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Abstract

Mass points are very useful objects not only in physics but

also in geometry. There are several ways to approach the math-

ematics of mass points. In this paper we give an independent

interpretation. We define kantor space and kantors as the el-

ements of it. We prove that this is a vector space and give a

short overview of the types of bases and the connections be-

tween them. One of our important tools is the symmetric dis-

tance formula for kantors, which expresses the distance of two

points in terms of their kantric coordinates. We introduce the

kantric scalar product, which allows us to prove easily the ex-

istence of an orthogonal point and give a formula of the radius

of the circumscribed sphere of affinely independent set of points,

which is our main result.
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1 The kantor space

In this paper we give an independent interpretation of the

mass-point theory. Of course, it has numerous common points

with another existing theories. For more details see [1, 3, 5, 6].

Possible applications are not detailed here but mentioned in Sec-

tion 6.

First, we give the basic definitions and the explanation will be

detailed after them.

Definition 1 (Kantor space) Let Kr = Rn × (R\{0}) and Ks =

Rn×{0}. Define the addition and the multiplication by scalar on

the set Kr ∪ Ks in the following way:

• (P, p) + (Q, q) =
(

pP+qQ

p+q
, p + q

)
if (P, p), (Q, q) ∈ Kr and p +

q , 0,

• (P, p) + (Q,−p) = (p(P − Q), 0) if (P, p), (Q,−p) ∈ Kr,

• (P, p) + (v, 0) = (P +
v

p
, p) if (P, p) ∈ Kr and (v, 0) ∈ Ks,

• (v, 0) + (P, p) = (P +
v

p
, p) if (P, p) ∈ Kr and (v, 0) ∈ Ks,

• (v, 0) + (w, 0) = (v + w, 0) if (v, 0), (w, 0) ∈ Ks,

• λ(P, p) = (P, λp) if (P, p) ∈ Kr and λ ∈ R\{0},

• 0 · (P, p) = (0, 0) if (P, p) ∈ Kr,

• λ(v, 0) = (λv, 0) if (v, 0) ∈ Ks and λ ∈ R.

The algebraic structure obtained in this way is called a kantor

space of dimension n + 1 and denoted by Kn.

The word kantor is a compound consists of "quan(tity)" and

"(vec)tor", since the concept of kantors was based on com-

mon properties of particular physical quantities and was intro-

duced as the counterpart of the vector concept (“quan” has been

changed to “kan” because the word quantor was already re-

served).

The elements of Kn will be denoted by dotted capital letters.

The elements of Kr and Ks are called regular and singular kan-

tors respectively. In the above representation, the coordinates

are called the vector-mass coordinates of the kantor.

For a regular kantor Ṗ = (P, p), P ∈ Rn is called the center of

Ṗ. We say that Ṗ is unite if |Ṗ| = 1.
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For a singular kantor V̇ = (v, 0), v ∈ Rn is called the trans-

lation vector of V̇ . The translation value of a singular kantor is

the norm of its translation vector. The mass of a kantor is the

last coordinate of it and sometimes denoted by | · |. For example,

|Ṗ| = p, |V̇ | = 0.

It is left to the reader to verify that Kn is a vector space over R
with the above operations and Ks is a subspace of it. Moreover,

the mass is a linear functional on Kn and its kernel is Ks. The

zero vector of Kn is the kantor (0, 0). The additive inverse of

(P, p), p , 0 is (P,−p) and of (v, 0) is (−v, 0).

The idea behind the kantor space is to form a closed alge-

braic structure from the mass points of Rn. The naive concept is

that a mass point has a center and a positive mass. These kind

of mass points can be added together and multiplied by posi-

tive scalars based on physical analogies. We can easily define

points with negative mass and multiplication by negative scalars

as well. The major problem is the case of zero masses. How can

one add mass points with opposite masses or multiply by 0?

Let Ṗ = (P, p) and Q̇ = (Q,−p) be two mass points centered

at P and Q with opposite masses, p , 0, and let V̇ = Ṗ + Q̇ be a

hypothetic mass point. If Ṙ = (R, r), r , 0, r , −p and we want

to preserve the associativity of addition, then Ṙ+V̇ = Ṙ+(Ṗ+Q̇)

must be equal to (Ṙ + Ṗ) + Q̇, which we can compute without

introducing the unfamiliar zero mass.

(Ṙ + Ṗ) + Q̇ =

(
rR + pP

r + p
, r + p

)
+ (Q,−p)

=

(
rR + pP − pQ

r
, r

)
=

(
R +

p

r
(P − Q), r

)
.

So, V̇ acts on Ṙ like a mass-preserving translation with vector
p

r
(P − Q). It depends on the mass of Ṙ, which is some kind of

inertia property. To define V̇ , it is enough to know the impact

of V̇ , which is entirely described by the translation vector p(P−

Q) ∈ R. These kantors are called singular refering to their zero

mass.

It is easy to see that the translation-vector of the sum of sin-

gular kantors is the sum of the translation-vectors, and the trans-

lation vector of λV̇ = λṖ + λQ̇ is λ times the translation vector

of V̇ . Hence, the set of singular kantors is isomorphic to Rn as a

vector space.

The zero element of Kn is the singular kantor with translation

vector 0. We have to clarify the case of a mass-point with zero

mass. Let Q̇ = (Q, 0), Ṗ = (P, p), where p , 0. By the naive

definition, Ṗ + Q̇ =
(

pP+0Q

p
, p + 0

)
= (P, p) = Ṗ. It means that

kantors of the form (Q, 0) exactly acts like the singular kantor 0̇,

therefore we can identify these kantors with 0̇.

We can represent kantors on n + 1 coordinates: the last coor-

dinate is the mass and the n-tuple of the first n coordinates is the

translation vector or the center of the kantor depending on its

mass is zero or not. These considerations lead us to the above

definition.

First, we have to determine the dimension of Kn.

Theorem 2 The dimension of Kn over R is n + 1.

Proof: Let e
i

denote the ith standard basis vector of Rn. Then

B = {(e
1
, 0), (e

2
, 0), . . . , (e

n
, 0), (0, 1)} is a basis of Kn.

First we prove the linear independence of B. Put a linear

combination:
∑n

i=1 λi(ei
, 0) + λn+1(0, 1).∑n

i=1 λi(ei
, 0) + λn+1(0, 1) = (

∑n
i=1 λiei

, 0) + (0, λn+1). If the

linear combination is 0̇, then λn+1 = 0, otherwise the mass of

the linear combination would not be 0. In this case, however,

(
∑n

i=1 λiei
, 0) = 0̇ = (0, 0), which means

∑n
i=1 λiei

= 0. The

linear independence of the standard basis in Rn implies λi = 0

for i = 1, 2, . . . , n.

The other step is to prove that B spans Kn. It is easy to see

that B\{(0, 1)} spans the subspace of singular kantors because

{e
1
, e

2
, . . . , e

n
} spans Rn. If Ṗ = (P, p) is a regular kantor, then

Ṡ = Ṗ− p(0, 1) is a singular kantor. Now, Ṡ can be written in the

form
∑n

i=1 λi(ei
, 0) with some λi ∈ R. Hence, Ṗ =

∑n
i=1 λi(ei

, 0)+

p(0, 1). �

B contains n singular and 1 regular kantor. So, we can make a

distinction between bases based on the number of singular kan-

tors contained in them.

Definition 3

• A basis of Kn is called r-singular if it contains exactly r sin-

gular kantors.

• A basis is regular if it is 0-singular.

• A basis is kernel-singular if it is n-singular. The single regular

kantor of this basis is called a kernel.

Remark 4 For an r-singular basis B, r ≤ n. Namely, if r =

n + 1, then the span of B would consists of singular kantors,

hence it would not be Kn.

Remark 5 There are regular bases in Kn: if {Ṡ 1, Ṡ 2, . . . , Ṡ n, Ṁ}

is a kernel-singular basis, then B = {Ṁ + Ṡ 1, Ṁ + Ṡ 2, . . . , Ṁ +

Ṡ n, Ṁ} is a regular basis because Ṡ 1, Ṡ 2, . . . , Ṡ n, Ṁ can be ex-

pressed as a linear combination of the elements of B.

Definition 6 A regular basis B = {Ḃ1, Ḃ2, . . . , Ḃn+1} is called

standard if for all i, j, |Ḃi| = 1 and |Bi−B j| = 1 (i.e., B1, . . . , Bn+1

are the vertices of an n-dimensional regular simplex).

One can assign a kernel-singular basis to every regular basis

in the following way.

Let B = {Ḃ1, Ḃ2, . . . , Ḃn+1} be a regular basis, bi = |Ḃi|

and Ṡ i = 1
bi

Ḃi −
1

bn+1
Ḃn+1 for i = 1, 2, . . . , n. Then

B′ = {Ṡ 1, Ṡ 2, . . . , Ṡ n, Ḃn+1} is a kernel-singular basis because

Ḃ1, Ḃ2, . . . , Ḃn+1 can be expressed as a linear combination of the

elements of B′.

2 Distance formula

In this section, we would like to determine the distance of the

centers of two regular kantors based on their regular coordinates

related to B.

As in a general vector space, we can coordinate the elements

of Kn relative to a fixed basis. A natural question is that what is
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the correspondence between the the vector-mass and the regular

coordinates of a kantor.

Let B = {Ḃ1, Ḃ2, . . . , Ḃn+1} be a fixed regular basis of Kn.

Denote the corresponding kernel-singular basis by B′ (Ṡ i =
1
bi

Ḃi −
1

bn+1
Ḃn+1 for i = 1, 2, . . . , n). If s

i
= (Bi − Bn+1) denotes

the translation vector of Ṡ i, then {s
1
, s

2
, . . . , s

n
} forms a basis of

Rn. We express the first n vector-mass coordinates relative to

this basis. For a regular kantor Ȧ = (a1, a2, . . . , an+1)B,

Ȧ =

n+1∑
i=1

aiḂi =

n∑
i=1

ai

(
biṠ i +

bi

bn+1

Ḃn+1

)
+ an+1Ḃn+1

=

n∑
i=1

aibiṠ i +
1

bn+1

n+1∑
i=1

aibi

 Ḃn+1,

hence Ȧ =
(
a1b1, a2b2, . . . , anbn,

1
bn+1

∑n+1
i=1 aibi

)
B′

coordinated

with respect to the associated kernel-singular basis.

The singular kantor
∑n

i=1 aibiṠ i translates 1
bn+1

(∑n+1
i=1 aibi

)
Ḃn+1

by the vector
∑n

i=1 aibi si∑n+1
i=1 aibi

. Thus, the vector-mass coordinates of Ȧ

isBn+1 +

∑n
i=1 aibi(Bi − Bn+1)∑n+1

i=1 aibi

,

n+1∑
i=1

aibi

 =

∑n+1
i=1 aibiBi∑n+1

i=1 aibi

,

n+1∑
i=1

aibi

 ,
which is a weighted average of the points Bi for i = 1, . . . , n + 1.

Let Ȧ = (a1, a2, . . . , an+1)B and Ċ = (c1, c2, . . . , cn+1)B be two

regular kantors. We suppose that Ȧ and Ḃ are unite kantors i.e.,

|Ȧ| = |Ḃ| = 1 (if not, we can divide by the masses without chang-

ing the centers).

The above argument shows that A =
∑n+1

i=1 aibiBi and C =∑n+1
i=1 cibiBi. Hence, the square distance of A and C is

d2
AC = 〈A −C|A −C〉

=

〈n+1∑
i=1

(ai − ci)biBi (ai − ci)biBi

〉

=

n+1∑
i, j=1

bib j(ai − ci)(a j − c j)
〈
Bi|B j

〉
.

We know that d2
BiB j

= 〈Bi|Bi〉 − 2
〈
Bi|B j

〉
+

〈
B j|B j

〉
, so

〈
Bi|B j

〉
=

1
2

(
〈Bi|Bi〉 +

〈
B j|B j

〉
− d2

BiB j

)
. Thus,

d2
AC =

n+1∑
i, j=1

−
1

2
d2

Bi B j
bib j(ai−ci)(a j−c j)+

n+1∑
i, j=1

bib j(ai−ci)(a j−c j) 〈Bi |Bi〉 .

n+1∑
i, j=1

bib j(ai − ci)(a j − c j) 〈Bi |Bi〉 =

〈n+1∑
i=1

bi(ai − ci)Bi

n+1∑
j=1

b j(a j − c j)Bi

〉
and

n+1∑
j=1

b j(a j − c j)Bi =

n+1∑
j=1

b j(a j − c j)

 Bi =

n+1∑
j=1

b ja j −

n+1∑
j=1

b jc j

 Bi

= (|Ȧ| − |Ċ|)Bi = 0.

We have arrived to the point to give the distance formula for

regular kantors.

Theorem 7 Let Ȧ = (a1, a2, . . . , an+1)B and Ċ =

(c1, c2, . . . , cn+1)B be two unite kantors. Then the square-

distance of A and C is

d2
AC =

n+1∑
i, j=1

−
1

2
d2

BiB j
bib j(ai − ci)(a j − c j).

�

This formula is symmetric in the regular coordinates.

We introduce the notation
〈
Ḃi|Ḃ j

〉
= − 1

2
d2

BiB j
bib j for the

“kantric scalar product” of the basis kantors. If we bilinearly

extend this definition, the distance formula can be written in the

form

d2
AC =

〈
Ȧ − Ċ|Ȧ − Ċ

〉
=

n+1∑
i, j=1

〈
Ḃi|Ḃ j

〉
(ai − ci)(a j − c j).

3 The kantric scalar product

Definition 8 Let Ȧ and Ċ be arbitrary kantors in Kn coordi-

nated with respect to the regular basis {Ḃ1, . . . , Ḃn+1}. Then

〈Ȧ|Ċ〉B =
∑n+1

i, j=1〈Ḃi|Ḃ j〉aic j defines the kantric scalar product

of the two kantors, where 〈Ḃi|Ḃ j〉 = − 1
2
d2

BiB j
bib j.

The kantric scalar product is a bilinear form, but it is not posi-

tive. For example, 〈Ḃi|Ḃi〉 = 0 and 〈Ḃi + Ḃ j|Ḃi + Ḃ j〉 = 2〈Ḃi|Ḃ j〉 <

0 if i , j and bi, b j > 0. The following theorem describes the

kantric scalar product of singular kantors.

Theorem 9 For any two singular kantors Ṡ = (s, 0), Ṫ = (t, 0),〈
Ṡ |Ṫ

〉
=

〈
s|t

〉
.

Proof: If Ṡ = (s1, s2, . . . , sn+1)B is a singular kantor, Ȧ is a unite

kantor and Ċ = Ȧ + Ṡ , then Ċ is also unite and the square of the

translation value of Ṡ is∣∣∣s∣∣∣2 = d2
AC =

n+1∑
i, j=1

〈
Ḃi|Ḃ j

〉
(ai − ci)(a j − c j) =

n+1∑
i, j=1

〈
Ḃi|Ḃ j

〉
sis j =

〈
Ṡ |Ṡ

〉
.

Thus,
〈
Ṡ |Ṫ

〉
= 1

2
(
〈
Ṡ + Ṫ |Ṡ + Ṫ

〉
−

〈
Ṡ |Ṡ

〉
−

〈
Ṫ |Ṫ

〉
) =

1
2
(
〈
s + t|s + t

〉
−

〈
s|s

〉
−

〈
t|t

〉
) =

〈
s|t

〉
. �

This means that the kantric scalar product on Ks is the same

as the euclidean scalar product of the translation vectors.

Definition 10
(1) The regular kantor Ȯ ∈ Kn is an orthogonal kantor of the

regular basis B if for all singular kantor Ṡ ∈ Kn, 〈Ȯ|Ṡ 〉B = 0.

(2) The regular kantor Ȯ ∈ Kn is a circumkantor of the reg-

ular basis B if for all i = 1, 2, . . . , n + 1, dOBi
= R with

some real R (here, R must be the circumradius of the set

{B1, B2, . . . , Bn+1}).

(3) The kantor Ȯ ∈ Kn is a kernel of the mass-functional with

respect to B if there exists a real number α , 0 such that for

all Ȧ ∈ Kn , 〈Ȯ|Ȧ〉B = α|Ȧ|, i.e., the scalar multiplication with

Ȯ is a linear function of the mass.
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(4) The regular kantor Ȯ ∈ Kn is a minimum kantor of the scalar

product related to B if for all regular kantor Ȧ ∈ Kn,

〈Ȯ|Ȯ〉B

o2
≤
〈Ȧ|Ȧ〉B

a2
,

where o = |Ȯ| and a = |Ȧ|.

Theorem 11 Definitions (1)-(4) are equivalent provided that

n ≥ 2.

Proof: First, we prove the equivalence of definitions (1)-(3).

(1)⇒ (2)

Let Ȯ be an orthogonal kantor, o = |Ȯ| , 0 and
〈Ȯ|Ȯ〉

o2 = θ.

Furthermore, let Ȧ ∈ Kn be an arbitrary regular kantor and a =

|Ȧ|. Then

〈Ȧ|Ȧ〉

a2
=

〈
Ȧ

a

Ȧ

a

〉
=

〈(
Ȧ

a
−

Ȯ

o

)
+

Ȯ

o

(
Ȧ

a
−

Ȯ

o

)
+

Ȯ

o

〉
=

=

〈
Ȧ

a
−

Ȯ

o

Ȧ

a
−

Ȯ

o

〉
+ 2

〈
Ȧ

a
−

Ȯ

o

Ȯ

o

〉
+

〈
Ȯ

o

Ȯ

o

〉
=

= d2
AO +

2

o

〈
Ȧ

a
−

Ȯ

o
Ȯ

〉
+
〈Ȯ|Ȯ〉

o2
= d2

AO + θ

because Ȯ is orthogonal to Ȧ
a
− Ȯ

o
. This implies that for all 1 ≤

i ≤ n + 1,
〈Ḃi |Ḃi〉

b2
i

= d2
BiO

+ θ. By definition,
〈Ḃi |Ḃi〉

b2
i

= 0, hence

dBiO =
√
−θ for all i, where R =

√
−θ is a real number. This

means that Ȯ is a circumkantor of the basis B and θ < 0.

(2)⇒ (3)

If Ȯ is a circumkantor of B, then for all 1 ≤ i ≤ n + 1, dOBi
= R

with some positive real R. Let θ =
〈Ȯ|Ȯ〉

o2 .

For all index i,

R2 =

〈
Ḃi

bi

−
Ȯ

o

Ḃi

bi

−
Ȯ

o

〉
=

1

b2
i

〈Ḃi|Ḃi〉−
2

bio
〈Ḃi|Ȯ〉+

1

o2
〈Ȯ|Ȯ〉 ⇒

〈Ḃi|Ȯ〉 =
bio

2
(θ − R2).

Let α = o
2
(θ − R2), which is nonzero due to the regularity of Ȯ

and because n ≥ 2 (if θ would be equal to R2, then 〈Ḃi|Ȯ〉 = 0 for

all i, which implies 〈Ȯ|Ȯ〉 = 0 and R2 = θ = 0 in contradiction

with the linear independence of B). Then for arbitrary regular

kantor K̇ =
∑n+1

i=1 kiḂi,

〈K̇|Ȯ〉 =

〈∑
i

kiḂi Ȯ

〉
=

∑
i

ki〈Ḃi|Ȯ〉 = α
∑

i

kibi = α|K̇|

holds. Thus, Ȯ is a kernel of the mass-functional.

(3)⇒ (1)

If Ȯ is a kernel of the mass-functional, then for each singular

kantor Ṡ ∈ Kn, 〈Ȯ|Ṡ 〉 = α|Ṡ | = 0. Obviously, Ȯ , 0. If |Ȯ| =

0, then Ȯ would be a nonzero singular kantor with 〈Ȯ|Ȯ〉 > 0

and on the other hand 〈Ȯ|Ȯ〉 = α|Ȯ| = 0, which is impossible.

Hence, Ȯ is a regular kantor and an orthogonal kantor of the

basis B.

Finally, we show that definitions (1) and (4) are equivalent.

(1)⇒ (4)

Suppose that Ȯ is an orthogonal kantor. We know that Ȯ is

regular and for any regular kantor Ȧ

〈Ȧ|Ȧ〉

a2
=
〈Ȯ|Ȯ〉

o2
+ d2

AO ≥
〈Ȯ|Ȯ〉

o2

holds by the (1) ⇒ (2) part of the proof. So, Ȯ is the minimum

point of the scalar product.

(4)⇒ (1)

Let Ȯ be the minimum point of the scalar product. It is clear

that |Ȯ| , 0. Assume to the contrary that there exists a singular

kantor Ṡ ∈ Kn for which 〈Ȯ|Ṡ 〉 , 0. Now, Ȯ − Ṡ is a regular

kantor, so property (4) implies

〈Ȯ − Ṡ |Ȯ − Ṡ 〉

o2
≥
〈Ȯ|Ȯ〉

o2
⇒ 〈Ȯ|Ȯ〉−2〈Ȯ|Ṡ 〉+〈Ṡ |Ṡ 〉 ≥ 〈Ȯ|Ȯ〉 ⇒

〈Ṡ |Ṡ 〉 ≥ 2〈Ȯ|Ṡ 〉 , 0.

This statement also holds for −Ṡ , so 〈Ṡ |Ṡ 〉 = 〈−Ṡ |− Ṡ 〉 ≥ 2〈Ȯ|−

Ṡ 〉 = −2〈Ȯ|Ṡ 〉. Therefore, 〈Ṡ |Ṡ 〉 ≥ 2|〈Ȯ|Ṡ 〉| > 0.

Let t =
〈Ṡ |Ṡ 〉

|〈Ȯ|Ṡ 〉|
> 1. Then, applying the previous argument one

more times,
〈

Ṡ
t

Ṡ
t

〉
≥ 2

∣∣∣∣〈Ȯ Ṡ
t

〉∣∣∣∣. Hence,

〈Ṡ |Ṡ 〉

t2
≥

2|〈Ȯ|Ṡ 〉|

t
⇒ 〈Ṡ |Ṡ 〉 ≥ 2t|〈Ȯ|Ṡ 〉| ⇒

〈Ṡ |Ṡ 〉 ≥ 2〈Ṡ |Ṡ 〉

in contradiction with Ṡ , 0. Thus, Ȯ is an orthogonal kantor of

the basis B. �

Theorem 12 The set {B1, B2, . . . , Bn+1} of n+1 points is affinely

independent if and only if B = {Ḃ1, Ḃ2, . . . , Ḃn+1} is a basis of

Kn, where Ḃi = (Bi, 1) for i = 1, 2, . . . , n + 1.

Proof: If the points are affinely independent and s
i
= Bi − Bn+1,

then {s
1
, s

2
, . . . , s

n
} is a basis of Rn, hence {Ṡ 1, Ṡ 2, . . . , Ṡ n, Ḃn+1}

forms a kernel-singular basis of Kn, where Ṡ i = (s
i
, 0) for i =

1, 2, . . . , n. This means exactly that B is a basis too (see Remark

5).

If B is a regular basis and Ṡ i = 1
bi

Ḃi −
1

bn+1
Ḃn+1, then B′ =

{Ṡ 1, Ṡ 2, . . . , Ṡ n, Ḃn+1} is a kernel-singular basis. This implies

that the points B1, B2, . . ., Bn+1 are affinely independent. �

An important consequence of Theorems 11 and 12 is that for

every basis, there exists an orthogonal kantor and it is unique

up to scalar multiplication: the points of the basis are affinely

independent, so the circumsribed sphere exists and there is a

unique circumkantor up to scalar multiplication.

4 Diagonalisation of the kantric scalar product

The kantric scalar product related to the regular basis B can

be written in a simplier form using coordinate-transformation.

Let Ȯ be the orthogonal kantor of B such that 〈Ȯ|Ȯ〉 = −1.

From the proof of Theorem 11,
〈Ȯ|Ȯ〉

o2 = −R2, thus o must be
1
R

. Let {Ṡ 1, Ṡ 2, . . . , Ṡ n} be an orthonormal system of singular

kantors in Kn (i.e.,
〈
Ṡ i|Ṡ j

〉
= δi j). The translation vectors of
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these kantors form an orthonormal basis of Rn, therefore Q =

{Ṡ 1, Ṡ 2, . . . , Ṡ n, Ȯ} is a kernel-singular basis of Kn.

Since 〈Ȯ|Ȯ〉 = −1 and for all 1 ≤ i, j ≤ n, 〈Ṡ i|Ṡ j〉 = δi j and

〈Ȯ|Ṡ j〉 = 0, thus for arbitrary kantors Ȧ = (a′
1
, a′

2
, . . . , a′

n+1
)Q,

Ċ = (c′
1
, c′

2
, . . . , c′

n+1
)Q ∈ Kn coordinated with respect to the

basis Q,

〈Ȧ|Ċ〉B =

〈 n∑
i=1

a′i Ṡ i + a′n+1Ȯ

n∑
j=1

c′jṠ j + c′n+1Ȯ

〉
=

=

n∑
i, j=1

a′ic
′
j〈Ṡ i|Ṡ j〉 +

n∑
i=1

a′ic
′
n+1〈Ṡ i|Ȯ〉 +

n∑
j=1

a′n+1c′i〈Ȯ|Ṡ j〉+

+a′n+1c′n+1〈Ȯ|Ȯ〉 =

n∑
i=1

a′ic
′
i − a′n+1c′n+1,

which is a sum of n + 1 terms oppositely to the
n(n+1)

2
terms of

the original formula of Definition 8. If the coordinates of Ȧ and

Ċ are known with respect to the basis Q or the matrix of the

coordinate transformation is of simple form, then it is worth to

switch to this scalar product formula.

Remark 13 The fact 〈Ȯ|Ȯ〉 < 0 does not depend on the mass of

Ȯ and 〈Ṡ i|Ṡ i〉 > 0 does not depend on the translation value of Ṡ i.

This causes n positive and 1 negative sign in the above formula

and means that the signature of the kantric scalar product is

(+,+, . . . ,+,−).

5 The radius of the circumscribed sphere of affinely

independent set of points

Let B = {B1, B2, . . . , Bn+1} be an affinely independent set of

points in Rn, n ≤ 2 and denote the distance of Bi and B j by di j.

Let 1 ∈ Rn+1 denote the column vector consists of all ones and

D be the (n + 1) × (n + 1) matrix for which [D]i j = d2
i j

.

Theorem 14 The radius of the circumscribed sphere of the set

B is

R =
1

√
21T D−11

.

Proof: Let Ḃi = (Bi, 1) be regular kantors for i = 1, . . . , n + 1.

Then B = {Ḃ1, Ḃ2, . . . , Ḃn+1} is a regular basis of Kn. Denote the

center of the circumscribed sphere by O and let Ȯ = (O, 1) be a

circumkantor.

Since Ȯ is an orthogonal kantor by Theorem 11, thus〈
Ȯ|Ḃ j − Ȯ

〉
= 0 for all j = 1, . . . , n + 1. This means that〈

Ȯ|Ḃ j

〉
=

〈
Ȯ|Ȯ

〉
= −R2.

If Ȯ = (o1, . . . , on+1)B, then by the definition of the kantric scalar

product, 〈
Ȯ|Ḃ j

〉
=

n+1∑
i=1

−
1

2
d2

i joi.

Let oT = [o1, o2, . . . , on+1] be the row vector related to Ȯ. The

above equations can be collected to the system of equations:

Do = 2R21.

D is invertible because this system has a unique solution: o

must be the unit kantor placed in the center of the circumscribed

sphere. This shows that o = 2R2D−11.

Since 1T o = 1, thus

1 = 2R21T D−11 ⇒ R2 =
1

21T D−11
.

We have just obtained the radius of the circumsribed sphere

as a function of the distances of the points. �

Remark: On the plain, R is the radius of the circumscribed

sphere of the triangle ∆B1B2B3
. If we denote the length of the

sides by a, b and c and the area of the triangle by T , then Theo-

rem 14 and the well known formula T = abc
4R

together gives the

Heron’s formula, which expresses the area of the triangle as a

symmetric function of the side-lengths. It means that our for-

mula is equivalent to Heron’s formula in 2-dimension, and it is

a generalisation of it to higher dimensions. An equivalent form

of Theorem 14 was known in 3-dimension (see [2]), though our

proof is more elegant and more general.

Finally, a related open problem is to determine the radius of

the incircle of an n dimensional simplex with a kantric method.

It is nV
A

by a simple elementary calculation, where V is the vol-

ume and A is the area of the surface of the simplex.

6 Applications

Kantors are effective tools to solve planar geometric prob-

lems. The method is the same as in case of mass-points and is

well detailed in [3, 5, 6]. Let there be given a triangle with ver-

tices A, B and C. Then the unite kantors Ȧ = (A, 1), Ḃ = (B, 1)

and Ċ = (C, 1) form a basis of K2. One can determine the kantric

coordinates of the centroid, the orthocenter, the circumcenter

and the center of the incircle with respect to this basis up to

the mass. Then one can prove classical geometric properties of

these points with a simple calculation, for example the existence

of the Euler’s line or Feuerbach’s circle. On can also calculate

distances of given points by the distance-formula of Theorem 7.

It can be practical to introduce the concept of kantric line and

kantric circle.

Example: Determine the kantric coordinates of the center of

the incircle. We are looking for a regular kantor Q̇ = (Q, 1) in

the form Q̇ = αȦ+βḂ+γĊ, where Q = (qx, qy, qz) is the center of

the incircle and α, β, γ ∈ R. Classical theorems say that Q is the

intersection point of the angle bisectors, and an angle bisector

divide the opposite side into segments of relative length equal

to the relative length of the nearby sides of the triangle. Let fα

denote the bisector of the angle α, and Pα denote the intersection

of fα and the side a. The center of the kantor Ṗα = (0, b, c) (the

coordinates are relative to the basis {Ȧ, Ḃ, Ċ}) is Pα because Pα

is on the segment BC, and |BPα|/|PαC| = c/b. This means that

qy/qz = c/b because Q̇ is a linear combination of Ȧ and Ṗα.

Similarly, qx/qy = c/a and qx/qz = b/a. So, Q̇ = (a, b, c) is a

good choice.

Our main result, Theorem 14, can be applied in engineering

and architecture to determine the radius, the surface and the vol-
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ume of the circumscribed sphere of four spatial points by mea-

suring the distances between them. An other form of Theorem

14 is known in 2-dimension (Heron’s formula) as well as in 3-

dimension (see [2]). However, it can be a useful tool in higher

dimensional geometry.

Another area of applications is projective geometry. In Kn,

there is a natural one-to-one correspondence between the k di-

mensional and the n− k dimensional kantric subspaces given by

the orthogonality via kantric scalar product. Actually, in case of

k = 0, the assignment can be expressed by a sphere inversion

with center O and ratio R2.

A kantric subspace of dimension k is a k + 1 dimensional sub-

space of Kn. The 0-dimensional kantric subspaces are the ones

generated by one kantor.

LetH =
〈
Ṗ
〉

be the 0-dimensional kantric subspace generated

by Ṗ. It is clear that H⊥ = {Q̇ ∈ Kn :
〈
Ṗ|Q̇

〉
= 0}, the ortho-

complement of H , is an n − 1 dimensional kantric subspace of

Kn.

If Ṗ = Ȯ, thenH⊥ is the subspace of singular kantors. If Ṗ is

a singular kantor, then H⊥ is spanned by Ȯ and n − 1 indepen-

dent singular kantor orthogonal to Ṗ. Finally, if Ṗ is a regular

kantor distinct from Ȯ, then H⊥ is spanned by n − 1 indepen-

dent singular kantor orthogonal to Ṗ − Ȯ and a regular kantor Ṫ

centered on the OP halfline satisfying |OP||OT | = R2. The proof

of the latter statement does not require new ideas, therefore left

to the reader.

Let us extend Rn with a point at infinity in each direction to

form the projective space Pn. Let P be the center of Ṗ in Pn

(even if Ṗ is singular), H⊥ be the set of the centers of the kan-

tors in H⊥ and S be the sphere with diameter OP. Then H⊥

is the unique hyperplain containing the image of S \{O} under

the sphere inversion with center O and ratio R2. Finally, H⊥ is

uniquely determined by H⊥.

There are numerous quantities with kantric nature in physics,

such as mass, electric charge and even force in special cases,

to which our theory could be well applied. It is an interesting

question which the singular forms of these “regular” quantities

are.

In K3, the kantric scalar product is a Minkowski inner prod-

uct with signature (+,+,+,−) (see Section 4), hence K3 can also

be considered as a representation of the Minkowski spacetime

where mass plays the role of time. However, the space dimen-

sions are not in direct accordance with the dimensions of the un-

derlying R3 space of K3 (vector coordinates), but the mixtures

of vector and mass coordinates. Hence, a simple euclidean dis-

tance formula should be applied instead of the kantric distance

formula. For more details on Minkowski spacetime see [4].
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