i

 , i = modNk, (8)

where

d = −diag(W),

W = −W − diag(d),

b = b −
1

2
d

(9)

Using the Lyapunov method, Hopfield [7] proved that the HNN

converges to the minimum of the quadratic Lyapunov function:

y := −
1

2

N∑
i=1

N∑
j=1

Ŵi jyiy j +

N∑
i=1

yib̂i = −
1

2
yT Ŵy + b̂T y. (10)

In order to use the HNN, the existing optimization problem is

transformed into quadratic form. We give a brief summary of

this approach which is fully explained in (Fogarasi et al 2012).

The original objective function (2.3) is elaborated as follows:

min
c

N∑
i=1

wi

(
max

(
0, argmax

j

{
Ci, j = 1

}
− Ki

))
(11)

The constraints in (4) are rewritten as an optimization term later

to be included into the objective function as follows:

∀i :

L∑
j=1

Ci, j = xi → min
C

N∑
i=1


 L∑

j=1

Ci, j

 − xi


2

(12)

The other set of constraints described in (5) are transformed sim-

ilarly as follows:

∀ j :

N∑
i=1

Ci, j = V → min
C

L∑
i=1


 N∑

j=1

Ci, j

 − V


2

(13)

The binary scheduling matrix C is mapped into a binary column

vector y and the above three optimization terms are combined, in

order to get the parameters of the HNN into the form of equation

(10):

W = αWA + βWB + γWC ∈ R
NL×NL (14)

and

b = αbA + βbB + γbC ∈ R
NL×1 (15)

Note that the relative importance of the objectives is con-

trolled by heuristic constants α, β, γ. Having this quadratic form

at hand, the HNN is able to provide an approximate solution to

the optimization problem in polynomial time.

In our numerical tests, the HNN recursion was repeated 1000

times with different random starting points and the best solution

was used. In addition, the heuristic parameters are also adjusted

during the iterations in order to provide a good balance between

optimizing the objective function and also meeting the required

constraints to produce a valid scheduling matrix. Furthermore,

solution schedules not fully complying with the required con-

straints are corrected through a simple algorithm.

4 Novel Heuristic Methods

In this section, three algorithms are proposed in order to im-

prove upon the existing methods. Unfortunately, traditional

algorithms which provide fast convergence often fail to reach

the global optimum. As such, the development of these novel

heuristics is motivated by the desire to avoid getting stuck in

local minima and still reach good quality solutions in real time

by exploiting the fast convergence of the HNN. The proposed

methods are based on the careful choice of the initial state or

random perturbation of the initial state.

Improvements to the Hopfield Neural Network Solution of the TWT Scheduling Problem 592013 57 2



Fig. 2. Block diagram of the PSHNN method

4.1 Smart Hopfield Neural Network (SHNN)

The SHNN approach uses the result of the LFPW heuristic as

input for the HNN recursion. The block diagram of the method

is provided in Figure 1. In this way the HNN recursion is not

being repeated several times with different starting points, there-

fore the method can be executed faster than the original HNN

method; however repetitions due to the tuning of the heuristic

parameters are still required.

The intuition behind this method is that since the value of the

Lyapunov function monotonically decreases during the HNN re-

cursion, a better starting point may converge faster and, depend-

ing on the shape of the Lyapunov surface to be minimized, could

converge to a better quality minimum than a random starting

point.

4.2 Perturbed Smart Hopfield Neural Network (PSHNN)

The SHNN method is faster than the original HNN solution,

as it only considers a single starting point. However, as we have

found through numerical simulations, it can get stuck in local

minima. We can improve upon this by considering random per-

turbations to the "smartly" selected initial starting point. The

result of the LFPW method is perturbed randomly, in order to

generate a set of initial point for the HNN recursion. The block

diagram of this method is shown in Figure 2.

Figure 3 provides a visual explanation as to why perturbing

the initial point may have a beneficial effect when the HNN iter-

ation gets stuck in a local minimum.

The algorithm which generates the set if inputs is described

by Algorithm 1, where the function random(Θ) produces a uni-

formly distributed random integer value in range Θ and the func-

tion correct(C,X) is an error correction function, given by

Algorithm 3. The degree of perturbation is an input parameter;

however in our implementation it is proportional to the number

of the columns of scheduling matrix.

The final result is the best solution provided by the HNN re-

cursions from the set of input points generated by the algorithm.

4.3 Perturbed Largest Weighted Process First (PLWPF)

Analogously to the relationship between the SHNN and

PSHNN methods, the PLWPF is the perturbed version of the

LWPF method. The block diagram is shown in Figure 4.

The random perturbation is performed using Algorithm 1 and

among the perturbed C matrices, the one which produces the

lowest value for the objective function is chosen as the final re-

sult of the PLWPF method.

5 Numerical Results

In this section, the performance of the novel heuristic ap-

proaches is investigated and is compared to the performance of

already known heuristics.

5.1 Simulation method

Each method outlined in Section 3 and the HNN method has

been tested by extensive simulations on a large and diverse set

of input parameters with the aim to characterize the algorithms

empirically on scheduling problems of different sizes. The al-

gorithms were implemented in MATLAB and tests were run in

this simulation environment with randomly generated parame-

ters such as size of jobs, cut-off times, and weights. The size

of each job and its cut-off time and corresponding weight are

generated as follows:

xi = random([1, c1]), (16)

Ki = xi + random([c1, 1.5 · c1]), (17)

wi = random([1, c2]), (18)

where random(Θ) produces a uniformly distributed random in-

teger value in range Θ.

In our simulations the constant c1 was set to 10 and c2 was set

to 5. The number of processors (V) was determined as follows:

V = 0.25 · J (19)

The problem is expected to be solved without tardiness when

the capacity is such that V = J. Therefore (19) ensures that there

is a high likelihood of tardiness associated with the generated

problem.

For each problem size (dimension of job vector), 100 different

problems were generated randomly, using (16) − (19) and the

results of the methods were compared in each case.

The result of LWPF was used as the initial state for SHNN.

Also, this result was perturbed randomly and these perturbations

were used as starting points for PSHNN. The best perturbed re-

sult is the result of PLWPF.

The HNN and PSHNN methods were repeated 1000 times for

each problem with different random or perturbed starting points

and the best solution was used. In addition, the heuristic parame-

ters α, β and γ were adjusted between the simulations in order to

provide a good balance between optimizing the objective func-

tion, but also meeting the required constraints to produce a valid

scheduling matrix.

To adjust the heuristic parameters we used Algorithm 2.

Per. Pol. Elec. Eng. and Comp. Sci.60 Kálmán Tornai / Norbert Fogarasi / János Levendovszky



Fig. 3. Illustration of the advantage of multiple perturbed starting points in finding the global minimum

Fig. 4. Block diagram of the PLWPF method

Algorithm 1 Perturbation algorithm

perturb(CLWPF ,N,D, x)- (Initial C, Number of outputs, Degree of perturbation, Job sizes)

CRES = ∅;

for i = 1→ N do

C = CLWPF

for j = 1→ D do

{k1, k2, l} ← {random([1..J]), random([1..J]), random([1..L])} ∧
{
Ck1,l,Ck2,l

}
←

{
Ck2,l,Ck1,l

}
end for

C = correct(C,X)

CRES = {CRES ,C}

end for

return CRES

Algorithm 2 Algorithm for adjusting the heuristic parameters

Require: x,K,V, e

α← 0.1, β← 5, γ ← 5

i← 0

repeat

i← i + 1

Ci ←HNN(x,K,V, α, β, γ)

α← α + 0.001

until error(Ci) ≤ e

for k = 1→ i do

Ck ← correct(Ck)

Tk ← calculateTWT(Ck)

end for

return min(T)

In order to achieve valid solutions in all cases by HNN, we in-

troduced an error correction function (see Algorithm 3) in order

to cut and replace the unnecessary 1-s in the scheduling ma-

trix. In our simulations, parameter e was set to 5. All of the re-

sults presented in the following sections therefore concern valid

schedules meeting the required constraints.

5.2 Average total weighted tardiness of the different meth-

ods

The first simulation compares the average total weighted tar-

diness provided by the algorithms for different problem sizes.

For each problem size, 100 different problems were generated

Algorithm 3 Correction algorithm for the scheduling matrix

produced by the HNN

correct(x,w,K,V,C)

for k = 1→ L do

while
∑N

i=1 Ci,k > V do

Remove 1 from row j, where j is the row in column k

with minimal weight that has C j,k = 1

end while

end for

for k = 1→ N do

while
∑L

i=1 Ck,i > xk do

Remove 1 from row k from the column l, where l is the

righternmost column in row k such that Ck,l = 1

end while

while
∑L

i=1 Ck,i < xk do

Add 1 to row k in column l, where l is the lefternmost

column where 1 can be added without violating the ca-

pacity constraint V

end while

end for

return C

randomly, using (16) − (19) and the results of the methods were

compared to the theoretically best schedule, obtained by exhaus-

tive search in Figure 5 up to a problem size of 35 jobs. Simula-

tions then were extended to problem sizes of up to 100 jobs and

Improvements to the Hopfield Neural Network Solution of the TWT Scheduling Problem 612013 57 2



Fig. 5. The difference between the average TWT

produced by each heuristic and the theoretical best

schedule obtained by exhaustive search, over 100 ran-

domly generated problems for each problem size.

the difference of the resulting average TWT of each heuristic

method to the result of the PSHNN method is depicted in Fig-

ure 6. It can be observed that the best solution achieved by the

PSHNN method has better average TWT for all problem sizes

than any of the other heuristics. Previously, we showed that the

performance of the LWPF method is, on average, worse than the

HNN method for all problem sizes (Fogarasi et al 2012). How-

ever, we see that random perturbation does improve LWPF, as

the solution achieved by PLWPF method is better than the so-

lution of the original LWPF method for all problem sizes. The

SHNN solution can be evaluated faster than HNN; however, its

average TWT is only slightly better than the HNN method in

case of small number of jobs and is significantly worse for larger

problem sizes. Therefore, SHNN as a method in itself is not that

impressive; however, as a stepping stone towards the PSHNN

method its role is important.

We conclude that, on average, the best solution of the PSHNN

outperforms the traditional solutions: the total weighted tar-

diness of the best PSHNN solution is 93%-97% of the HNN,

68%-96% of the LWPF; the TWT of the best PLWPF solution

is 4%-95% of the original LWPF; the TWT of the SHNN solu-

tion is 77%-110% of the PLWPF. As the problem size increases,

the PLWPF heuristic produce solutions which are closer to the

PSHNN. The ratio between the HNN and PSHNN is relatively

stable independently of the problem size.

Tab. 1. Percentage of problems in which PSHNN provides an improved so-

lution over the next best heuristic, HNN.

Job size

5 100%

10 100%

15 99.9%

20 99.8%

30 99.8%

40 99.9%

50 99.7%

75 99.7%

100 99.5%

In order to verify that the PSHNN consistently outperforms

the other heuristics on a wide spectrum of problems, not just on

a few selected problems for each given problem size, we ran a

more detailed numerical experiment. In this case, we investi-

gated 500 randomly generated problems for each problem size

and computed the percentage of times the PSHNN produced a

better solution than HNN, the next best method. Table 1 shows

the result which quite convincingly proves the general applica-

bility of the PSHNN to different problem types. Across the spec-

trum of problem domain, the ratio is higher than 99.2% for all

investigated job sizes.

5.3 Parallel implementation of the algorithm

In this section, for further speed-up we investigate and sum-

marize a possible implementation of the HNN on GPGPU,

specifically on Fermi architecture (Kirk, D. B. et al. 2010). Ta-

ble 2 contains the theoretical order of convergence of the algo-

rithms as a function of the length of the input parameters.

Tab. 2. Theoretical runtime of the algorithms

Algorithm Theoretical order

of convergence

LWPF O(L · N)

HNN O(L2 · N2) [6,7]

Although the number of repetitive iterations does not affect

the theoretical order of convergence, the actual runtime of the

algorithms may increase significantly. In order to reduce over-

all runtimes, each HNN run within the PSHNN method should

be parallelized, resulting in multiple HNN runs from perturbed

starting points taking the same time as a single HNN run. Fur-

thermore, Liang (2011) introduced a highly parallelized imple-

mentation of the HNN, which allows for significant speedup of

each HNN run. More formally, the total runtime T of the algo-

rithm is given by:

T = Rinit(Rheurt) (20)

where Rinit denotes the number of repeats of the algorithms from

different initial starting points, Rheur denotes the number of re-

peats of the algorithm with different heuristic parameter (alpha,

beta, gamma) settings and t denotes the runtime of a single non-

parallelized HNN run. For example, assuming a 200×200 sized

Per. Pol. Elec. Eng. and Comp. Sci.62 Kálmán Tornai / Norbert Fogarasi / János Levendovszky



Fig. 6. The difference between the average TWT

produced by each heuristic and the average TWT pro-

duced by the best method, PSHNN over 100 ran-

domly generated problems for each problem size.

W weight matrix corresponding to 30 jobs to be scheduled, with

Rinit = 500, Rheur = 100, the estimated time of execution on

a 3GHz CPU processor is 50 seconds running optimized MAT-

LAB code.

Fig. 7. Illustration of how each run of the perturbed starting point may be

parallelized in a GPGPU infrastructure.

Since each iteration is independent of other iterations, it can

be executed independently and in parallel. Using an existing

parallel HNN implementation, we extend the parallelism on

nVidia Fermi architecture as follows (Farber [4]):

• The W matrix is sparse (5-10 % of values are nonzero, and

there are patterns amongst the nonzero values), therefore in

case of large W matrix one HNN iteration can be executed by

a stream multiprocessor (SM) using its local (shared) mem-

ory.

• The independent HNN iterations can be executed on separate

SM-s.

As such, the execution time of the PSHNN algorithm can be

significantly decreased on Fermi multicore architecture, thus we

can achieve a better solution than the other heuristics within the

same execution time. The idea of the parallelization is illustrated

in Figure 7 and the execution times are shown in Figure 8.

5.4 Practical case study on large problem size

A common task arising in computational finance is the

scheduling of a set of valuation and risk sensitivity calculations

which need to be run overnight based on the close-of-market

market observables. Complex derivative transactions cannot, in

general, be priced analytically and require Monte Carlo simula-

tions for their valuation. In the specific example studied here,

we consider the risk calculations associated with nearly 100 dif-

ferent portfolios, yielding altogether 556 jobs of an average size

of 792 seconds to be scheduled. Each job has associated with it

a cutoff time, by which time risk calculations need to finish in

order for the results to be incorporated in the nightly firmwide

Value at Risk (VaR) calculation and in order to have the sen-

sitivity figures available for the trading desk at market open.

Furthermore, each job has a priority associated with it which

is assigned based on the relative amount of risk carried in that

portfolio. We obtained specific runtime, deadline and priority

data for an actual overnigh scheduling problem for traded port-

folios at Morgan Stanley, one of the largest financial institutions

in the world.

Having run each of the algorithms on this set of real data,

Table 3 summarizes the results. As seen, PSHNN outperforms

the next best method, PLWPF by 4.7% in terms of TWT, HNN

by 7%, LWPF by 10% and EDD by a striking 48%. Another

way to interpret the results is that PSHNN essentially completes

all jobs with top priorities (8,9,10) on time, whilst PLWPF has

a total tardiness of around 53 minutes (4 average sized jobs) on

these top priority jobs although it completes the less important

jobs more quickly.

6 Conclusions and Directions of Future Research

In this paper, we studied the NP-hard problem of scheduling

jobs with given relative priorities and deadlines on identical ma-

chines, minimizing the TWT measure. In our previous work, we

showed that the HNN approach is a heuristic which consistently

outperforms other benchmark heuristics such as the EDD and

WSPT methods. In this paper, we improved our previous work

by demonstrating that random perturbations to the intelligently

selected starting point significantly improves the quality of the

solution of the HNN approach. Furthermore, we showed that ap-

plying random perturbations to the deterministic LWPF heuris-

tic also provides an improvement. We studied the implementa-

tion details of the random perturbations and the HNN method

to show that the methods remain applicable in real-time settings

Improvements to the Hopfield Neural Network Solution of the TWT Scheduling Problem 632013 57 2



Fig. 8. Runtimes of the different algorithms, as a

function of job size.

Tab. 3. Table of total (weighted) tardiness for

jobs of each weight, provided by the different meth-

ods for the Morgan Stanley scheduling problem

Total Weighted Tardiness

Weights 3 4 5 6 7 8 9 10 SUM Increment

to PSHNN

PSHNN 4401 11116 4020 1620 1092 8 0 0 22257 0 %

PLWPF 3513 9624 5130 1788 490 312 2304 190 23351 5 %

HNN 4404 11040 4735 1824 1092 456 468 0 24019 7 %

LWPF 4404 11140 5470 2472 1183 40 0 0 24709 10 %

EDD 4401 9940 1770 636 1134 464 22752 1430 42527 48 %

Total Tardiness (Minutes)

Priority 3 4 5 6 7 8 9 10 SUM

PSHNN 244.5 463.2 134.0 45.0 26.0 0.2 0.0 0.0 912.8

PLWPF 195.2 401.0 171.0 49.7 11.7 6.5 42.7 3.2 880.8

HNN 244.7 460.0 157.8 50.7 26.0 9.5 8.7 0.0 957.3

LWPF 244.7 464.2 182.3 68.7 28.2 0.8 0.0 0.0 988.8

EDD 244.5 414.2 59.0 17.7 27.0 9.7 421.3 23.8 1217.2

for scheduling large number of problems, PSHNN yielding a

5% improvement over the next best method, PLWPF and 7%

improvement over regular HNN.

As for directions for further research, more formal methods

for the selection of alpha, beta and gamma parameters could be

investigated in order to further improve performance and bounds

on the performance of these methods could be established, in

relation to the theoretical optimum.

Aknowledgement

The work reported in the paper has been developed in the

framework of the project "Talent care and cultivation in the sci-

entific workshops of BME" project. This project is supported by

the grant TAMOP – 4.2.2.B-10/1–2010-0009.

References

1 Akyol DE, Bayhan GM, Multi-machine earliness and tardiness scheduling

problem: an interconnected neural network approach, Int. J. of Adv. Manuf.

Technol., 37, (2008), 576–588.

2 Brucker P, Scheduling Algorithms, Springer; New York,USA, 2007.

3 Du J, Leung JY-T, Minimizing total tardiness on one machine is NP-hard,

Math. Oper. Res, 15(3), (1990), 483–495.

4 Farber R, CUDA Application design and development, 1st edn., Morgan

Kaufmann, 2011.

5 Fogarasi N, Tornai K, Levendovszky J, A Novel Hopfield Neural Net-

work Approach for Minimizing Total Weighted Tardiness of Jobs Scheduled

on Identical Machines, Acta Univ. Sapientiae, Informatica, 4(1), (2012), 48–

66.

6 Haykin S, Neural Networks and Learning Machines, Prentice Hall, 2008.

3rd Edition.

7 Hopfield JJ, Neural networks and physical systems with emergent collective

computational abilities, Proceedings of the National Academy of Sciences of

the USA, (1982).

8 Kirk DB, Hwu WW, Programming massively parallel processors: A hands-

on approach, Morgan Kaufman., 2010.

9 Liang L, Parallel implementations of Hopfield neural networks on GPU,

2011.

10 Levendovszky J, Olah A, Tornai K, Treplan G, Novel load balancing

algorithms ensuring uniform packet loss probabilities for WSN, 2011 IEEE

73rd Vehicular Technology Conference, (2011).

11 Maheswaran R, Ponnambalam SG, Nithin SD, Ramkumar AS, Hopfield

Neural Network Approach for Single Machine Scheduling Problem, Proceed-

ings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems,

(2004).

12 Naderi B, Zandieh M, Shirazi MAHA, Modeling and scheduling a case

of flexible flowshops: Total weighted tardiness minimization, Computers &

Industrial Engineering, 57(4), (2011), 1258–1267.

13 Pinedo M, Scheduling – Theory, Algorithms and Systems, Springer; New

York, 2008.

Per. Pol. Elec. Eng. and Comp. Sci.64 Kálmán Tornai / Norbert Fogarasi / János Levendovszky


	Introduction
	Problem Formulation
	Existing Heuristic Methods
	Largest Weighted Process First (LWPF) Heuristic
	Hopfield Neural Network (HNN) based solution

	Novel Heuristic Methods
	Smart Hopfield Neural Network (SHNN)
	Perturbed Smart Hopfield Neural Network (PSHNN)
	Perturbed Largest Weighted Process First (PLWPF)

	Numerical Results
	Simulation method
	Average total weighted tardiness of the different methods
	Parallel implementation of the algorithm
	Practical case study on large problem size

	Conclusions and Directions of Future Research

