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Abstract

A new approach of nonholonomic path planning for car-like

robots is presented. The main idea is similar to many existing

approaches which obtain a path in two phases. It is familiar in

nonholonomic planning that at first a holonomic path is planned

which is approximated by a nonholonomic one in a second step

by subdividing it into smaller parts and replacing them with lo-

cal paths fulfilling the kinematic constraints. These methods

mostly rely on probabilistic methods and heuristic optimization.

Our approach uses a holonomic preliminary path as well, but

it serves only as a "loose guidance" to the second phase of the

planning process. The final path is not required to contain any

of the intermediate points of the preliminary path at all. The

method is effective in environments consisting of narrow corri-

dors but having wider free areas as well which can be used for

maneuvering.<br />
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1 Introduction

Intelligent path planning and control of autonomous vehi-

cles becomes nowadays increasingly widespread in industry and

even in everyday life. Besides robotic cleaning machines au-

tonomous park assist systems for passenger cars appeared on

the market in the last years and unmanned aerial vehicles are

flying with increasing autonomy. According to their popularity,

research in this field is considerably active in the last decades

[1–4].

The navigation task of autonomous mobile robots consists

of more solvable subproblems, such as sensing and localiza-

tion, environment mapping, path planning and motion control.

Among mobile robots moving on a planar surface, the most pop-

ular locomotion systems are based on rolling wheels, accord-

ing to their mechanical simplicity and popularity among every-

day vehicles. From a control theoretic view, the rolling without

slipping constraint of wheels induce nonholonomic constraints,

which are nonintegrable differential constraints over the config-

uration space of the system. Nonholonomic constraints do not

prohibit the controllability of a system, but they cause remark-

able difficulties (this can be acknowledged by anyone who ever

tried to parallel park a car). Although controlling a nonholo-

nomic vehicle is a control theoretic challenge, it is worth in-

corporating the knowledge about the specific system in the path

planning task as well. Planning infeasible paths for nonholo-

nomic systems can baffle the whole navigation process.

This paper describes a path planning algorithm for robots with

car-like kinematics moving on a horizontal planar surface. It is

intended to solve navigation problems where the robot has to

cross narrow corridors in order to reach the goal. Since car-like

robots have a nonzero minimum turning radius, such environ-

ments require in some cases non-trivial maneuvering (including

more reversals) between the narrowings. Our planning approach

employs a geometric local planner based on the fact that in the

absence of obstacles two configurations of a car-like robot can

always be connected by a three-segment CCS or S CS subpath

(where C stands for circular and S for straight path segments).

A global preliminary (unconstrained) path is planned in advance

based on cell decomposition of the free space, which is used
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to guide the local planner. This guidance means that the local

planner looks for feasible subpaths along the preliminary path –

without forcing the resulting path to have common intermediate

points with it. The algorithm is currenty implemented for point-

shaped robots (having a minimum turning radius constraint), but

can be extended to vehicles of polygonal shape without theoret-

ical complications.

The paper is organized as follows. In Section 2 the existing

methods for nonholonomic planning are surveyed shortly. The

next section states the problem covered by our approach. Sec-

tion 4 describes the local planner module used repeatedly during

the path planning process and Section 5 is about planning the

preliminary guiding path. In Section 6 we summarize the whole

planning process, investigate its computational complexity and

demonstrate its effectiveness by simulation results. Section 7

draws the conclusions and gives directions of future work.

2 Related Work

Path planning is a widely studied research area of robotics

[1–4]. Many different approaches can be found in the litera-

ture according to the different classes of systems. The simplest

case is the pure geometric path planning for holonomic systems,

which basically means choosing a function λ from the set Λ

of continuous functions defined on the interval [0, 1] and tak-

ing their values from the free configuration space, connecting a

given initial and final configuration qI and qG of the robot:

Λ =
{
λ : [0, 1]→ C

∣∣∣ λ(s) < Cobs ∀ s ∈ [0, 1],

λ(0) = qI , λ(1) = qG

}
(1)

where C is the configuration space of the robot and Cobs ⊂ C is

the set of configurations in collision. For a rigid robot moving

in the plane, the configuration q =
[
x, y, θ

]T
describes the posi-

tion of the reference point in the plane and the orientation with

respect to the vertical axis.

For problems including not only geometric constraints (i.e.

obstacles) but kinematic constraints of the robot model as well,

the above definition may not be sufficient to describe a solution

path. A useful path planning algorithm for such systems has

to deliver a solution which is feasible (i.e. it obeys the motion

equation of the robot) and is safe with respect to obstacles.

2.1 Nonholonomic Systems

The vast majority of available planning methods deal with

driftless control affine systems, which have the form

ẋ =

m∑
i=1

hi(x)ui (2)

where the state x ∈ X consists of the configuration variables and

their derivatives, each hi is a vector field on the state space X

and u = [u1 . . . um]T ∈ U is the vector of control variables. In

many cases x = q, i.e. the configuration is treated as the state.

The nonholonomy and controllability properties of a system ex-

pressed in the form of (2) can be determined by the Lie Algebra

Rank Condition [3]. From another point of view a nonholo-

nomic system is obeying one or more nonintegrable equality

constraints above the derivatives of the configuration variables.

This intuitively means that the configuration velocity vector is

locally constrained to some directions while it is not possible to

directly move in other directions (think for example of driving a

car sideways).

An interesting property of nonholonomic systems is that they

are underactuated but remain still controllable on the whole state

space. Local control methods which determine the control sig-

nal u(·) for a given (qI , qG) pair in the absence of obstacles are

called steering methods.

2.2 Steering Methods

The steering of nonholonomic systems is a difficult task even

in the absence of obstacles. Exact algorithms are not available

in general but only for special classes of systems, e.g. nilpo-

tentizable [5], chain-formed [6–8] and differentially flat systems

[9]. Common examples for the above mentioned systems in-

clude wheeled vehicles with or without trailers.

An important family of steering approaches is based on op-

timal control. For general systems only approximate methods

exist [10]. Exact methods for computing optimal (e.g. shortest

length) local paths are available only for car-like robots mov-

ing forward (Dubins-car [11]) or both forward and backward

(Reeds–Shepp-car [12–15]) and for robots equipped with differ-

ential drive [16, 17]. For the Reeds-Shepp-car, it is shown in

[12] that for any pair of configurations the shortest path can be

chosen from 48 possible sets of paths, each of which consisting

of maximum five circular or straight segments and having max-

imum two cusps. The number of sets were reduced to 46 in [13]

and to 26 in [14].

2.3 Nonholonomic Planning among Obstacles

To design a planning algorithm that deals with both kine-

matic and environmental constraints, global information about

the connectivity of the free space has to be taken into account,

together with a well-suited steering method at the same time.

Numerous exact and sampling-based, probabilistic and deter-

ministic global planning methods have been developed for sys-

tems without nonholonomic constraints [1, 3], whose ideas can

be adapted to the nonholonomic case. Motion planning for non-

holonomic systems induces two main questions. The first ques-

tion addresses the existence of a collision-free and feasible path,

while the other problem to solve is the synthesis of such a path.

It is shown in [2, 4] that the existence of an admissible path be-

tween two configurations is equivalent to the existence of any

collision-free path between the same configurations.

To the best knowledge of the authors, there is no optimal so-

lution available for the synthesis problem. The majority of algo-

rithms delivering a feasible solution can be grouped in two main

categories. Sampling-based roadmap methods [18,19] belong to

the first one, which build a graph in order to capture the topology
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of the free space and use local steering methods to connect the

graph nodes. The second category consists of techniques that

exploit the idea of the above mentioned equivalence between

the existence of pure geometric and nonholonomic paths. These

methods [20–22] approximate a not necessarily admissible but

collision-free initial path by a sequence of feasible paths.

2.3.1 Approximation Methods

In the framework proposed in [20] the initial path is recur-

sively subdivided until every part can be replaced by a collision-

free admissible path obtained by an LPM. This work deals with

car-like robots and uses an LPM based on the shortest paths for

the Reeds–Shepp-car. It is shown in [20] that the number of

subdivisions is inversely proportional to the square of the clear-

ance of the initial path. According to this, paths going far from

obstacles are well-suited to approximation methods.

This property is expolited in [21], where firstly a maximum-

clearance skeleton of the free space is obtained and used for

initial path planning. Secondly, the sequence of admissible sub-

paths is chosen based on maximal collision-free balls defined by

the Reeds–Shepp metric.

The quality of the resulting approximated feasible paths is af-

fected by the “goodness” of the initial geometric path. If the

initial path leads mostly in directions which are non-admissible

for the system, then the approximated path will be quite difficult

(containing a great amount of reversals). Therefore usually a fi-

nal optimization of the approximated path is necessary (e.g. in

[20] pairs of intermediate configurations are randomly chosen

and tried to be connected by simpler local paths). An approach

for increasing the “goodness” of the initial path based on non-

holonomic deformation of potential fields can be found in [22].

The above mentioned approximation methods are complete

which means that they deliver a solution if one exists and report

failure if not. The only precondition to achieve this is the exis-

tence of an unconstrained path with nonzero clearance about it.

The drawbacks are high computational cost and complexity of

the resulting path.

2.3.2 Other Approaches

Some improvements can be achieved in terms of path com-

plexity and computation time if the need for completeness is

not essential. Two recently proposed approaches are mentioned

here which were inspiring in the development of our algorithm.

In [23] a practical method is presented for planning parking ma-

neuvers of car-like robots in narrow environments, based on the

idea of reducing the free space to regions that are reachable

by a concatenation of simple motions. One motion primitive

is a straight–circular–straight triplet, and the resulting solution

is chosen from a set obtained by a breadth-first search of candi-

date sequences of these primitives. The choice is the result of

a numerical optimization of an objective function consiting of

more weighted terms. This method is practical in situations if

two or three consecutive motion primitives suffice to reach the

goal (e.g. parallel or perpendicular parking tasks) but the com-

putational cost increases strongly with the number of required

primitives (denoted as “depth” of the path in [23]).

The approach presented in [24] works well in cluttered but

not very narrow environments. It employs cell decomposition

algorithms to abstract the environment to a topological roadmap

[25] which is used to obtain a preliminary path. This path con-

sists of straight segments and is made feasible for car-like robots

by simply smoothing the corners by circular arcs of minimum

admissible turning radius. This implies that the resulting path

contains no cusps. If a path cannot be smoothened this way, or

the resulting path intersects with obstacles, the path is simply

rejected and another one is searched in the roadmap. The al-

gorithm proceeds until a feasible solution is found, or it reports

failure if it runs out of candidate preliminary paths.

Our proposed approach can be treated as an approximation

method. It borrows ideas from both [23] and [24]. A prelimi-

nary path is obtained by cell decomposition, which serves as a

guide for the local planner module. The LPM uses a reduced

set of path primitives, consisting of two or three circular and

straight segments. This affects the completeness of the method

but benefits from the reduced computational burden. The com-

putational cost does not increase dramatically with the number

of concatenated local paths thus difficult situations in narrow en-

vironments, requiring more maneuvers can be solved.

3 Problem Statement

The aim of our paper is to present a path planning algorithm

for car-like robots in situations where narrow corridors have to

be passed.

The kinematic model of a car-like robot is depicted in Fig-

ure 1. Its instantaneous configuration can be completely de-

scribed by q = [x, y, θ]T in C = R2 × S1. The equations of mo-

tion are the following:

ẋ = v cos θ

ẏ = v sin θ (3)

θ̇ =
v

L
tan φ

where v is the signed velocity of the back axle midpoint (positive

means forward motion), φ denotes the steering angle and L the

distance of the front and rear wheel axles. The absolute value of

the steering angle is limited to |φ| ≤ φmax < π/2.

If we perform an input transformation and define u1 = v and

u2 = v
L

tan φ, the same form as (2) is obtained with the follow-

ing substitutions: x = q (the state is the configuration itself),

h1(q) = [cos θ, sin θ, 0]T , h2 = [0, 0, 1]T . The control inputs u1

and u2 correspond to the translational and angular velocities of

the center of the rear axle, respectively. This point is considered

as the reference point of the car.

The radius ρ of the circular path traversed by the reference

point if the steering angle is fixed can be determined from basic

Nonholonomic Path Planning for a Point Robot with Car-Like Kinematics 672013 57 3



Fig. 1. Model of a car-like robot

trigonometry:

ρ =
L

tan φ
(4)

Note that ρ can be positive or negative according to the sign of

the steering angle φ. In the depicted situation φ < 0 thus ρ < 0

as well (intuitively this means “turning right”). As the steering

angle tends to zero, the turning radius tends to infinity, which

corresponds to straight motion. The constraint on the steering

angle defines a minimum turning radius constraint:

|ρ| ≥ ρmin =
L

tan φmax

(5)

It should be noted that in the current presentation we cope

only with the kinematic properties of the robot, which is rep-

resented by the minimum turning radius constraint. The geo-

metric shape of the vehicle is neglected and path planning for

the reference point is performed. Although this is not practical,

it does not affect the validity of the underlying idea of the pre-

sented algorithm. An extension to polygonal robot shape causes

no theoretical complications (the collision checking algorithm

presented in Section 6.1 has to be adapted to this case).

Our goal is to obtain feasible paths being possibly simple, i.e.

containing a low number of maneuvers. Narrow environments

and simple paths are conflicting concepts, it is enough to think of

turning around with a car in a narrow street. The “narrowness”

of the free space is a somewhat qualitative concept thus it is

worthwhile to give a more quantitative definition to it.

Definition 1 (Local Narrowness). The local narrowness is a pos-

itive real-valued function η over the configuration space, which

assigns to every configuration q the value

η(q) =


2ρmin

Rmax

(
p(q)

) , if q ∈ C \ Cobs,

∞ otherwise,

(6)

where Rmax

(
p(q)

)
is the radius of the maximal collision-free disk

in R2, centered at the position p(q) = (x, y) belonging to q.

An illustration of this function is shown in Figure 2. The

dark gray area corresponds to local narrowness values η ≤ 1,

at these configurations we say that the environment is “wide”.

This intuitively means that starting from this area – without re-

specting orientation – the robot can travel along a whole circle

of radius ρmin witout collision. Function values between 1 and 2

are depicted by light gray and stand for “narrow” places. Start-

ing from these areas the robot is assured to have a collision-free

angular displacement of at least π/2 along a minimum-radius

circular arc at least in one direction of the four possibilities

(forward–left, forward–right, backward–left or backward–rigt).

Intuitively, when traveling in a corridor with parallel walls, if

the robot is at a “narrow” position, it has the possibility to turn

back with no more than one reversal. In the white area the local

narrowness is η ≥ 2 denoted by “very narrow”, which means

that the size of the free space around the robot (represented by

Rmax) is not greater than the minimal turning radius. If going to

these locations, the chance of simple maneuvering decreases.

Definition 2 (Global Narrowness). The global narrowness of a

planning query Γ (C, qI , qG, ρmin) is defined by

η(Γ) = min
λ∈Λ

(
max
s∈[0,1]

(
η
(
λ(s)

)))
. (7)

This means that if an environment is given – represented by

C – together with a query pair (qI , qG) and a minimal turning

radius ρmin (which are called together as a planning query Γ),

no smaller maximal local narrowness can be achieved along any

geometric path λ ∈ Λ than η (Γ). The global narrowness can be

treated as a measure of the difficulty of a planning query.

Our aim is to obtain a planning algorithm that succesfully

solves planning queries with η (Γ) � 2 for point-shaped car-like

robots, especially in environments where η(q) ≥ 1 for all q ∈ C.

These problems can be treated as “difficult” because the robot

has to pass “very narrow” places (e.g. corridors of small width),

while the wider areas between them are still “narrow”.

4 Local Feasible Planning

The most widely used local planners for car-like robots are

based on the finite set of shortest-length paths for the Reeds–

Fig. 2. The concept of local narrowness
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Shepp-car [12, 15]. These paths consist of maximum five circu-

lar and straight segments, where the radius of circular arcs is ex-

actly ρmin and there are at most two cusps. The optimal steering

method based on these paths verifies the topological property

[2] which means that as qI and qG get closer, the radius of the

minimal disk that contains the resulting path gets smaller. This

property ensures the possibility to construct complete approx-

imation methods based on this steering method, such as [20].

Using the set of Reeds–Shepp paths results in an optimal-length

solution in the absence of obstacles, but if obstacles are present,

it becomes necessary to obtain a concatenation of these. This is

possible – according to the topological property – even in case

of narrow planning queries, however, the concatenated path can

consist of a high number of parts with unnecessarily many rever-

sals, resulting in a solution being complex and far from optimal.

According to this, it seems appealing to investigate other possi-

bilities beyond the set of optimal local paths.

Let us denote a path consisting of circular arcs and straight

segments by a sequence of S (for straight) and C (for circular)

letters. For example, S CCS means a path consisting of a start-

ing straight segment, two consecutive circular arcs and a final

straight segment. The following lemma holds:

Lemma 1. In the absence of obstacles, any two configurations

qI and qG of a car-like robot can be connected by a feasible path

consisting of no more than three segments. The solution can be

found in the form of an S CS or CCS path.

Proof. Let us denote the position of a configuration q by

p(q) =
[
x(q), y(q)

]T
and the orientation of the same as θ(q). The

main idea of our local planning approach is that if qI is not on the

line going through p(qG) and having the orientation θ(qG) (let us

denote this the line of qG), then it is possible to reach an inter-

mediate configuration q′
G

by one circular path segment, which

belongs to the same line. As can be seen in Figure 3, there are

two such configurations q′
G,1 and q′

G,2, reachable through four

possible arcs. These arcs can be obtained by drawing circles

tangential to qI and the line of qG as well. One of the intermedi-

ate configurations has opposite orientation than qG, this is called

invalid and can be discarded. From the valid intermediate con-

figuration (q′
G,1 in Figure 3) qG can be trivially reached through

a straight path segment. The resulting path is CS (which can

be treated as S CS or CCS as well, with a zero-length first seg-

ment).

Until now, the minimal turning radius has not been taken into

account. If p(qI) is not on the line of qG and the circular arc

leading to the valid q′
G

has a radius |ρ| < ρmin, then another in-

termediate configuration q′
I

can be obtained in advance by an S

or C path starting from qI . This new configuration q′
I

can be

chosen such that a next valid intermediate configuration q′
G

can

be reached by a circular arc of |ρ| ≥ ρmin as depicted in Figure 3.

The resulting path from qI to qG will thus have the form of S CS

or CCS .

If p(qI) is on the line of qG, there are two possibilities. In the

case when θ(qI) = θ(qG), the solution path consists of only one

straight segment (that is identical with S CS or CCS having two

zero-length segments). In the other case, when θ(qI) , θ(qG), an

appropriate intermediate configuration q′
I

can be obtained by an

S or C segment as described above. The result is again an S CS

or CCS path.

The reason why local paths ending with a straight segment are

used will be clear in the next two sections. It is enough to know

at the moment that the LPM is used together with a global plan-

ner that obtains a preliminary path consisting of straight seg-

ments. Using S CS or CCS local paths, it is possible to arrive in

every step of the planning process on a following straight seg-

ment.

To construct an S CS or CCS path one has to accomplish three

steps according to the three path segments. The final step of

constructing the last S segment is trivial if the preceding two are

available. The second path segment (which is always C) can be

easily constructed by simple geometrical operations as depicted

in Figure 3. The construction of the first S or C path segment is

described in the sequel.

The set of configurations reachable from a given configura-

tion q0 by one circular arc or straight segment is the Arc Reach-

able Manifold of q0 (ARMq0
), as defined in [26]. This is a two-

dimensional submanifold of the R2 × S1 configuration space. If

q0 = [0, 0, 0]T and a position p = [x, y]T is given, the orientation

of the configuration at p can be determined by

θ (p) =


atan2

(
x, x2−y2

2y

)
, if y > 0,

− atan2

(
x, − x2−y2

2y

)
, if y < 0,

0, if y = 0.

(8)

The radius of the path leading from q0 to p is

ρ (p) =
x2 + y2

2y
. (9)

If q0 , [0, 0, 0]T , the same calculations can be done after a co-

ordinate transformation to the local frame of q0.

As can be seen, if no obstacles are present, for a given initial

configuration qI any position in the workspace W ⊂ R2 can be

reached by a circular arc (|ρ| < ∞) or straight segment (|ρ| = ∞).

Fig. 3. Local CS path between two configurations
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Hence there are uncountably infinite possible solutions for the

first segment of an S CS or CCS path of our LPM, even if we

discard the inadmissible elements of ARMqI
that have |ρ| < ρmin.

For this reason the LPM performs a numerical search to ob-

tain the local path. On one hand a solution has to be found that

does not intersect with obstacles, on the other hand the result

should be optimal in a sense as well. This optimality criterion is

the path length in our case (note that the obtained local path will

not be optimal in the sense of Reeds and Shepp but only among

Algorithm 1 LPM for S CS/CCS paths

1: Discretize the workspace of the robot uniformly, let the set

of discrete positions be P

2: for all positions pi ∈ P, i = 1 . . .K do

3: Determine the circular or straight path segment λ1,i(qI , pi)

leading from qI to pi

4: if |ρ (pi)| ≥ ρmin AND λ1,i(qI , pi) ∩ Cobs = ∅ then

5: Determine the four possible circular path segments

λ j

(
q′

I
, q′

G,k

)
, j, k = {1, 2} tangential to q′

I
=

[
pT

i
, θ (pi)

]T

and the line of qG

6: for all path segments λ j

(
q′

I
, q′

G,k

)
do

7: if

∣∣∣∣ρ (
λ j

(
q′

I
, q′

G,k

))∣∣∣∣ ≥ ρmin AND λ j

(
q′

I
, q′

G,k

)
∩ Cobs =

∅ then

8: Set d j,k to the length of λ j

(
q′

I
, q′

G,k

)
9: else

10: Set d j,k = ∞

11: end if

12: end for

13: Let d2,i = min
(
d j,k

)
14: Let λ2,i = λ j

(
q′

I
, q′

G,k

)
belonging to d2,i

15: Let q′
G

= q′
G,k belonging to λ2,i

16: Determine the straight path segment λ3,i
(
q′

G
, qG

)
17: if λ3,i

(
q′

G
, qG

)
∩ Cobs = ∅ then

18: Set d3,i to the length of λ3,i
(
q′

G
, qG

)
19: else

20: Set d3,i = ∞

21: end if

22: Set d1,i to the length of λ1,i(qI , pi)

23: else

24: Set d1,i = ∞

25: end if

26: end for

27: Let d = min
pi∈P

(
d1,i + d2,i + d3,i

)
28: if d = ∞ then

29: return FAILURE

30: else

31: Let p∗ = arg min
pi∈P

(
d1,i + d2,i + d3,i

)
32: Let λlocal

(
qI , q′

I
, q′

G
, qG

)
be the concatenated path be-

longing to p∗

33: return λlocal

(
qI , q′

I
, q′

G
, qG

)
34: end if

S CS/CCS paths). The operations of the LPM are summarized

in Algorithm 1.

This algorithm takes K samples from the workspace uni-

formly and determines the intermediate configuration q′
I

at each

sampling point p, according to (8) and (9) (this will be the fi-

nal configuration of the first S or C segment). From each in-

termediate configuration the four CS paths to qG are computed

as depicted in Figure 3. The resulting local path is the short-

est collision-free one chosen from the 4K candidate S CS/CCS

paths. In our current implementation we do not make any dis-

tinction between valid and invalid intermediate goal configura-

tions q′
G

for simplicity. This causes the resulting path arrive at

the goal configuration qG or at a modified goal configuration q̂G

having the same position but opposite orientation. This limita-

tion will be eliminated in a later version of the planning algo-

rithm.

5 Preliminary Global Path

Planning a preliminary global path without taking non-

holonomic constraints into account is a key component of

approximation-based nonholonomic planners. A lot of geomet-

ric planning approaches are available in the literature, a com-

prehensive survey of these can be found in [1] or [3]. There

exist sampling-based approaches and exact methods as well,

each having different advantages and limitations. Exact meth-

ods are usually effective in case of low-dimensional configura-

tion spaces (e.g. a rigid robot moving in the plane). In case of

higher dimensions (e.g. planning for robots consisting of more

links) they become computationally intractable and sampling-

based methods perform better. We summarize some exact ap-

proaches for two-dimensional problems (C = R2) in the sequel.

Perhaps the oldest methods are shortest-path roadmaps based

on mutual visibility of candidate pathpoints. The visibility graph

method or its advanced tangent graph version [27] builds a topo-

logical graph whose nodes are obstacle corners and edges are

collision-free straight segments between them. The initial and

goal points are connected to the graph in this way as well. A

shortest path search in this graph results an optimal-length path.

Unfortunately this implies that the path touches obstacle cor-

ners, which is not an appealing property in practical applica-

tions.

An alternative to shortest-path methods are maximum clear-

ance roadmap methods. These try to keep the path as far as

possible from obstacles. An example is the generalized Voronoi

diagram or retraction method [28]. This results in a safe path

consisting of straight segments and parabolic curves.

Cell-decomposition methods are partitioning the free config-

uration space into a finite set of regions called cells. This yields

again a graph-based abstraction of the environment. The re-

gions correspond to graph vertices and edges represent the ad-

jacency of these. A decomposition is useful if a path between

two points inside the same cell can be trivially obtained (e.g. if

the cells are convex then straight path segments suffice). There
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Fig. 4. Preliminary path based on triangular cell decomposition

are many such methods available differing in the shape of cells

(e.g. trapezoidal, triangular, polytopal decompositions). A sur-

vey and comparison of these can be found in [24, 25].

Algorithm 2 describes our global planner module which as-

sumes polygonal environment and performs a constrained De-

launay triangulation of the free space. We use the freely down-

loadable Delaunay triangulator program Triangle [29, 30] as a

subroutine in our algorithm. This returns the set of triangles

Algorithm 2 Preliminary path planning

1: Initialize V = ∅ and E = ∅

2: {T, A} = Triangle (C \ Cobs), n = |T |

3: for all i ∈ {1 . . . n}, j ∈ {i + 1 . . . n} do

4: if Ai, j = 1 then

5: Insert the median point of the common edge of ti ∈ T

and t j ∈ T in V

6: end if

7: end for

8: for all i ∈ {1 . . . n} do

9: Determine the set of graph vertices Vti ⊂ V which belong

to ti

10: for all k ∈
{
1 . . .

∣∣∣Vti

∣∣∣}, l ∈
{
i + 1 . . .

∣∣∣Vti

∣∣∣} do

11: Insert the edge connecting vk ∈ Vti and vl ∈ Vti in E

12: end for

13: end for

14: Insert v (qI) = p (qI) and v (qG) = p (qG) in V

15: Determine the triangles tI and tG which contain p (qI) and

p (qG), respectively

16: Insert edges in E that connect v (qI) and v (qG) to the vertices

belonging to VtI
and VtG , respectively

17: Q = ShortestPath
(
G(V, E), v (qI) , v (qG)

)
18: for all k ∈ {2 . . .m − 1} do

19: θQ,k = atan2
((

yQ,k+1 − yQ,k
)
,
(
xQ,k+1 − xQ,k

))
20: end for

21: return Q

T = {t1 . . . tn} and an n × n adjacency matrix A belonging to

them. Based on the triangular decomposition a roadmap (topo-

logical graph) G = (V, E) is constructed. The set of graph ver-

tices V contains the median points of the adjacent triangle edges

and the initial and goal positions. The set E of graph edges con-

sists of straight segments connecting vertices belonging to the

same triangle. The initial and goal positions are connected to

the graph vertices belonging to their containing triangle. Edges

are weighted by their Euclidean length. Finally, a shortest path

search is performed using Dijkstra’s algorithm [31]. The short-

est path is represented by a 3 × m matrix Q, where every column

corresponds to a configuration qQ,k =
[
xQ, k, yQ,k, θQ,k

]T
, k ∈

{1 . . .m} representing corner points. The orientation (third el-

ement of qQ,k) of corner points between qQ,1 = qI and qQ,m = qG

is determined by the angle of the path segment following them.

An example can be seen in Figure 4. The triangle boundaries

are drawn by thin solid lines, the dashed line shows the roadmap

and the shortest path in the roadmap is depicted by a strong solid

line.

The resulting path is used for guiding the local planner de-

scribed in Section 4. It is appropriate for this purpose because it

goes far enough from obstacles (although it is not optimal with

respect to obstacle distance). This property is ensured by the

path construction method. Since the triangles are spanned by

corner points of obstacles, the path consists of line segments

connecting midpoints between obstacle corners and being com-

pletely in the interior of the free space.

6 Overview of the Planning Algorithm

The point of our nonholonomic planning algorithm is the iter-

ative execution of the local planner module, guided by the pre-

liminary global path. To avoid confusion in the notation, let us

use qI and qG for the initial and goal configurations of the global

planning query. Let us denote the configurations qI , q′
I
, q′

G
and

qG of a local path by qIL, q′
IL

, q′
GL

and qGL, respectively.

An important property of the planning algorithm is that it does

not force the final path to go through intermediate corner points

of the preliminary path. This is achieved by a slight modifi-

cation of the LPM described in Section 4. Instead using local

S CS/CCS paths between intermediate points, the last straight

segment is omitted and the next local path is started at the inter-

mediate configuration q′
GL

of the current local path. We do this

because it is not important to traverse the intermediate corner

points of the preliminary path at all, just to travel along the lines

spanned by the path segments. The only exception to this is the

case when the local goal configuration qGL is equal to the global

goal qG. Thus in fact the resulting feasible global path consists

of several S C/CC paths and one final S CS/CCS path. For this

reason we denote the local paths by S C(S )/CC(S ) in the sequel

to emphasize that in most cases the last straight segment has not

to be added to the final path. Note that the local planner module

always computes the whole S CS/CCS path (collision detection

and length optimization occurs for the three-segment version)
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Fig. 5. Execution of the planning algorithm (a) Step 1: qIL = qI , qGL =

qQ,5,(b) Step 2: qIL = qQ,5 (updated), qGL = qG

and the last S segment is cut away afterwards.

6.1 The Planning Process

The planning process is described by Algorithm 3 and an ex-

ample is shown in Figure 5 for the situation already seen in Fig-

ure 4. The final path λ f inal is represented by a 6 × ` matrix,

where each column represents a single S or C path segment

λk =
[
qT

k
, ρk, ∆θk, dk

]T
, k ∈ {1 . . . `}, where qk is the starting

configuration of λk, ρk is the radius (ρk = ∞ in case of S ), ∆θk is

the change in the orientation and dk is the travel distance along

the path segment. The latter is given by

dk =

 ρk∆θk, if λk is C,∣∣∣p (qk+1) − p (qk)
∣∣∣, if λk is S ,

(10)

A local path λlocal is represented by a 6 × 3 matrix with the

same meaning of columns. The local path without its last S seg-

ment (without the last column in the matrix representation) is

denoted by λ∗
local

. If a new local S C(S )/CC(S ) path is found

during the execution of the algorithm, it is simply appended to

the existing path by adding the columns of λ∗
local

or λlocal to λ f inal.

If a local path is found that ends at some intermediate config-

uration qQ, j of the preliminary path, then qQ, j is replaced by

q′
GL

(the final configuration of λ∗
local

) and the next local plan-

ning step starts here (see line 11 of Algorithm 3). It can be seen

in the example in Figure 5a. that the last S segment of the local

path would cause an unnecessary reverse motion hence it makes

sense to continue the planning process from q′
GL

instead of qGL.

The planning algorithm strives to found a path consisting of

the least possible number of segments. For this reason always

the global goal configuration qG is chosen first as local goal for

the LPM. If a solution is found, the planning process terminates

and returns the final path. If there is no solution, then a new

local goal is chosen from the preliminary path by halving the

number of remaining segments (line 18 of Algorithm 3). In the

example depicted in Figure 5 the final path was obtained by two

consecutive local paths. Since qG was not reachable from qI

(the LPM reported failure), qQ,5 was chosen as the next local

goal because there was 8 remaining segments in the preliminary

path and qQ,5 was at the end of the fourth segment. Since a

CC(S ) solution was found to qQ,5 (Figure 5a), it was updated to

qQ,5 = q′
GL

and the local planning was initiated from here with

qG as local goal again (Figure 5b). Though the planning process

was guided by the preliminary path, the resulting final path has

only one common configuration with it (qQ,5), except qI and qG.

Algorithm 3 Final feasible path planning

1: Q =
[
qQ,1 . . . qQ,m

]
= PreliminaryPath (Cobs, qI , qG)

2: Initialize λ f inal = ∅, i = 1, j = m

3: loop

4: Set qIL = qQ,i and qGL = qQ, j

5: if λlocal = LPM (Cobs, qIL, qGL) exists then

6: if qGL = qG then

7: λ f inal = append
(
λ f inal, λlocal

)
8: return λ f inal

9: else

10: λ f inal = append
(
λ f inal, λ

∗
local

)
11: Set qQ, j = q′

GL

12: Set i = j and j = m

13: end if

14: else

15: if j − i = 1 then

16: return FAILURE

17: else

18: j =
⌈ j−i

2

⌉
+ i

19: end if

20: end if

21: end loop
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Fig. 6. Test scenario 1: min
(
η (q)

)
= 2.667, η (Γ) = 20 (a) Cell decomposi-

tion, roadmap and preliminary path, (b) Resulting path

6.2 Simulation Results

The proposed algorithm was tested in simulations for environ-

ments containing narrow corridors. It proved to be a reliable and

useful algorithm in the sense that it produced reasonable paths,

similar to the ones a human driver would obtain.

Figure 6 shows a scenario where three narrow lanes have to

be traversed to reach the goal. The wider regions in the upper

and lower left corners can be used for maneuvering. The width

of these is 1.5m thus the maximum value for Rmax in these areas

is 0.75m. The width of the corridors is 0.2m thus Rmax ≤ 0.1m

inside them. The minimum turning radius is set to ρmin = 1m

hence the local narrowness (6) is not less than 2/0.75 = 2.667

for all q ∈ C, which means that the environment is "very narrow"

everywhere. The global narrowness of the planning query (7)

is η(Γ) = 20 according to the narrow corridors. The resulting

path strongly deviates from the preliminary path in the wider

areas, which is a reasonable and necessary choice that ensures a

successful arrival at the goal.

Another test scenario is depicted in Figure 7. In this case

a more complex environment was chosen with several bottle-

necks and wider regions. The maximum of Rmax is 2m in the

wider areas, and Rmax ≤ 0.25m in the corridors. Two results

are presented, for different turning radius limits. In Figure 7a

ρmin = 2m which results in a local narrowness η(q) ≥ 2 and a

global narrowness η(Γ) = 8. Hence this environment and plan-

ning query can be designated as “very narrow”, similar to the

previous example. The preliminary path consists of 13 segments

and the planner found a reasonable solution consisting of 6 lo-

cal S C(S )/CC(S ) paths. Perhaps the only difference between

this and a solution obtained by a fictitious human driver would

be that he would not prefer backward motion in long corridors.

Nevertheless, this is a normal behavior since backward motion

is not penalized in the algorithm. Another case with a relatively

small ρmin is depicted in Figure 7c. The turning radius is allowed

to be as little as 0.5m which enables direct U-shaped turns at the

end of the corridors. As can be seen, the algorithm exploited

this opportunity and returned a path that contains some of these

sharp turns.

6.3 Complexity and Completeness

The computational complexity of the proposed algorithm is

determined by different things. The algorithm can be divided in

two main phases: the preliminary planning and the approxima-

tion (iterative local planning) parts. The complexity of both is

examined in the sequel.

The Delaunay triangulator algorithm has a complexity of

O(N log N), where N is the number of obstacle vertices [29].

It can be easily derived from Euler’s polyhedron formula that

the number of triangles in any triangulation of N points is

M = 2N − 2 − b, where b is the number of points being on

the convex hull of the point set. This value is an upper bound in

case of constrained Delaunay triangulation. If the environment

is rectangle-shaped (b = 4) then M ≤ 2N − 6. It can be derived

similarly that in case of b = 4 the number of triangle edges is

S ≤ 3N − 7. The roadmap for the preliminary path planner is

constructed of the midpoints of the triangle edges and the ini-

tial and goal positions thus the number of roadmap vertices is

|V | = S + 2. Since a subset of roadmap edges are connecting

vertices belonging to the same triangle and every triangle has
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Fig. 7. Test scenario 2. (a) Cell decomposition,

roadmap and preliminary path (b) Resulting path in

case of ρmin = 2m, min
(
η (q)

)
= 2, η (Γ) = 8, (c)

Resulting path in case of ρmin = 0.5m, min
(
η (q)

)
=

0.5, η (Γ) = 2
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maximum three vertices, the number of these roadmap edges

cannot be greater than 3M. There are at least four “outer” trian-

gles at the boundary of the environment which have maximum

two roadmap vertices and thus only one roadmap edge. For this

reason the maximum number of edges can be lowered to 3M−8.

The initial and goal vertices are connected to the vertices be-

longing to their containing triangles, which adds maximum 6

new edges to the previous amount. Hence and upper bound to

the number of roadmap edges is |E| ≤ 3M − 2. The best known

worst-case complexity of Dijkstra’s shortest path search algo-

rithm is O
(
|E| + |V | log |V |

)
[32], which is O(N log N) because

both |E| and |V | are O(N) according to the above calculations.

Thus the preliminary global planning algorithm is O(N log N).

The local planner module samples the free configuration

space uniformly and calculates a local path for each sampling

point (where the sampling point itself is the position of the

intermediate configuration q′
I
). A local path through a given

sampling point can be computed in constant time and the col-

lision check requires 3N time because intersections of three lo-

cal path segments with N obstacle boundary segments has to be

checked. If we use a grid-based sampling with kx and ky sam-

ples along the x and y axes, then the complexity of the LPM

becomes O(kxkyN). The number of edges in the preliminary

path is upper bounded by the number of vertices in the roadmap

which is O(N). For one local initial configuration qIL the local

goals of the LPM are selected by halving the number of remain-

ing preliminary path segments. This causes an O(log N) upper

bound on the number of trials until a local path is found or fail-

ure is reported. Since the number of preliminary path edges is

O(N), the worst-case number of LPM exectuions is O(N log N).

This yields an O(kxkyN2 log N) overall worst-case complexity of

the approximation phase. Since this outweighs the preliminary

planning phase, it can be stated that the worst-case complexity

of the whole planning algorithm is O(kxkyN2 log N).

The algorithm does not verify the completeness property. Sit-

uations can be constructed where it fails to obtain a solution al-

though it can be shown that one exists. Most of these situations

are related to ill-orientated initial or goal configurations. One

such situation is depicted in Figure 8. If the initial configuration

of the LPM is in the middle of a narrow corridor whose width is

smaller than ρmin (which means Rmax < ρmin/2 and η (qIL) > 4)

and the line of the next local goal configuration is parallel with

the corridor walls but the initial orientation is perpendicular

to them, then no S C(S )/CC(S ) path exists that would lead to

qGL. In Figure 8 the boundary case of Rmax = ρmin/2 is depicted

which is the narrowest case for which a solution can be found

with such initial and goal configurations.

Several similar situations can be found but in cases where

the initial and goal configurations are well arranged (e.g. ini-

tial and goal orientations are nearly parallel to the walls as usual

in everyday car-parking and manuvering tasks) we experienced

a great reliability of the planning algorithm.

Fig. 8. A boundary situation where the algorithm almost fails

The chance of finding a solution is influenced by the reso-

lutions kx and ky as well. We experienced that in case of long

narrow corridors a solution could be found reliably if the corri-

dor width was not smaller than 3 ·max(∆x,∆y), where ∆x and

∆y stand for the grid units in x and y directions, respectively.

7 Conclusions

A novel approach to path planning for a point robot with car-

like kinematics was presented in this paper. The planner obtains

a feasible path as a concatenation of S C(S )/CC(S ) local paths.

A preliminary global geometric path is planned in advance by

triangular cell decomposition of the free space, which guides the

local planner module to find goal-directed local feasible paths.

The planning algorithm has some limitations which motivate

further work in this topic. The most important one is the need

for extending the algorithm to polygonal vehicle shapes. An-

other issue of the current implementation is that local intermedi-

ate goal orientations θ
(
q′

GL

)
obtained by the LPM are not forced

to coincide exactly with θ (qGL) just to be parallel to the line

of qGL. This means that both orientations θ
(
q′

GL

)
= θ (qGL) and

θ
(
q′

GL

)
= θ (qGL) + π are accepted. This can cause long back-

ward motions, and in addition to that a final orientation opposed

to the original qG of the planning query is possible as well.

Since the LPM looks for the shortest one among the candidate

S C(S )/CC(S ) paths, this can result in solutions that lead the

robot quite close to obstacles (such path segments can be seen

e.g. in Figure 5 and Figure 7). Solutions with more safety could

be obtained with an LPM maximizing the path clearance instead

of minimizing its length. Of course, this would result in higher

computational complexity.

Another direction of future work is the extension of the pro-

posed method to more realistic car models. While the LPM

presented in this paper generates feasible paths for the simple

kinematic model (3), these paths are not feasible for a real car,

since (3) allows an abrupt change in the steering angle. In order

to respect the limited steering rate of real cars, continuity of the

path curvature and an upper bound on the curvature derivative

have to be ensured. This can be accomplished by incorporating

continuous curvature path segments, e.g. clothoid arcs into the

set of path primitives of the local planner module.
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