
93A Platform Independent Access Control Metamodel for Web Services 2014 58 3

A Platform Independent Access
Control Metamodel for Web Services

Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

received 18 April 2013, Accepted After revision 4 MArch 2014

Abstract
Web services provide platform independent communication

through an XML-based standard family. The major software
vendors released their own SOA products implementing these
standards. However, the configuration of the WS-* protocols
differs from product to product. Matching these configurations
between different products can be a tedious task. In addition,
security protocols are complicated to configure, especially if
access control is also required. Although the XACML standard
aims to solve this problem, its rules and policies described in
XML are not user friendly, and XACML has little support in the
major SOA products. Therefore, we have developed a platform
independent metamodel for describing distributed systems of
web services. From models described in this metamodel the
platform specific configurations and program code can be gen-
erated for the various SOA products, increasing the productiv-
ity of the development. This article introduces an access con-
trol extension to this metamodel.

Keywords
web services · WS-* standards · SAML · claims-based identity

· metamodeling

1 Introduction
Web services realize distributed communication in a platform

independent way by building the related standards on XML.
The communication protocol (SOAP), the interface descrip-
tion language (WSDL) and the middleware aspects, called
WS-* standards (WS-Addressing, WS-ReliableMessaging,
WS-Security, WS-SecureConversation), are all represented in
XML. These middleware aspects can also be configured in a
platform independent way through XML chunks called WS-
Policy assertions which are usually included in the WSDL.
The primary aim using XML for communication is to promote
interoperability between different platforms.

However, the major drawback of the WS-Policy standard
family is that the policy assertions of the WS-* standards can
be large XML structures which makes policy assertions nearly
impossible to be handwritten by humans. Luckily, most SOA
products provide policy repositories (e.g. Oracle SOA Suite,
IBM WebSphere) containing complete assertions that can
be used for configuration. However, these assertions may be
diverse in different products and matching them can be a dif-
ficult task. There are also products which offer GUI design-
ers (e.g. GlassFish ESB) or transform WS-Policy assertions
into their own configuration representation (e.g. Apache CXF,
Microsoft WCF) making interoperability more problematic.

Most issues arise with the configuration of security protocols,
especially security tokens and security token services, since
they require a lot of parameters, like certificates, encryption and
digital signature algorithms. The XACML (eXtensible Access
Control Markup Language) standard is designed for defining
policies and rules for authorization decisions. It provides Atti-
bute-Based Access Control (ABAC) in a platform independent
way. However, since it is also based on XML, it is not conveni-
ent to write XACML policies by hand. Another problem with
XACML is that it is not yet widespread. For example, Microsoft
WCF does not yet support it and most open-source implementa-
tions rely on the old Sun XACML library.

It is still an open issue [9] to create a general access control
metamodel that can unite all the access control approaches, like

58(3), pp. 93-108, 2014
DOI:10.3311/PPee.2093

Creative Commons Attribution b

reseArch Article

Balázs Simon

Department of Control Engineering and Information Technology, Faculty of
Electrical Engineering and Informatics, Budapest University of Technology
and Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
e-mail: sbalazs@iit.bme.hu

Balázs Goldschmidt

Department of Control Engineering and Information Technology, Faculty of
Electrical Engineering and Informatics,Budapest University of Technology and
Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
e-mail: balage@iit.bme.hu

Károly Kondorosi

Department of Control Engineering and Information Technology, Faculty of
Electrical Engineering and Informatics, Budapest University of Technology
and Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
e-mail: kondorg@iit.bme.hu

PPPeriodica Polytechnica
Electrical Engineering and Computer Science

http://dx.doi.org/10.3311/PPee.2093
mailto:sbalazs@iit.bme.hu
mailto:balage@iit.bme.hu
mailto:kondorg@iit.bme.hu

94 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

role-based access control (RBAC) and attribute/claims-based
access control (ABAC/CBAC). Although, it may be possible
to construct such a metamodel [2], our goal is not to find the
ultimate solution for this problem. Our intention is to define a
metamodel for describing the access control of web services
with the aim of reducing the development complexity of web
services with security aspects.

The considerations above inspired us to create a platform
independent metamodel for describing distributed systems
built from web services and also a platform independent pro-
gramming language for configuring such distributed systems.
There are propositions to use of UML for this task [5, 11], but
UML itself is not suitable, since it lacks most of the concepts of
the WS-* standard family even when it is extended with stereo-
types [6, 7, 22]. However, a domain specific language designed
particularly for web services can be more convenient to use and
can increase productivity. Therefore, we created such a meta-
model, called SoaMM (SOA Metamodel). It also has a textual
concrete syntax called SOAL (SOA Language), which is a
programming language for describing distributed systems of
web services. We also wrote a compiler that transforms SOAL
descriptions into models (instances of the SoaMM metamodel),
and also a code generator that produces program code and plat-
form specific configuration files for the various SOA products
to implement the described system. The produced artefacts
provide consistent configurations between the different SOA
products resulting in interoperable applications.

In previous conference proceedings we published [24, 25]
some parts of this metamodel. The present article introduces
an extension to this metamodel that provides attribute-based
access control. The rest of the paper is structured as follows.
The second section covers the related work in modeling access
control for web services. The third section contains the descrip-
tion of the SoaMM metamodel with the access control exten-
sion. The fourth section shows an example how easily the pro-
posed metamodel and programming language can be used to
implement a WS-Federation scenario, which is usually a com-
plicated task. The fifth section evaluates the productivity of our
framework through some examples. The last section concludes
the article and lists the possible future directions.

2 Related Work
The XACML specification [21] contains a metamodel for

the access control policies and rules. However, this metamodel
does not deal with web services and with the WS-* protocols,
and the concrete syntax of XACML is a complex XML struc-
ture, which is hard to maintain by hand.

C. Emig et. al. [8] defined a policy model called Web Service
Access Control Markup Language (WSACML). The concepts
in their model are similar to XACML, however, their model
is more specific for web services. Their solution is a combina-
tion of RBAC and ABAC. Unfortunately, they chose XML as a

concrete syntax for the model, which is harder to maintain than
a code written in a domain specific language. It is unclear from
the paper, what kind of expressions can be defined in the model,
and they do not take other WS-* protocols into consideration.

M. Alam et. al. [1, 12] created the SECTET framework for
model driven security. They incorporated all the XACML v3.0
concepts into their framework and they are able to generate
XACML policies from the models. They use UML as a visual
model and OCL for defining access control conditions. How-
ever, they define authorization for roles instead of the more
general ABAC solution, and they do not consider other WS-*
protocols in their model.

T. Mouelhi et. al. [20] proposed a model-driven approach
for specifying, deploying and testing security policies in Java
applications. It is based on a generic security meta-model
which can be used for early consistency checks in the secu-
rity policy. This model is then automatically transformed into
security policy for the XACML platform and integrated in the
application using aspect-oriented programming. However, they
also build on RBAC, and they do not cover web services.

M. Giordano et. al. [10] proposed a visual language to spec-
ify access and security policies according to the RBAC model.
They also point out the complexity of XACML, and they show
how XACML policies can be generated from their visual lan-
guage. Unfortunately, they do not deal with the more general
claims-based access control model and with web services.

X. Jin [15] created an MDA approach to model RBAC sys-
tems. This approach uses UML with stereotype extensions
as a visual language for defining models. The access control
rules can be described in OCL. However, this solution is also
restricted to RBAC, and it does not deal with web services.

M.E. Jiague et. al. [14] specified a platform independent
model, a platform specific model and translation rules between
them to generate BPEL processes for authorization decisions.
Unfortunately, their model is too high-level, and it is unclear
what kind of expressions can be used for defining the authori-
zation conditions.

C. Wolter et. al. [31] proposed to model certain types of
security goals in a graphical fashion at the business process
modeling level, which in turn can be transformed into corre-
sponding access control and security policies. This is a promis-
ing approach, since defining access control in a graphical way
is more intuitive than maintaining XML files. However, their
solution is too high-level, and most of the generated configura-
tion options cannot be parameterized graphically. For example,
the parameters of the WS-Security protocol cannot be specified
graphically.

Another way of describing services is using semantic web tech-
nologies. The major goal of Semantic Web Services (SWS) is to
create intelligent software agents to provde automated, interoper-
able and meaningful coordination of web services [16]. The three
main directions of SWS are SAWSDL, OWL-S and WSMO.

95A Platform Independent Access Control Metamodel for Web Services 2014 58 3

SAWSDL [30] does not introduce a new language. It is a
WSDL extension for referencing ontological concepts outside
WSDL documents. Beyond that it does not define any execu-
tion semantics for the implementation.

The OWL-S [29] profile ontology is used to describe what a
service does, and is meant to be mainly used for the purpose of
service discovery. The service description contains input and
output parameters, pre- and post-conditions, and also non-func-
tional aspects. The OWL-S process model describes service
composition including the communication pattern. In order
to connect OWL-S to existing web service standards, OWL-S
uses grounding to map service descriptions to WSDL. The
OWL-S environment provides an editor to develop semantic
web services and a matcher to discover services. The OWL-S
Virtual Machine is a general purpose web service client for
the invocation. OWL-S therefore requires a custom execution
environment and cannot be used in current commercial SOA
products. Its underlying description logic OWL-DL has also a
limited expressiveness in practice.

The WSMO [32] framework provides a conceptual model
and a formal language WSML for semantic markup of web ser-
vices. WSMO is used for modeling of ontologies, goals, web
services and mediators. Ontologies provide formal logic-based
grounding of information used by other components. Goals rep-
resent user desires, that is the objectives that a client might have
when searching for services. Web services are computational
entities, their semantic description includes functional and
non-functional properties, as well as their capabilities through
pre- and post conditions, assumptions and effects. Mediators
provide interoperability between components at data, protocol
and process level. The reference implementation of WSMO is
the WSMX [13] framework, a custom execution environment.
It is designed to allow dynamic discovery, invocation and com-
position of web services. It also provides interoperability with
classical web services.

The main design goals of SWS standards are discovery, invo-
cation and composition of web services. These standards are
not primarily designed for modeling purposes. They are weak
in terms of security, transactional, reliability and other non-
functional aspects even at the conceptual level [23]. Because of
their custom execution environment, their implementations do
not rely on existing SOA products of major software vendors,
which can result in interoperability problems with classical
web services published by these products.

Although there are directions to extend SWS standards with
WS-Policy concepts [17, 27, 28], these solutions focus on ser-
vice discovery and policy matching, and do not resolve the
issues related to modeling and implementation.

T.-Y. Chen [4] developed a knowledge access control policy
(KACP) language model for virtual enterprises. It is an ontol-
ogy-based access control approach. Its drawback is that poli-
cies written in the proposed KACP language model are difficult

to read and analyze, it only describes concepts, it does not deal
with web services and WS-* protocols, and the textual concrete
representation is also XML, which is hard to maintain.

A domain specific model designed particularly for web ser-
vices with a friendly concrete syntax is easy to understand,
more convenient to use and is more productive for web service
development than the solutions listed above. We considered
extending one of the existing solutions to match these require-
ments. Solutions with UML and OCL, and the ones with ontol-
ogies are inconvenient for the web service domain, especially
for configuring WS-* policies. Solutions that implement only
RBAC are too restricted, and their metamodel and concrete
syntax require a lot of modification for ABAC and WS-* policy
support. The remaining domain-specific solutions have XML
as a concrete syntax, which is inconvenient to edit by humans.
XACML, which is the most widely adopted solution of these,
suffers from this problem, too. Other solutions do not have a
significant user base, and the amount of work to extend them is
comparable to creating a new framework from scratch. There-
fore, we decided to choose the latter. Our target users are the
developers who use the SOA products of major software ven-
dors. Our framework does not replace these products, it simply
helps these developers with the top-down development of web
services by increasing their productivity.

Our solution concentrates on the more general ABAC
approach. It has a domain specific metamodel and a simple
textual concrete syntax. This syntax is easier to maintain than
a verbose XML description. Another advantage of our frame-
work is that it also supports other WS-* protocols.

3 Access Control Metamodel for Web Services
Since almost every web service framework uses a different

kind of configuration format it is hard to match the options of
the different frameworks. This is the reason why we decided to
create a common metamodel for the WS-* standard family in
order to be able to model the services in a platform independent
way. From this model the platform dependent configurations of
the various frameworks can be automatically generated.

This section specifies the SoaMM metamodel which can be
used for modeling access control for distributed services in a
platform independent way. Some parts of the metamodel have
already been published [24, 25]. Since the focus of this article
is the access control aspect, the other aspects of the metamodel
are not discussed here.

Figure 1 shows the architecture of the SoaMM metamodel.
Most of the WSDL parts are mapped to the SoaMM metamodel.
The only exception is the message part which is a redundant
element in the WSDL description, therefore, it is omitted from
the SoaMM metamodel. All the other parts (types, portType,
bindings and endpoints) are included in SoaMM and there is
an additional declaration for modeling claims to support claims
based identity. Bindings define the transport, the encoding and

96 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

the WS-* protocols to be used. The supported protocols are WS-
Addressing, WS-ReliableMessaging, WS-Security, WS-Secure-
Conversation, WS-AtomicTransaction. The remaining parts of
this section show how the elements in Figure 1 related to access
control modeling are defined in the SoaMM metamodel.

There is also a simple programming language called SOAL
which provides a textual concrete syntax for the SoaMM meta-
model. This language has a similar syntax to C# and Java, but
it is specific to the SoaMM domain.

Figure 2 shows the possible declaration elements of SoaMM.
SoaMM supports namespaces to avoid name collisions.
Namespaces can be hierarchical, therefore, a Namespace can
contain other Namespace declarations. A Type is a simple
or complex type which constraints the values represented by
variables. The Claims element is a list of claim definitions
used in claims based identity management. These claims can
be mapped to SAML attributes and WS-Feredation claims.
An interface is a collection of operations provided by a ser-
vice, and it is described by the Interface element (this is
the portType element in the WSDL). Middleware aspects and
protocol configurations are specified in the Binding element.
The Endpoint element represents a service running on a spe-
cific location (this is the service element in the WSDL). The
Authorization element defines a contract for access con-
trol for web services.

The SoaMM modeling language has a strong type sys-
tem shown in Figure 3. A type can be either a simple type

(SimpleType), a wrapper type (WrapperType) or a com-
plex type (ComplexType). Simple types are either built-in
types (BuiltInType) commonly used in most program-
ming languages (int, double, string, etc.) or enumeration types
(EnumType) with a fixed set of values (EnumValue). Wrap-
per types are constructed from primitive types by adding some
new behavior. Such a wrapper type is the array type (Array-
Type) that represents an array of values and the nullable type
(NullableType) that extends the codomain of non-null
simple types with null values. More complex types can be
constructed from other types using structured types (Struct-
Type). Structured types also support single inheritance from
other structured types. An exception type (ExceptionType)
is similar to a structured type, however, its semantics is differ-
ent: it represents a fault in SOAP and an exception in conven-
tional programming languages.

One of the main advantages of SoaMM is that claims based
identity management is built into the metamodel in a plat-
form- and standard independent way. This means that claims
(Claims) are first class types in the type system. A claim
(Claim) has a name, a uri and a type. These claims can be
mapped to WS-Federation claims and also to SAML attributes.

The interfaces (Interface) of the services are described as a
set of operations (Operation). Figure 4 shows the metamodel
of interface declarations. Interfaces support multiple inheritance.
An operation can have zero or more input parameters (Parame-
ter) and a return type (returnType). If the oneway property

types

interfaces transport
namespaces

WS-Addressing

claims

bindings

endpoints

encoding

protocols

namespaces
WS-ReliableMessaging

WS-Security

WS-SecureConversation

WS-AtomicTransaction

authorizations

Fig. 1. Architecture of the SoaMM metamodel

Declaration

gnirts : eman -

Namespace

gnirts : iru - Type Interface Binding EndpointClaims

Authorization

declarations

namespace

0..*

0..1

Fig. 2. Namespaces and declarations

97A Platform Independent Access Control Metamodel for Web Services 2014 58 3

is true, the operation follows the one-way message exchange pat-
tern, otherwise it is a request-response operation. One-way opera-
tions must have a void return type and cannot throw exceptions
(SOAP faults). Request-response operations can throw excep-
tions. The possible exception types must be explicitly listed for
the operation, just like checked exceptions in Java.

An endpoint implementing a specific interface (Interface)
with a specificbinding (Binding) running on a specific location
is represented by the Endpoint element (Figure 5). An endpoint
contains the address of the web service and may also specify a
metadata address, where additional information about the web
service may be accessed using the WS-MetadataExchange stand-
ard. An endpoint may have an Authorization element which
defines the contract for access control of the given endpoint.

A binding (Binding) declaration defines through what pro-
tocols a service can be accessed. It contains the list of the ena-
bled protocols in the stack. The protocols are represented by
binding elements (BindingElement). A binding has exactly
one transport protocol (TransportBindingElement),
exactly one encoding protocol (EncodingBinding-
Element) and zero or more WS-* protocols (Protocol-
BindingElement). The SoaMM metamodel currently sup-
ports the most common HTTP and HTTPS transport protocols,
and SOAP as the encoding protocol.

Figure 6 shows the higher level middleware protocols.
WsAddressingProtocol denotes the settings of the WS-
Addressing protocol. The metamodel also supports WS-Relia-
bleMessaging and WS-AtomicTransaction, see [25].

The most complicated protocols to configure are the secu-
rity protocols (WsSecurityProtocol). The SoaMM meta-
model makes this task a bit easier. At first, the version numbers
for the security protocols must be specified: the WS-Security
version, the WS-SecurityPolicy version and the WS-Trust ver-
sion. These are represented in the metamodel by WssVersion,
WssSpVersion and WssTrustVersion, respectively
(see Figure 6). After this, the security algorithm suite, the layout
of the SOAP headers and the protection order of the message
elements must be selected. These are represented by WssAl-
gorithmSuite, WssHeaderLayout and WssProtec-
tionOrder, respectively (see Figure 7). The security elements
shown in this Figure are common to all security protocols.

The various security protocols differ in the security tokens
that are exchanged between the parties. At first, it must be
decided, whether the client and the server will use the same kind
of tokens or they will use different ones. If both participants use

Fig. 3. Types and claims

Fig. 4. Interface

Declaration

Type Interface

Operation

gnirts : eman -
naeloob : yaweno -

Parameter

gnirts : eman -

ExceptionType

returnType

operations

parameters

interface

exceptions

superInterfaces

type

0..*
1

0..*

0..*

0..*

1
1

Type Field

gnirts : eman -

SimpleType ComplexType

EnumTypeBuiltInType ArrayType StructType

ExceptionType

EnumValue
gnirts : eman -

Claim

gnirts : eman -
gnirts : iru -

Claims

Declaration

«enum»
BuiltInTypeKind

looB +
etyB +

tnI +
gnoL +
taolF +

elbuoD +
gnirtS +

diuG +
etaD +
emiT +

emiTetaD +
napSemiT +

tcejbO +
dioV +

NullableType

WrapperType

superType
values

type
type

claims

superType

kind

fields
innerType

0..1

1

1

1
0..*

0..*

0..1

1

0..*

98 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

ProtocolBindingElement

WsSecurityProtocol
naeloob : pmatsemiTedulcni -

naeloob : noitamrifnoCerutangiSeriuqer -

«enum»
WssHeaderLayout

tcirtS +
xaL +

tsriFpmatsemiTxaL +
tsaLpmatsemiTxaL +

«enum»
WssAlgorithmSuite

821cisaB +
291cisaB +
652cisaB +
seDelpirT +

51asR821cisaB +
51asR291cisaB +
51asR652cisaB +
51asRseDelpirT +
652ahS821cisaB +
652ahS291cisaB +
652ahS652cisaB +
652ahSseDelpirT +

51asR652ahS821cisaB +
51asR652ahS291cisaB +
51asR652ahS652cisaB +
51asR652ahSseDelpirT +

«enum»
WssProtectionOrder

ngiSerofeBtpyrcnE +
tpyrcnEerofeBngiS +

erutangiStpyrcnEdnAtpyrcnEerofeBngiS +

WssToken

headerLayout

protectionOrder

algorithmSuite

tokensclientTokens
serverTokens

1

0..*0..*

0..*

1

1

Fig. 7. Security

ProtocolBindingElement

WsAddressingProtocol

«enum»
WsaVersion

01asW +
4002tsuguAasW +

WsSecurityProtocol

«enum»
WssSpVersion

11pSsW +
21pSsW +

«enum»
WssVersion

01ssW +
11ssW +

«enum»
WssTrustVersion

31tsW +

version securityVersion policyVersion
trustVersion

1 11 1

Fig. 6. Protocols

Binding BindingElement

TransportBindingElement

EncodingBindingElement

ProtocolBindingElement

Interface

Endpoint

gnirts : sserdda -
gnirts : sserddAatadatem -

Authorization

transport

encoding
protocols

interface binding

authorization

1

1
0..*

1 1

0..1

Fig. 5. Endpoint and Binding

the same kind of tokens, the security configuration is easier,
and only the tokens attribute has to be specified. If the par-
ticipants use different kind of tokens, then the client side and
the server side tokens must be configured through the cli-
entTokens and the serverTokens respectively.

There are multiple possible choices for selecting the secu-
rity tokens (see Figure 8). The SoaMM metamodel supports

username tokens, X.509. certificate tokens, issued tokens,
SAML tokens and secure conversation tokens. In this arti-
cle only WssX509Token and WssSamlToken are shown.
Through the tokenInclusion it can also be specified when
the different tokens should be included during the commu-
nication between the client and the service: always, once or
never. The tokens WssIssuedToken and WssSamlToken

99A Platform Independent Access Control Metamodel for Web Services 2014 58 3

are issued by a security token service (STS). In these cases
the endpoint of this STS should also be specified through the
tokenIssuer.

An X.509. certificate token contains an X.509. certificate or
a reference to such a certificate. In this case only the version of
the token must be specified.

A SAML token contains claims based SAML assertions issued
by a security token service. In this case the SAML version, the
required claims and the token issuer have to be specified.

An authorization contract (Authorization) specifies the
access rights for the operations of a service interface (see Fig-
ure 9). Each service operation (Operation) is implemented
by an authorization operation (AuthorizationOpera-
tion) that contains authorization statements (Authoriza-
tionStatement). An authorization statement either permits

or denies access to the service operation, depending on the
result of the boolean expression attached to it.

The metamodel for expressions in SoaMM is shown in Figure
10. It is similar to the expressions in .NET [18]. The advantage
of this metamodel is that it is independent of the different pro-
gramming languages, hence, models conforming to this meta-
model can be translated to C# and Java, too. An expression tree
contains nodes. A node in the expression tree may be an instance
of one of the following meta-classes shown in Figure 10 and
explained in Table 1.

The methods that can be used on built-in types are the same
as the .NET methods on the same .NET types, including the
extension methods of the IEnumberable interface [19].

4 Example
In general, the security protocols have the most complicated

configuration, especially if security token services are also
involved. It is even harder to set the appropriate properties if
different products from different vendors are used. This section
shows an example how easy it is to configure a scenario with a
security token service (STS) using the proposed SoaMM meta-
model and its textual concrete syntax called SOAL.

The example is based on the sample introduced in [3]. The
scenario (see Figure 11) is the following. A client would like
to buy wine from a webshop. In order to be allowed to do
this, he must prove that he is an adult. The proof is presented
as a SAML security token issued by a trusted third party, the
security token service (STS). The client authenticates itself
at the STS with his X.509. certificate and receives a SAML
token containing his birth date signed by the STS. The webshop
checks the birthdate in the SAML token and decides whether to
allow the transaction or not.

Fig. 8. Security tokens

«enum»
SamlVersion

01lmaS +
11lmaS +
02lmaS +

ClaimSet

Claim

WssToken

naeloob : nekoTtpyrcne -
naeloob : nekoTngis -

naeloob : nekoTgnisrodnEsi -
naeloob : nekoTgnitroppuSsi -

WssX509Token WssSamlToken

«enum»
WssX509Version

01nekoT905X +
11nekoT905X +

Endpoint

«enum»
WssTokenInclusion

syawlA +
ecnO +
reveN +

claims

claimSettokenVersion

tokenVersion

tokenIssuer
tokenInclusion

1

0..*

1

1

0..1
1

Authorization Interface

AuthorizationOperation Operation

AuthorizationStatement

gnirts : noitpircsed -

Expression

«enum»
AuthorizationAction

timreP +
yneD +

interface

operations

statements

operation

expression

action

1

0..*
1

0..* 1

1

Fig. 9. Authorization contract for access control

100 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

Expression «enum»
ExpressionType
ddA +
dnA +

oslAdnA +
htgneLyarrA +

xednIyarrA +
llaC +

ecselaoC +
lanoitidnoC +

tnatsnoC +
trevnoC +

ediviD +
lauqE +

rOevisulcxE +
nahTretaerG +

lauqErOnahTretaerG +

adbmaL +
tfihStfeL +
nahTsseL +

lauqErOnahTsseL +
sseccArebmeM +

oludoM +
ylpitluM +
etageN +

sulPyranU +

weN +
tinIyarrAweN +

sdnuoByarrAweN +
toN +

lauqEtoN +

rO +
eslErO +

retemaraP +
tfihSthgiR +

tcartbuS +
sAepyT +

sIepyT +

elbairaV +

tluafeD +

tnemelpmoCsenO +

tinIrebmeM +

ekovnI +

Type

UnaryExpression
noisserpxE : dnarepo -

NewExpression
][noisserpxE : stnemugra -

MemberInitExpression

noisserpxE : noisserpxEeulav -
dleiF : ytreporp -

NewArrayExpression
epyT : epyTmeti -

][noisserpxE : snoisserpxe -

BinaryExpression
noisserpxE : tfel -

noisserpxE : thgir -

TypeBinaryExpression
epyT : dnarepOepyt -

noisserpxE : noisserpxe -

ConditionalExpression
noisserpxE : tset -

noisserpxE : nehTfi -
noisserpxE : eslEfi -

LambdaExpression
noisserpxE : ydob -

ConstantExpression
tcejbo : eulav -

DefaultExpression

IdentifierExpression
gnirts : eman - IndexExpression

noisserpxE : tcejbo -
][noisserpxE : stnemugra -

MemberExpression
noisserpxE : tcejbo -

dleiF : rebmem -

MethodCallExpession
noisserpxE : tcejbo -

noitarepO : noitarepo -
][noisserpxE : stnemugra -

nodeTypetype
children

parent

memberInits

LambdaParameterExpression
gnirts : eman -

parameters

InvokeExpression
noisserpxE : tcejbo -

][noisserpxE : stnemugra -

1

1
0..*

0..1

0..*

0..*

Fig. 10. Expressions

STS

WebShopClient

1. BuyWine()

5. Token+BuyWine()

2. ERROR: Token needed

6. OK

Fig. 11. WS-Trust sample

101A Platform Independent Access Control Metamodel for Web Services 2014 58 3

Meta-class NodeType Description

UnaryExpression ArrayLength

Convert
Negate
Not

OnesComplement
TypeAs

UnaryPlus

An operation that obtains the length of a one-
dimensional array.
A type-conversion operation.
An arithmetic negation operation.
A bitwise complement or logical negation
operation.
A ones complement operation.
An explicit type-conversion in which null is
supplied if the conversion fails.
A unary plus operation.

BinaryExpression Add
Divide
Modulo
Multiply
Power

Subtract
And
Or
ExclusiveOr
LeftShift
RightShift
AndAlso

OrElse

Equal

NotEqual
GreaterThanOrEqual
GreaterThan
LessThan
LessThanOrEqual
Coalesce
ArrayIndex

An addition operation.
A division operation.
An arithmetic remainder operation.
A multiplication operation.
A mathematical operation that raises a
number to a power.
A subtraction operation.
A bitwise or logical AND operation.
A bitwise or logical OR operation.
A bitwise or logical XOR operation.
A bitwise left-shift operation.
A bitwise right-shift operation.
A conditional AND operation that evaluates
the second operand only if the first operand
evaluates to true.
A conditional OR operation that evaluates
the second operand only if the first operand
evaluates to false.
A node that represents an equality
comparison.
An inequality comparison.
A ”greater than or equal to” comparison.
A ”greater than” comparison.
A ”less than” comparison.
A ”less than or equal to” comparison.
A null coalescing operation.
An indexing operation in a one-dimensional
array.

NewExpression

MemberInitExpression
NewArrayExpression

New

MemberInit
NewArrayInit

NewArrayBounds

An operation that calls a constructor to create
a new object. Fields can be initialized
by MemberInitExpressions.
Binds a value to a field of a composite type.
An operation that creates a new one-
dimensional array and initializes it from a list
of elements.
An operation that creates a new array, in
which the bounds for each dimension are
specified.

TypeBinaryExpression TypeIs A type test.

ConditionalExpression Conditional A conditional operation with a then and an
else branch.

LambdaExpression Lambda A lambda expression.

LambdaParameterExpression Parameter A lambda parameter.

ConstantExpression Constant A constant value.

DefaultExpression Default A default value.

IdentifierExpression Variable A variable reference.

IndexExpression Index An index operation.

MemberExpression MemberAccess An operation that references a field.

MethodCallExpression Call A method call.

InvokeExpression Invoke An operation that invokes a lambda
expression.

Tab. 1. Node types of the expression tree

102 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

namespace WineShoppingSample
{
 [Uri(“http://www.example.com/webshop/SampleClaims”)]
 claims SampleClaims {
 DateTime BirthDate;
 }
 interface IWebShop {
 bool BuyWine();
 }
 authorization WebShopAuth : IWebShop {
 bool BuyWine() {
 requires SampleClaims.BirthDate;
 deny “Underage people cannot buy wine.” {
 DateTime.Now < SampleClaims.BirthDate.AddYears(18);
 }
 permit;
 }
 }
 binding WebShopBinding {
 transport HTTP;
 encoding SOAP;
 protocol WsAddressing;
 protocol WsSecurity {
 serverTokens { token WssX509Token; }
 clientTokens {
 token WssSamlToken {
 tokenIssuer Sts;
 claims SampleClaims.BirthDate;
 }
 }
 }
 }
 binding StsBinding {
 transport HTTP;
 encoding SOAP;
 protocol WsAddressing;
 protocol WsSecurity {
 tokens { token WssX509Token; }
 }
 }
 endpoint WebShop : IWebShop {
 binding WebShopBinding;
 authorization WebShopAuth;
 address “http://www.example.com/webshop/ws”;
 }

The SOAL code describing the system is the following (note
that ISecurityTokenService is a pseudo interface iden-
tifying an STS):

http://www.example.com/webshop/SampleClaims
SampleClaims.BirthDate
DateTime.Now
SampleClaims.BirthDate.AddYears
SampleClaims.BirthDate
http://www.example.com/webshop/ws

103A Platform Independent Access Control Metamodel for Web Services 2014 58 3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using Microsoft.IdentityModel.Claims;
using System.Threading;

A claim (Claim) has a name (end of the Uri in WS-Federa-
tion, AttributeName in SAML 1.1 and the end of Name in SAML
2.0), a URI (start of the Uri in WS-Federation, AttributeNames-
pace in SAML 1.1 and the start of Name in SAML 2.0) and a type
(none in WS-Federation, xsi:type in SAML 1.1 and SAML 2.0).

In the above example the claim has the following attributes:
• name=BirthDate
• uri=http://www.example.com/webshop/SampleClaims/

BirthDate
• type=DateTime
This claim is mapped to the different claims based identity

standards as:

WS-Federation:
 <fed:ClaimType
 Uri=”http://www.example.com/webshop/SampleClaims/BirthDate”>
 </fed:ClaimType>

SAML 1.1:
 <saml1:AttributeStatement>
 <saml1:Attribute AttributeName=”BirthDate”
 AttributeNamespace=”http://www.example.com/webshop/SampleClaims”>
 <saml1:AttributeValue xsi:type=”xs:dateTime”>...</saml1:AttributeValue>
 </saml1:Attribute>
 </saml1:AttributeStatement>

SAML 2.0:
 <saml2:AttributeStatement>
 <saml2:Attribute
 Name=”http://www.example.com/webshop/SampleClaims/BirthDate”
 FriendlyName=”BirthDate”>
 <saml2:AttributeValue xsi:type=”xs:dateTime”>...</saml2:AttributeValue>
 </saml2:Attribute>
 </saml2:AttributeStatement>

XACML Attribute:
 <xacml:Attribute IncludeInResult=”true”
 AttributeId=”http://www.example.com/webshop/SampleClaims/BirthDate”>
 <xacml:AttributeValue DataType=”xs:dateTime”>...</xacml:AttributeValue>
 </xacml:Attribute>

 endpoint Sts : ISecurityTokenService {
 binding StsBinding;
 address “http://www.example.com/webshop/sts”;
 }
}

From the authorization WebShopAuth a C# class is gener-
ated, which is used as a decorator on the service class. This
code provides the desired access control for the service:

System.Collections.Generic
System.Linq
System.Web
Microsoft.IdentityModel.Claims
System.Threading
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.example.com/webshop/SampleClaims
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.example.com/webshop/sts

104 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

The code above retrieves the required BirthDate claim
through the Windows Identity Foundation API, then it extracts
the value of the claim and checks whether the condition for
denial is met. If the condition is true, it throws an exception

signaling an authorization error, otherwise it delegates the call
to the actual implementation of the service.

The corresponding XACML code is the following:

<?xml version=”1.0” encoding=”utf-8”?>
<Policy xmlns=”urn:oasis:names:tc:xacml:2.0:policy:schema:os”
 PolicyId=”BuyWinePolicy”
 RuleCombiningAlgId=
 “urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides”>
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string-equal”>
 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>

namespace WineShoppingSample
{
 public class WebShopAuth : IWebShop
 {
 private IWebShop inner;

 public WebShopAuth(IWebShop
 inner)
 {
 this.inner = inner;
 }

 public bool BuyWine()
 {
 IClaimsPrincipal principal = IClaimsPrincipal)Thread.CurrentPrincipal;
 IClaimsIdentity identity = (IClaimsIdentity)principal.Identity;
 ClaimCollection claims = identity.Claims;
 Claim SampleClaims_BirthDate_Claim = claims.FirstOrDefault(
 c => c.ClaimType = SampleClaims.BirthDateClaimType);
 if (SampleClaims_BirthDate_Claim == null)
 {
 throw new Exception(string.Format(“Claim ‘{0}’ is required.”,
 SampleClaims.BirthDateClaimType));
 }
 DateTime SampleClaims_BirthDate =
 DateTime.Parse(SampleClaims_BirthDate_Claim.Value);
 if (DateTime.Now < SampleClaims_BirthDate.AddYears(18))
 {
 throw new Exception(“Underage people cannot buy wine.”);
 }
 return this.inner.BuyWine();
 }
 }
}

http://www.w3.org/2001/XMLSchema
this.inner
Thread.CurrentPrincipal
principal.Identity
identity.Claims
claims.FirstOrDefault
c.ClaimType
SampleClaims.BirthDateClaimType
string.Format
SampleClaims.BirthDateClaimType
DateTime.Parse
SampleClaims_BirthDate_Claim.Value
DateTime.Now
SampleClaims_BirthDate.AddYears
this.inner.BuyWine

105A Platform Independent Access Control Metamodel for Web Services 2014 58 3

The SOAL code in the above example is merely 47 lines
long and it is easy to read. If the default values for the omitted
parameters are not suitable for us, they can also be overrid-
den in the code. From this code our SOAL compiler builds a
model as an instance of the SoaMM metamodel. This model
is then used to generate WSDL, program code and configura-
tion files for the various SOA products. In addition, it couples
these files together into projects, which can be directly opened
in the SOA products, while only the application logic has to
be implemented, that is, the body of the BuyWine() method.
The projects then can be immediately deployed to the appro-
priate application servers.

It took only six lines to define the condition for the access
control of the webshop web service in SOAL. The correspond-
ing XACML policy is a complex 49 lines long XML descrip-
tion, which is hard to write and maintain by hand. Although this
XACML policy can be generated from models conforming to
the SoaMM metamodel, a lot of SOA frameworks (e.g. Micro-
soft WCF) still have no support for XACML. Therefore, it is
more useful to generate code for the specific frameworks, like
the authorization class for C# in the above example, while the
access control condition can be easily defined and maintained
as a SOAL code.

 http://www.example.com/webshop/ws
 </AttributeValue>
 <ResourceAttributeDesignator
 DataType=”http://www.w3.org/2001/XMLSchema#string”
 AttributeId=”urn:oasis:names:tc:xacml:1.0:resource:resource-id”/>
 </ResourceMatch>
 </Resources>
 <Actions>
 <ActionMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string-equal”>
 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
 http://www.example.com/webshop/ws/BuyWine
 </AttributeValue>
 <ActionAttributeDesignator DataType=”http://www.w3.org/2001/XMLSchema#string”
 AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action-id”/>
 </ActionMatch>
 </Actions>
 </Target>
 <Rule RuleId=”BuyWineRule” Effect=”Deny”>
 <Target/>
 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than”>
 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:time-one-and-only”>
 <EnvironmentAttributeSelector
 DataType=”http://www.w3.org/2001/XMLSchema#dateTime”
 AttributeId=”urn:oasis:names:tc:xacml:1.0:environment:current-dateTime”/>
 </Apply>
 <Apply
 FunctionId=
 “urn:oasis:names:tc:xacml:1.0:function:dateTime-add-yearMonthDuration”>
 <SubjectAttributeDesignator
 DataType=”http://www.w3.org/2001/XMLSchema#string”
 AttributeId=”http://www.example.com/webshop/SampleClaims/BirthDate”/>
 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#dateTime”>
 18Y
 </AttributeValue>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId=”FinalRule” Effect=”Permit”/>
</Policy>

http://www.example.com/webshop/ws
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.example.com/webshop/ws/BuyWine
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.example.com/webshop/SampleClaims/BirthDate
http://www.w3.org/2001/XMLSchema

106 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

In addition, the WS-Policy assertions for the WebShop
service and for the Sts security token service are themselves
longer than the entire SOAL code above. The corresponding
WSDL is 172 lines long, and our framework even generates
product specific configuration files and source code, too. This
means that it is easier to describe and configure distributed
SOA systems through SOAL than to do it manually. In addi-
tion, our code generator ensures that the configurations of the
different SOA products will conform to each other, therefore,
the web services implemented in different SOA products will
be able to communicate with each other immediately.

5 Evaluation
This section evaluates our SoaMM metamodel, SOAL lan-

guage and the framework built around them. Our aim is to
provide interoperability between SOA products without inter-
fering with their operation. Our framework is only for offline
use, that is, generating source code and configuration files. Our
framework does not extend the SOA products and it does not
provide any runtime components either. Hence, this evaluation
only covers development productivity and does not deal with
runtime performance issues.

We have examined every detail of the WS-* standards and
created sample applications with interoperable configurations
in the various SOA products for the WS-* standards. The prod-
ucts under examination were Microsoft WCF, GlassFish ESB,
Oracle SOA Suite, IBM WebSphere with RAD, Apache Axis2,
Apache CXF and JBossWS. As a result, we have an extensive
overview of the peculiarities of the individual SOA products,
and we could use these experiences we gained to construct
a platform independent metamodel above all WS-* standards
and SOA products. The end result is the SoaMM metamodel
described in Section 3. There has not yet been such a compre-
hensive metamodel published until now.

Our proposed SoaMM metamodel and SOAL program-
ming language provides a platform independent description
of claims-based access control for distributed systems of web
services. This platform independent description is transformed
into WSDL files, configuration files, program code and projects
for the various SOA products by our code generator. The code
generator makes sure that the produced projects are directly
openable in the targeted SOA products and they are immedi-
ately deployable to the appropriate application servers, while
they are also interoperable with each other even between differ-
ent products of different software vendors. The code generator

currently supports Microsoft WCF and GlassFish ESB, how-
ever, other products are planned to be supported, too.

As the example in the previous section showed, the proposed
SOAL programming language provides a compact, easily read-
able and maintainable description of a distributed system built
from web services. Security protocols are easy to configure
even if WS-Federation and SAML are present. This can be ben-
eficial for setting up security in grid systems, too.

The true power of our framework came out in another pro-
ject we are currently working on. The project is about measur-
ing and predicting the overhead of using different parameter
types (int, double, string, etc.) and different WS-* standards for
web services in the various SOA products. This task required
a large number of web services to be implemented in differ-
ent combinations of types and WS-* standards and SOA prod-
ucts. As a result, 280 web services had to be implemented per
SOA product. The performance overhead is measured not only
within a single SOA product but between different SOA prod-
ucts as well. This would not be possible without this framework
described in this article.

Another application of our framework was a pilot project for
the Hungarian e-Government Infrastructure, where a real-life
public administration process (foundation of a private entre-
preneurship) had to be implemented using web services and
BPEL. The pilot system included the simulation of four gov-
ernment agencies. There were seven web services, a BPEL pro-
cess and a web site in the pilot system. At first, the implementa-
tion of the process and the services was done manually, and it
took about 1 month to complete. We published our results and
the detailed description of the pilot system in [26]. After our
framework was ready, we reimplemented all the services by
specifying them in SOAL at first, and then we generated WSDL
files, program code and configuration files for the various SOA
products we had to use. In this second round we also included
the test system of the real Hungarian Electronic Governmen-
tal Portal in the pilot system. This second approach took three
days, which shows, that our framework can greatly increase
productivity in the development of distributed SOA systems.

Table 2 shows the productivity of the framework based on
the previous examples. For each application the number of
lines is listed for the SOAL source code and also for the gen-
erated artefacts (XSD+WSDL, C# code, .NET configuration,
Java code, Netbeans configuration, and the total number of
generated lines, respectively). It can be seen from the examples
how compact SOAL is compared to the configurations of the

Application SOAL WSDL C# .NET config Java NB config Total gen.

STS example 39 172 241 53 199 1566 2231

WS-* performance test 2168 56276 22083 8927 29806 18118 135210

Hungarian e-Gov pilot 146 614 917 233 1642 2026 5432

Tab. 2. Productivity of the framework with different examples in number of lines

107A Platform Independent Access Control Metamodel for Web Services 2014 58 3

SOA products. Changing the service descriptions in SOAL and
regenerating the source code and configuration files is more
productive than keeping the program code and configurations
in sync by hand for each of the various SOA products.

6 Conclusion
Our goal was to provide a top-down development method for

distributed systems of web services with WS-* protocols. This
goal was inspired by the fact that the different SOA products
provide different methods for configuring web services making
it difficult to match the various configuration options between
SOA products. Although WS-Policy assertions provide a plat-
form independent way for configuration, they are hard to con-
struct and to maintain manually. Setting up security and access
control is also a tedious task. Therefore, we proposed a more
intuitive modeling approach.

UML itself is not suitable for modeling web service stand-
ards, since it lacks most of the concepts required to describe
these elements. Although by using stereotypes the task can be
managed, WS-* protocols cannot be modeled easily. Semantic
web service technologies are not designed for modeling either.
Therefore, we proposed a domain specific language for mod-
eling distributed systems of web services.

In this article we presented an extension to our SoaMM meta-
model for describing claims-based access control in a platform

independent way. We also created a programming language
called SOAL to describe models in a textual concrete syntax.
We have carefully examined the WS-* standards and the SOA
products implementing them to be able to construct a truly plat-
form independent metamodel for modeling web services. There
has not yet been such a comprehensive metamodel for claims-
based access control for web services published until now.

The framework built around the metamodel contains a com-
piler from SOAL to SoaMM models, and a code generator to
produce configuration files and program code for the various
SOA products. Only the application logic has to be imple-
mented, and the projects can be immediately deployed to the
appropriate application servers. The framework primarily aids
the top-down development of distributed systems. From the
compact, easily readable and maintainable SOAL descriptions
it can produce hundreds of configuration files and program code
for the SOA products. As it was mentioned in the previous sec-
tion, the framework can be powerful, if a large number of inter-
operable web services have to be created. The development time
of such distributed systems can also be greatly reduced.

We will extend the framework with XACML reverse engi-
neering capabilities so that the descriptions of already exist-
ing systems can also be imported into the framework. Another
future direction is to support other advanced access control fea-
tures (e.g. obligations in XACML), too.

References

1 Alam M., Breu R., Hafner M., Model-Driven Security Engineering
for Trust Management in SECTET. Journal of Software, 2 (1), pp.
47–59, (2007).

 DOI: 10.4304/jsw.2.1.47-59
2 Barker S., The next 700 access control models or a unifying meta-

model? in ‘Proceedings of the14th ACM symposiumon Access con-
trolmodels and technologies’. ACM, pp. 187–196, (2009).

 DOI: 10.1145/1542207.1542238
3 Bertocci V., WS-Trust – Under the Hood. (2006) [Online Video].

4th October. Available from: http://channel9.msdn.com/Shows/
Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood [Accessed:
19th November 2013].

4 Chen T-Y., Knowledge sharing in virtual enterprises via an ontolo-
gy-based access control approach. Computers in Industry, 59 (5), pp.
502–519, (2008).

 DOI: 10.1016/j.compind.2007.12.004
5 De Castro V., Marcos E., Vela B., Representing WSDL with Ex-

tended UML. Revista Colombiana de Computación, (2004).
6 Dumez C., Nait-Sidi-Moh A., Gaber J., Wack M., Modeling and

Specification of Web Services Composition Using UML-S. in ‘Pro-
ceedings of the 2008 4th International Conferenceon Next Genera-
tion Web Services Practices, NWESP ’08.’ Washington: IEEE Com-
puter Society. pp. 15–20, (2008).

 DOI: 10.1109/nwesp.2008.17

7 Elgammal A., El-Sharkawi M., Using UML to Model Web Services
for Automatic Composition. International Journal of Software Engi-
neering, 3 (2), pp. 87–113, (2010).

8 Emig C., Kreuzer S., Abeck S., Biermann J., Klarl H., Model-
Driven Development of Access Control Policies for Web Services. in
‘Proceedings of the 9th IASTED International Conference Software
Engineering and Applications. (ed.: Khoshgoftaar T.)’ Orlando: ACTA
Press, pp.165–171, (2008).

9 Ferraiolo D., Atluri V., A meta model for access control. in ‘Proceed-
ings of the 13th ACM symposium on Access control models and tech-
nologies’. ACM. pp. 153–154, (2008).

 DOI: 10.1145/1377836.1377860
10 Giordano M., Polese G., Scanniello G., Tortora G., A system for

visual role-based policy modelling. Journal of Visual Languages &
Computing, 21 (1). pp. 41–64, (2010).

 DOI: 10.1016/j.jvlc.2009.11.002
11 Gronmo R., Skogan D., Solheim I., Oldevik J., Model-Driven

Web Services Development. in ‘The 2004 IEEE International Confer-
enceone-Technology, e-Commerce and e-Service(EEE-04)’ (2004).

12 Hafner M., Memon M., Alam M., Modeling and Enforcing Ad-
vanced Access Control Policies in Healthcare systems with Sectet. in
‘Lecture Notes in Computer Science, Springer, pp. 132–144, (2008).

 DOI: 10.1007/978-3-540-69073-3_15

Acknowledgment
This work was partially supported by the European Union and the European Social Fund through project FuturICT.hu (grant

no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred.

108 Per. Pol. Elec. Eng. and Comp. Sci. Balázs Simon / Balázs Goldschmidt / Károly Kondorosi

13 Haller A., Cimpian E., Mocan A., Oren E., Bussler C., WSMX- a
semantic service-oriented architecture. in ‘Proceedings of the IEEE Inter-
national Conference on Web Service (ICWS 2005)’ pp. 321–328, (2005).

 DOI: 10.1109/icws.2005.139
14 Jiague M. E., Milhau J., Laleau R., Gervais F., Specification of

translation rules from a PIM to a PSM for access control policies mod-
els. in ‘Programme Systemes Embarqueset Grandes Infrastructures -
”ARPEGE” Appel a projets general’ (2011)

15 Jin X., Applying Model Driven Architecture approach to Model
Role Based Access Control System. Thesis submitted to the Faculty
of Graduate and Postdoctoral Studies in partial fulfillment of the re-
quirements for degree of Master of Science in System Science. Uni-
versity of Ottawa, (2006).

16 Klusch M., Semantic Web Service Coordination. in ‘CASCOM - In-
telligent Service Coordination in the Semantic Web. (eds.: Schumacher
M., Schuldt H., Helin H.) Springer, pp. 59-104, (2008).

 DOI: 10.1007/978-3-7643-8575-0_4
17 Kolovksi V., Parsia B., Katz Y., Hendler J., Representing Web Ser-

vice Policies in OWL-DL. in ‘International Semantic Web Conference
(ISWC)’ pp. 6–10, (2005).

18 Microsoft Developer Network, Expression Type Enumeration. (2013)
[Online] Available from: http://msdn.microsoft.com/en-us/library/
bb361179.aspx. [Accessed: 16th April 2013]

19 Microsoft Developer Network, IEnumerable <T> Interface. (2013) [On-
line] Available from: http://msdn.microsoft.com/en-us/library/9eekhta0.
aspx. [Accessed: 16th April 2013]

20 Mouelhi T., Fleurey F., Baudry B., Le Traon Y., A Model-Based
Framework for Security Policy Specification, Deployment and Testing.
in ‘Model Driven Engineering Languages and Systems’, Springer, pp.
537–552, (2008).

 DOI: 10.1007/978-3-540-87875-9_38
21 OASIS, OASIS eXtensible Access Control MarkupLanguage (XAC-

ML) TC. (2013). Available from: http://www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=xacml. [Accessed: 16th April 2013]

22 OMG Documents Associated With Service Oriented Architecture Mod-
eling Language (SoaML), Version 1.0.1. (2013) Available from: http://
www.omg.org/spec/SoaML/Current. [Accessed: 16th April 2013]

23 Shafiq O., Moran M., Cimpian E., Mocan A., Zaremba M., Fensel

D., Investigating Semantic Web Service Execution Environments: A
Comparison between WSMX and OWL-S Tools. in ‘Internet and Web
Applications and Services, International Conference’. (2007)

24 Simon B., Goldschmidt B. A Human Readable Platform Independ-
ent Domain Specific Language for WSDL. in ‘Computer and Informa-
tion Science’. pp. 529–536, (2010).

 DOI: 10.1007/978-3-642-14292-5_54
25 Simon B., Goldschmidt B., Budai P., Hartung I., Kondorosi K.,

Laszlo Z., Risztics P., A Metamodel of the WS-Policy Standard Fam-
ily. in ‘ICDS 2011, The Fifth International Conference on Digital Soci-
ety.’ pp. 57–62, (2011).

26 Simon B., Laszlo Z., Goldschmidt B., SOA Interoperability, A Case
Study. in ‘Proceedings of the IADIS International Conference Infor-
matics.’ pp. 131–138, (2008).

27 Sriharee N., Senivongse T., Verma K., Sheth A., On Using WS-
Policy, Ontology, and Rule Reasoning to Discover Web Services. in ‘In-
telligence in Communication Systems (eds.: Aagesen F. A., Anutarya C.,
Wuwongse V.)’, Volume 3283, Berlin / Heidelberg: Springer, (2004).

 DOI: 10.1007/978-3-540-30179-0 22.
28 Verma K., Akkiraju R., Goodwin R., Semantic Matching of Web

Service Policies. in ‘Proceedings of the Second Workshop on SDWP.’
pp. 79–90, (2005).

29 W3C. MEMBER SUBMISSION OWL-S: Semantic Markup for
Web Services. (2012) Available from: http://www.w3.org/Submission/
OWL-S/. [Accessed: 29th January 2012]

30 W3C Semantic Annotations for WSDL and XML Schema (SAWSDL).
(2012). Available from: http://www.w3.org/TR/sawsdl/. [Accessed: 29th
January 2012]

31 Wolter C., Menzel M., Schaad A., Miseldine P., Meinel C., Mod-
el-driven business process security requirement specification. Journal
of Systems Architecture. 55 (4). pp. 211–223, (2009).

 DOI: 10.1016/j.sysarc.2008.10.002
32 Web Service Modeling Ontology, ESSI WSMO working group. (2012)

Available from: http://www.wsmo.org/. [Accessed: 29th January 2012]

	1 Introduction
	2 Related Work
	3 Access Control Metamodel for Web Services
	4 Example
	5 Evaluation
	6 Conclusion

