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Abstract

This paper presents a carrier phase differential GPS tech-

nique for vehicle navigation. The orientation and position of

the vehicle can reliably be calculated by the proposed solutions.

The developed methods are aided by inertial and magnetic sen-

sors. They are designed for dead reckoning and to handle phase

slip. Therefore these solutions can be applied when the set of the

available satellites changes frequently. Extended Kalman filters

perform state estimation. The paper also presents the low-cost

hardware/software architecture of the navigation system. The

effectiveness of the methods have been proven in real car and

flight tests.
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1 Introduction

The outdoor navigation of autonomous vehicles has attracted

the focus of the researchers and engineers in the recent decades.

A variety of sensors have been applied to determine the state of

the moving vehicle. However, the most challenging problem is

the numerous unknown characteristics of the outdoor environ-

ment, which influence navigation.

Unmanned outdoor vehicles need an orientation and position

determination system. To perform precise maneuvers, e.g. to

avoid obstacles or move among corridors, a subdecimeter pre-

cision in position and subdegree precision in orientation are re-

quired.

Several different types of navigation approaches have ap-

peared. A typical one is the vision based navigation. This so-

lution makes it possible to determine the position of the vehicle

relative to an object which can be seen by the camera. There-

fore, it is suitable for local navigation. Because of the variety

of environment, even the best vision based solutions need some

restrictions in the area of application. On the other hand, it is

usually easy to determine the orientation of a vehicle.

An other common sensor in outdoor navigation is the GPS.

This solution makes it possible to calculate the position of a ve-

hicle in a global coordinate system. The disadvantage of simple

GPS receiver based solution is that the high error of the calcu-

lated position makes it unsuitable for certain applications.

More precise position result can be obtained by using the car-

rier phase differential GPS technique. In this approach, at least

two receivers should be used with carrier phase measurement

option. The wavelength of the L1 carrier signal of the GPS sys-

tem is about 19 centimeters. The phase-locked loops inside the

receiver can measure the actual phase with less than one cen-

timeter precision. Therefore, subdecimeter precision in posi-

tioning is possible.

Because of the high precision, this technique is very popular

in some applications, for example in geodesy [18], in harvesting

[2] or in aerial transportation [7].

The common property of these fields is that the open sky view

for the GPS antennas is large. Therefore, in the time of opera-

tion, there are enough satellites in view for reliable position de-
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termination. However, in other applications, where the set of

the usable satellites changes frequently or the number of these

satellites can go under a limit, it is hard to present a reliable

method.

Another challenge is the integer ambiguity problem [11],

[16],[8]. Its mathematical form is described in Appendix 7.1.

The typical methods for solving this problem are the LAMBDA

[17] and the (modified) MLAMBDA [4].

There are some practical problems with the typical carrier

phase measurement based positioning solutions:

1 They require the knowledge of the correlation matrix of the

carrier phase measurements [17], [15].

2 The LAMBDA based methods need some minutes to produce

reliable result if the set of visible satellites is changing [3].

3 The typical phase slip detection methods are not real-time,

they apply post-processing methods [16].

The goal of this paper is to elaborate real-time solutions of

the above problems within a low cost hardware/software archi-

tecture, namely

• presenting reliable integer ambiguity resolution algorithm

which can run in real-time, using only single epoch measure-

ment

• solving the phase slip problem in real-time

• quick handling of the change of the visible satellites

• improving dead reckoning capabilities in GPS denied areas

• presenting a multi-modal sensor fusion technique for improv-

ing the real-time characteristics of high-precision GPS posi-

tioning in high-dynamic vehicular applications.

Our method can be divided into two levels of the real-

time framework. First, the orientation is determined using the

onboard GPS receivers and the integer ambiguity resolution

method is aided by the accelerometer and the magnetometer

sensors. This solution is designed for situations where the set

of visible satellites changes frequently.

The second level is the position determination. It involves a

fixed GPS receiver on the ground as a reference station.

Both the orientation and the position calculations apply ex-

tended Kalman filters (EKF), which perform a sensor fusion

based on measurements provided by the receivers and other sen-

sors.

The structure of the paper is as follows. Section 2 gives a

short introduction to the field of the carrier phase differential

GPS based on [3], [8] and [11]. Section 3 describes the orienta-

tion estimation method of the moving vehicle. Section 4 intro-

duces the position determination algorithm. Section 5 presents

the extended Kalman filter based state estimation. Finally, Sec-

tion 6 presents the hardware structure of the system and shows

the experimental results. Appendix A and B describe the ori-

gin of the carrier phase observables and the integer ambiguity

problem, respectively.

2 Baseline geometry and differencing techniques

The simplest arrangement of a differential GPS system con-

sists of two GPS receivers. The geometry of the two receivers

can be seen in Fig. 1. It shows the actual state of the carrier

phase signal at the time epoch t. The two receivers are indexed

with r and s and the index i refers to the ith satellite.

The carrier phase measurement output of a GPS receiver has

usually two components for each satellite. The first component

is an integer number ICPi
r(t) called integrated carrier phase. The

second component is the actual phase measurement ϕi
r(t). If the

phase measurement is represented in wavelength unit then ϕi
r(t)

is a real number in the interval [0...1). The sum of ϕi
r(t)+ICPi

r(t)

is the carrier cycle measurement φi
r(t), described in Appendix

7.1.
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Fig. 1. The geometry of the differential GPS arrangement

Based on Fig. 1 and [11], the length of the propagation path

ρi
r(t) of the satellite signal between satellite i and receiver r is:

ρi
r(t) = N i

r − ϕ
i(t) + φi

r(t) + νi
r(t) (1)

where N i
r is an unknown integer number expressed in wave-

length which is the sum of φi
init,r (see Appendix 7.1) and the

number of carrier cycles between the satellite i and receiver r at

time t0. ϕi(t) is the transmitted satellite signal phase and νi
r(t) is

the measurement error.

The following error model is introduced in [3], [6] and [8]:

νi
r(t) = Ii

r(t) − T i
r(t) + cλ−1(δti(t) − δtr(t))

+ cλ−1(Dr(t) − Di(t)) + µi
r(t) (2)

where Ii
r(t) and T i

r(t) are the ionospheric and tropospheric de-

lays, δti(t) and δtr(t) are the clock errors of the satellite and the

receiver, Di(t) and Dr(t) are the hardware delays of the satellite

and the receiver. Constants c and λ are the speed of light and the

wavelength of the carrier signal. Variable µr(t) is the measure-

ment noise including the multipath effect. According to [3] µr(t)

is normally distributed with zero expected value.

Similar interpretation yields for receiver s:

ρi
s(t) = N i

s − ϕ
i(t) + φi

s(t) + νi
s(t) (3)

νi
s(t) = Ii

s(t) − T i
s(t) + cλ−1(δti(t) − δts(t))

+ cλ−1(Ds(t) − Di(t)) + µi
s(t) (4)
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Let us define the following variables:

∆ρi(t) = ρi
r(t) − ρ

i
s(t) (5)

∆φi(t) = φi
r(t) − φ

i
s(t) (6)

∆µi(t) = µi
r(t) − µ

i
s(t) (7)

β(t) = cλ−1(δts(t) − δtr(t) + Dr(t) − Ds(t)) (8)

If the two receivers are close to each other, it can be assumed

that the tropospheric and the ionospheric error is the same for

the two receivers [11]. Therefore

νi
r(t) − ν

i
s(t) = β(t) + ∆µi(t) (9)

Subtracting (3) from (1) yields

∆φi(t) = ∆ρi(t) − ∆N i − β(t) − ∆µi(t) (10)

The geometry of the two receiver differential GPS system can

also be introduced using a different approach. This is based on

the fact that the distance between the receiver and the satellite is

significantly larger than the distance between the two receivers.

It implies that the propagation directions of the radio signals

received by the two receivers are approximately parallel to each

other. This case is shown in Fig. 2.
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Fig. 2. Geometry of the two receivers

The direction unit vectors between the ith satellite and the re-

ceivers are denoted by ei
r(t) and ei

s(t), respectively. Let us define

ei(t) := ei
r(t) ≈ ei

s(t). The vector between the two receivers po-

sition is x(t), called baseline. From the geometry of Fig. 2 one

can write

∆ρi(t) = λ−1ei(t)
T

x(t) (11)

The satellite direction ei can be calculated using the data

transmitted by the satellite. In the first step the position of the

satellite should be determined using the transmitted ephemeris

data and the algorithm described in [1]. The result will be in the

Earth centered Earth fixed (ECEF) coordinate frame. In the next

step the rough user position is required. Most of the receivers

are able to produce the rough user position in ECEF. If the

receivers produce this information only in longitude-latitude-

altitude form, the transformation of [6] can be used. As the

accuracy of the satellite and user position calculation are in the

range of some meters and the nominal altitude of the satellite

is 20200km [6], the result for ei is precise enough for further

algorithms.

At the end of the calculation ei is described in the ECEF coor-

dinate frame. By substituting (11) into (10), the so called single

difference equation can be formed:

∆φi(t) = λ−1ei(t)
T

x(t) − ∆N i − β(t) − ∆µi(t) (12)

Equation (12) has a satellite independent β(t) variable. There

are solutions which can deal with this variable, like in [3], but

the typical solution to eliminate this unknown variable is the

usage of the double differencing technique [7], [11].

Let the following double differences be defined for satellite i

and j as

∇∆φi, j(t) = ∆φi(t) − ∆φ j(t) (13)

∇∆N i, j = ∆N i − ∆N j (14)

∇∆µi, j(t) = ∆µi(t) − ∆µ j(t) (15)

Ei, j(t) = ei(t) − e j(t) (16)

Forming (12) for satellite i and satellite j and subtracting the

two equations from each other, the double differenced equation

is derived

∇∆φi, j(t) = λ−1Ei, j(t)T x(t) − ∇∆N i, j − ∇∆µi, j(t) (17)

Without the loss of generality, let a master satellite be indexed

by 1. The number of satellites in use is denoted by m. The fol-

lowing notations for the kth measurement epoch will be intro-

duced:

∇∆φk =


∇∆φ1,2(tk)

...

∇∆φ1,m(tk)

 Ek =


E1,2(tk)T

...

E1,m(tk)T


∇∆N =


∇∆N1,2

...

∇∆N1,m

 ∇∆µk =


∇∆µ1,2(tk)

...

∇∆µ1,m(tk)


One can formulate the problem as

∇∆φk = λ−1Ek xk − ∇∆N − ∇∆µk (18)

The left-hand side of (18) can be formed from the measurement

of the GPS receivers. On the right-hand side of the equation

are the unknown baseline x and the time independent double

differenced integer ambiguity∇∆N. According to [3] and [8] the

elements of the measurement noise vector ∇∆µk are normally

distributed and correlated. In a practical case the covariance

matrix of ∇∆µk is hard to define only from the measurements

of ∇∆φk. Therefore methods [5], [15], [17] which require this

covariance matrix usually produce false positive result from a

single epoch measurement.
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3 Orientation estimation with three antenna system

The number of unknown parameters in (18) is m + 2, namely

three components of x and m − 1 components of ∇∆N, but the

number of linearly independent equations is only m − 1. There-

fore, additional information is needed so that (18) can be solved.

One of this additional details can be the integer property of

∇∆N i, j. The classical solutions, like LAMBDA method [17] or

MILES [5] rely on this property only.

In some special cases additional sensors (like inertial or mag-

netic sensors) are present, which can give information to make

the result more reliable. The goal of this section is the determi-

nation of the orientation of a vehicle using carrier phase GPS

measurements. In vehicle navigation there can be additional

sensors on the board. Our method will use the magnetometer

and the accelerometer for the initialization of the integer ambi-

guity resolution. The angular velocity sensor will be used for

the detection of the phase slip problem.

The GPS antennas will be mounted and fixed on the vehicle,

therefore their positions relative to each other are fixed. Hence

the lengths of the vectors between the antennas are also known

constraints.

The arrangement of the sensors and coordinate systems can

be seen in Fig. 3. In this example the vehicle is a car, but it

could be any other type of moving vehicle.

The vehicle movement is assumed to be a short range move-

ment, therefore the reference coordinate frame is chosen as the

local North-East-Down (NED) coordinate system.

X

Y

KB

X(North)

Y(East)Z(Down) KNED

a

mN

GPS2

GPS1

x12

GPS3

x23

Fig. 3. The three antenna structure

3.1 Initialization of the integer ambiguity determination

In Fig. 3 the positions of the three GPS antennas are denoted

by p1,B, p2,B, p3,B and are considered to be known in the body

frame KB. Hence the vectors between the antennas in KB are

also known as x12,B = p1,B − p2,B and x23,B = p2,B − p3,B.

The north direction is measured by the magnetometer and is

denoted by mN . It is assumed that the magnetometer is cali-

brated and the result is corrected with the inclination and decli-

nation angle of the local magnetic field. One possible solution

is described in [13].

Let a be the measurement of the accelerometer in the position

of the origin of KB. It is also assumed that the accelerometer is

calibrated. In a stationary (not accelerating) situation, the mea-

sured vector is the gravitational acceleration directing to the up

direction of KNED.

An approximation for the rotation between KNED and KB can

be given by

R̂B,NED =

[
m

‖m‖

m × a

‖m × a‖
−

a

‖a‖

]
(19)

hence an approximation for x12 and x23 in KNED are

x̂12,NED = R̂T
B,NEDx12,B (20)

x̂23,NED = R̂T
B,NEDx23,B (21)

where index B refers to KB and

x̂12,ECEF = RECEF,NED x̂12,NED (22)

x̂23,ECEF = RECEF,NED x̂23,NED (23)

This means that the initial guess for the double differenced

integer ambiguity ∇∆N at the kth epoch can be

∇∆N̂12 = ∇∆φ12,k − λ
−1E12,k x̂12,ECEF,k (24)

∇∆N̂23 = ∇∆φ23,k − λ
−1E23,k x̂23,ECEF,k (25)

3.2 Determination of RB,NED

At this point the task is to determine the RB,NED rotation ma-

trix using the x12 and x23 vectors measured in the NED coordi-

nate frame. Let’s introduce the normalized vectors in the form

of

x̄12,B =
x12,B∥∥∥x12,B

∥∥∥ (26)

x̄23,B =
x23,B∥∥∥x23,B

∥∥∥ (27)

x̄12,NED =
x12,NED∥∥∥x12,NED

∥∥∥ (28)

x̄23,NED =
x23,NED∥∥∥x23,NED

∥∥∥ (29)

The goal is to find the rotation RB,NED which satisfy the equa-

tions

x̄12,B = RB,NED x̄12,NED (30)

x̄23,B = RB,NED x̄23,NED (31)

Since x̄12,B, x̄23,B, x̄12,NED and x̄23,NED vectors have unit

length, the system of equations has four independent equations.

But RB,NED has only three degrees of freedom, therefore the

problem is overdefinite. Let the angle between x̄12,NED and

x̄23,NED vectors be denoted by αNED and the angle between x̄12,B

and x̄23,B be αB

αB = acos(x̄T
12,B x̄23,B) (32)

αNED = acos(x̄T
12,NED x̄23,NED) (33)

αNED ≈ αB (34)

On the other hand, rotation RB,NED keeps the angle between

the vectors. Hence only a suboptimal solution exists for RB,NED.
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Let RB,NED be represented by three independent parameters ϕ, ϑ,

ψ called roll-pitch-yaw angles. Let εR be used as an error vector

defined by

εR =

 RB,NED(ϕ, ϑ, ψ)x̄12,NED − x̄12,B

RB,NED(ϕ, ϑ, ψ)x̄23,NED − x̄23,B

 (35)

which is a non-linear relationship. To solve this problem nu-

meric optimization methods can be used, the authors used the

Levenberg-Marquard method.

3.3 Searching for the integer ambiguity

In this subsection two possible solutions are shown to deter-

mine the proper ∇∆N.

The first method uses the random sample consensus

(RANSAC) approach [9]. The method neglects one or more

linear equations from (24) and determine the double differenced

integer ambiguity. Then it repeats the ambiguity determination

by neglecting a different equation:

∇∆N1,2

...

∇∆N1,i−1

∇∆N1,i+1

...

∇∆N1,m


=





∇∆φ1,2
k

...

∇∆φ1,i−1

k

∇∆φ1,i+1

k

...

∇∆φ1,m
k


− λ−1



E
1,2
k

T

...

E1,i−1T

k

E1,i+1T

k

...

E1,mT

k


x̂12,ECEF,k


(36)

where the outer brackets on the right side mean the round oper-

ation applied on the components of the real vector.

In this way different solutions are given for ∇∆N1,i. Then that

value is chosen for the proper ambiguity which has the most

frequent occurrence.

The second method starts from the ∇∆N̂12 in (24). First a

search space is defined as⌊
∇∆N̂

1,i
12
− Nthres

⌋
≤ ∇∆N̂

1,i
12
≤

⌈
∇∆N̂

1,i
12

+ Nthres

⌉
(37)

where Nthres can be chosen based on the standard deviation of

the magnetometer and the accelerometer, but in practice in most

cases Nthres = 1 is satisfactory. By this way the search space is

not too large, hence all possibilities can be tested in real-time.

The test criteria is

∇∆N12 =

argmin
∥∥∥∥(λE†(∇∆φ12,k − ∇∆N12, j)

)
− x̂12,ECEF,k

∥∥∥∥ (38)

where the minimum is calculated for every ∇∆N12, j in the search

space and E† denotes Moore-Penrose pseudoinverse.

In practice the two methods can be combined. First the

RANSAC based method is used. In this way a significantly false

carrier phase measurement can be filtered out. In the second step

the search space based method is used, where the center of the

search space is the result of the RANSAC method.

3.4 Handling the phase slip problem

The phase slip occurs as a measurement error between two

consecutive measurement epochs. In this case the GPS receiver

hardware cannot detect one or more zero crosses in the GPS

signal. This means that the carrier cycle measurement for the

given satellite will be incorrect and the difference between the

correct and the measured value will be an integer number of a

half cycle.

Most of the GPS receivers, which are able to measure carrier

phase, have the function to indicate the possibility of the phase

slip, but the amount of the phase slip error is not given by the

receiver. The following algorithm is recommended to determine

the value of the phase slip error, using the angular velocity sen-

sor on the moving vehicle.

Let (18) be described for two consecutive measurement

epochs.

∇∆φk−1 = λ−1Ek−1xk−1 − ∇∆N − ∇∆µk−1 (39)

∇∆φk = λ−1Ek xk − ∇∆N − ∇∆µk (40)

Let us introduce

δ∇∆φk = ∇∆φk − ∇∆φk−1 (41)

and use the fact that for consecutive epochs Ek−1 ≈ Ek and that

µk and µk−1 have the same noise parameters. Subtracting (39)

from (40), the result is

δ∇∆φk = λ−1Ek∆xk − 2∇∆µk (42)

where ∆xk = xk − xk−1

The ∆xk value can be estimated using the measurement of

the angular velocity sensor and the known value of xk−1. The

estimated ∆xk is calculated as

∆x̂k,NED = (RT
B,NED,k−1R(ω)RB,NED,k−1 − I3)xk−1,NED (43)

where RB,NED,k−1 is the rotation between KB and KNED in the

(k−1)th epoch calculated from x12,NED,k−1 and x23,NED,k−1, while

R(ω) is the Rodrigues rotation calculated from the measure-

ments of the angular velocity sensor in the form of

t =
ω

‖ω‖
(44)

α = Ts ‖ω‖ (45)

R(ω) = CαI3 + (1 −Cα)t tT + S α[t×] (46)

where ω is the angular velocity measured in KB and Ts is the

sampling time of the angular velocity measurement. Then an

error value can be formed as

εk = δ∇∆φk − λ
−1Ek∆x̂k (47)
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If the double differenced carrier phase measurement noise µk

is smaller than a quarter of the wavelength, then a phase slip

will cause a significant increase or decrease in εk, and a good

approximation for the amount of the cycle slip value is the

rounded value of εk towards an integer multiple of half cycle

(= 0.5K, K ∈ Z).

3.5 Solution for varying satellite sets

In order to use the baseline determination methods, the dis-

appearance of some used satellites and the appearance of some

new satellites should be handled. This problem implies some

challenges.

To form ∇∆N, a master satellite is also needed. After the

initialization the index of the master satellite is known from the

previous measurement epoch. However it could happen, that the

previous master satellite is not available in the current epoch.

It is also possible that only a few satellites are available, such

that even with a given double differenced integer ambiguity, (18)

cannot be solved. A recommended solution is to estimate the

baseline using additional sensors.

When a new satellite appears it should be included into the

set of the used satellites. In this case the new double differenced

integer ambiguity should be found regarding the new satellite.

The flow chart of the orientation determination can be seen in

Fig. 4.

Master satellite
available?

Change master,
recalculate integer

ambiguity

Is enough satellite
available?

Initialization

Calculate baseline
using the previously

known satellites

Cycle slip detected?
Cycle slip
correction

Identify new
satellites, calculate

new ambiguities

Estimate baseline
using additional

sensors
(dead reckoning)

Yes

Yes

Yes

No

No

No

Fig. 4. Flowchart of the baseline determination

3.5.1 Determining satellite availability

The answer for the question "is there enough satellite for x12

and x23 determination" depends on whether (18) can be solved

when ∇∆N is given. Two requirements should be met.

Requirement 1 There are three unknown variables in the

baseline, therefore at least four satellites are needed.

Requirement 2 For the determination of x, the inverse or the

pseudo-inverse of Ek should exist and its numeric value should

be determined precisely. Therefore if the number of the avail-

able satellites is higher than four the condition number of Ek (i.e.

the quotient of maximum and minimum singular values) should

also be under a limit.

3.5.2 Change the master satellite

Let ∇∆N be given from the (k − 1)th epoch and the master

satellite is the ith one. This master satellite will disappear in the

next epoch, therefore ∇∆N should be recalculated. Let satellite

j be the new master satellite. It comes from (14), that

∇∆N j,l = ∇∆N i,l − ∇∆N i, j (48)

therefore every component of the new ∇∆N can be calculated.

3.5.3 Handle new satellites

Let m + 1 be the index of the new satellite. Then the task is to

determine the double differenced integer ambiguity for the new

satellite. An initial approximation can be the following:

∇∆N̂ i,m+1 =

[
∇∆φi,m+1 − Ei,m+1T

x̂

]
(49)

where i is the index of the master satellite and x̂ is the base-

line calculated using other satellite measurements or using dead

reckoning. The goal is to find the reliable initial ambiguity. The

recommended method is to use the second method in Subsection

3.3. In this case the integer ambiguity is already known for the

first m satellite. Therefore the search space of (37) is applied

only for ∇∆N̂ i,m+1, thus the computation capacity requirement is

much smaller.

3.5.4 Baseline dead reckoning

When x12 and x23 cannot be determined from the GPS mea-

surement, the simplest solution is to estimate the baseline from

the previous baseline by accumulating the measurements of the

angular velocity sensor. The recursive equation is

xk = RT
B,NED,k−1R(ω)RB,NED,k−1xk−1 (50)

A more intelligent solution is to handle the varying offset of

the angular velocity sensor. This can be achieved by using an

extended Kalman-filter. Let the following discrete nonlinear dy-

namic system be considered as

x12,NED,k = RT
B,NED,k−1R(ω − ωb)RB,NED,k−1xk−1 + νx (51)

ωk = ωk−1 + νb (52)

x12,NED,k,meas = x12,NED,k + zmeas,k (53)
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Defining the input (uk), output (yk), noise (νk) and state variables

(xk) of the system as

xk =
[
xT

12,NED,k ωT
b,k

]T
(54)

uk = ωk (55)

νk =
[
νT

x νT
b

]T
(56)

yk = x12,NED,k,meas (57)

then the system is in a compact form of

xk = fori(xk−1, uk−1, νk−1) (58)

yk = gori(xk, zk) (59)

and an extended Kalman-filter can be applied parallel to the de-

termination of x12 and x23. The case when there are not enough

GPS measurements for baseline determination can be handled

by skipping the update step of the extended Kalman-filter. The

estimation method is illustrated in Fig. 5.

Is baseline calculated?

Initialization

Yes

Prediction
using angular vel.

sensor

Update
using calculated

baseline

Prediction
using angular vel.

sensor

EKF

No (dead reckoning)

Determination of
RB,NED

Fig. 5. Flow diagram of the baseline estimation

4 Precise Position Determination

As the orientation of the moving vehicle is already precisely

known using carrier phase differential GPS technique, the next

task is to determine the precise position of the vehicle. Keeping

the differential approach, an additional GPS receiver should be

introduced. This receiver is on the ground, its position is fixed

and assumed to be precisely known and its name is base station.

The goal of the algorithm is to determine the vector between the

base station and one of the receivers on the moving object. The

arrangement of the set of receivers can be seen in Fig. 6. In this

task the actual values of x12 and x23 are assumed to be known in

both the KNED and KB frames.

The goal is to define the navigation information in the North-

East-Down coordinate system. The property which makes the

simplification in (9) possible is true if the receivers are close

to each other. In practice, the high precision can be achieved

when the moving receivers are not farther from the base station

than approximately 50 kilometers. Therefore a practical choice

can be that the origin of the local NED coordinate system is

the position of the base station and the rotation RECEF,NED is

calculated for the place of the base station.

4.1 Usability of differential sensors

The orientation computation uses the additional onboard sen-

sors to strengthen the result of the carrier phase based orientation

determination. It would be obvious to use these sensors in the

position determination as well. Let us examine the capability of

these sensors.

Because of the offset error of the inertial sensors, they can

produce reliable information only about ∆xk between consecu-

tive measurement epochs. Using (42) and rearranging it for ∆xk

and assuming that Ek−1 ≈ Ek it becomes

∆xk = λ (Ek)† (δ∇∆φk + 2∇∆µk) (60)

The change of the position vector relative to the base station

between an initial measurement epoch and the actual one is

∆x0,k = λ

k∑
i=1

(Ei)
† (δ∇∆φi + 2∇∆µi) (61)

These equations do not contain ∇∆N, hence the information

about the relative displacement has no addition to the double

differenced integer ambiguity. Therefore the inertial sensors on

the board of the vehicle cannot refine the carrier phase based

measurements.

X

Y

KB

X(North)

Y(East)Z(Down) KNED

a

mN

GPS2
GPS1x12

GPS3

x23

GPS BASE

xb1

xb2

xb3

Fig. 6. Structure of the base station, moving receiver approach
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4.2 Phase slip effect in position determination

It is also important to examine the effect of the phase slip on

xb1, xb2 and xb3. Let a phase slip be considered in the jth epoch.

Then using (61) and (42) and some algebraic manipulations the

relative displacement from the initial position yields

∆x0,k = λ

j−1∑
i=1

(Ei)
† (∇∆φi − ∇∆φi−1)

+ λ
(
E j

)† (
∇∆φ j + ∇∆φε − ∇∆φ j−1

)
+ λ

k∑
i= j+1

(Ei)
† (∇∆φi + ∇∆φε − ∇∆φi−1 − ∇∆φε)

+ λ

k∑
i=1

(Ei)
† 2∇∆µi

= λ

k∑
i=1

(Ei)
† (δ∇∆φi + 2∇∆µi) + λ

(
E j

)†
∇∆φε (62)

Hence the phase slip effect occurs as a fix offset, which value

is λ
(
E j

)†
∇∆φε , where the phase slip error in the measurement

is ∇∆φε .

4.3 Multiple antenna based integer ambiguity resolution

The orientation determination solution used multiple anten-

nas on the board of the vehicle. This fact can be exploited in

the position estimation solution as well. Consider the double

differenced equation for xb1, xb2 and x12

∇∆φb1,k = λ−1Ek xb1,k + ∇∆Nb1 + ∇∆µb1,k (63)

∇∆φb2,k = λ−1Ek xb2,k + ∇∆Nb2 + ∇∆µb2,k (64)

∇∆φ12,k = λ−1Ek x12,k + ∇∆N12 + ∇∆µ12,k (65)

Using that xb2 = xb1 + x12 and applying the definition of the

double differenced measurement in (6) and (13) it can be proven

that

∇∆Nb2 = ∇∆Nb1 + ∇∆N12 (66)

where ∇∆N12 is already known from the orientation solution.

There are common solutions for the integer least squares

problem given in (63) and (64). The LAMBDA and the MILES

methods give suboptimal solutions for the problem. Their com-

mon property is that they are search space methods and they give

more than one possible solution vector together with a possibil-

ity value for each solution. The inputs of these algorithms are an

approximated solution for the double differenced integer ambi-

guity vector, called float point solution, and a covariance matrix

characterizing the error of the approximation.

The algorithm for the precise position determination contains

three steps. In the first step the integer ambiguity is determined

separately for xb1 and xb2 using the LAMBDA or the MILES

method (the authors used LAMBDA). For both cases a limited

number of integer ambiguity vectors is selected (called integer

ambiguity set). The authors used 30 possible integer ambiguity

vectors in each set.

In the second step a search should be started for all pairs of

integer ambiguity vectors from these sets and the search criteria

is to satisfy (66). If more than one pair of integer ambiguity

vector satisfy the criteria then that one is selected, which has

the highest combined possibility. If there is no satisfying pair

in the possible solutions, then the method fails and it should be

repeated in the next measurement epoch.

The third step is the determination of the baselines xb1 and xb2

using the LS solution of (63)-(64)

xb1,k = λ (Ek)†
(
∇∆φb1,k + ∇∆Nb1

)
(67)

xb2,k = λ (Ek)†
(
∇∆φb2,k + ∇∆Nb2

)
(68)

4.4 Initialization of the LAMBDA method

The integer least square solutions require an approximated

integer ambiguity and a covariance matrix as input. Our covari-

ance matrix determination method is based on the single receiver

position determination algorithm, described in [10], where the

base equation is

ρ̂i =

√
(xi − X)2 + (yi − Y)2 + (zi − Z)2 + Cb (69)

where ρ̂i is the pseudorange measurement, xi, yi, zi are the com-

ponents of the satellite positions, X,Y ,Z,Cb are the unknown user

position and the clock bias, respectively. Forming the ρ̂i mea-

surements into a ρ̂ vector, a non-linear equation ρ̂ = h(ξ) can be

formed, where the ξ parameter vector consists of the unknown

X,Y ,Z,Cb components. Introducing the residuals

δξ = ξ − ξnom (70)

δρ̂ = h(ξ) − h(ξnom) (71)

H =
∂h(ξ)

∂ξ
|ξ=ξnom

(72)

an iterative algorithm can solve the problem, using the solution

of the

δρ̂ = Hδξ (73)

linear equation in least square sense.

Let pb be the known position of the base station and p1, p2 are

the results of pseudorange based calculation (69)-(73). Then an

approximated floating point solution for the double differenced

integer ambiguity is

∇∆Ñb1 = ∇∆φb1,k − λ
−1Ek (p1 − pb) (74)

∇∆Ñb2 = ∇∆φb2,k − λ
−1Ek (p2 − pb) (75)

As it is shown in [10] the covariance matrix of the δξ residual

is

E
〈
δξ(δξ)T

〉
= σ2(HT H)−1 (76)

where σ is the standard deviation of the pseudorange measure-

ment and E 〈〉 is the notation of the expected value. Let Rρ be
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the upper-left 3× 3 submatrix of σ2(HT H)−1, describing the co-

variance of the position measurement.

This covariance matrix can be used to form the covariance

matrix of the uncertainty of the floating point integer ambiguity

solution in the form of

Rφ = λ−1EkRρ (77)

It should be noted that the GPS receivers produce the compo-

nents of the E
〈
δξ(δξ)T

〉
in the form of horizontal dilution of pre-

cision (HDOP) and vertical dilution of precision (VDOP) [10],

defined as

HDOP =

√
trace(Rρ,2×2) (78)

VDOP = Rρ,3,3 (79)

where Rρ,2×2 is the upper-left 2 × 2 submatrix of Rρ and Rρ,3,3 is

the lower right component of Rρ. If the computation capacity of

the algorithm is important, then the position output of the GPS

receiver can be used as approximated position and the calcula-

tion of the matrix H can be avoided by using an approximation

for Rρ:

R̂ρ = blockdiag

(
HDOP2

2
,

HDOP2

2
, VDOP2

)
(80)

5 Precise position estimation

The result of the orientation determination in section 3.5.4 is

the RB,NED,k orientation matrix. The angular velocity sensor and

the magnetometer was used frequently in the estimation. The ac-

celerometer measurement was required only in stationary situa-

tion during the initialization. Therefore it was enough that these

sensors measure in a vehicle fixed coordinate frame, whose axes

are parallel to the KB frame’s axes.

During the position estimation, the accelerometer sensor will

also be frequently used, therefore its position should be known

in KB. Let pIMU be this position. Let the position of the first and

second GPS receivers be denoted by p1,B and p2,B respectively.

The goal of the method is to define the position and the velocity

of the origin of KB, these variables are denoted by pNED and

vNED. Vector pNED is defined relative to the position of the base

station. The estimation is based on extended Kalman filter.

5.1 Kinematic model formulation

The continuous time kinematic model of a moving vehicle is

v̇IMU,NED = RT
B,NED(a + ab) −


0

0

−g

 + νa (81)

ȧb = νb (82)

ṗNED = vIMU,NED − RT
B,NED(pIMU × ω) + νv (83)

where vIMU,NED is the velocity of the accelerometer sensor in

KNED, a is the measured acceleration, ab is the accelerometer

offset, g is the gravitational acceleration and ω is the offset com-

pensated angular velocity. These equations form a nonlinear re-

lationship in the form of ẋ = fpos(x, u, ν) using the notations

x = (vT
IMU,NED, aT

b , pT
NED)T (84)

u = a; ν = (νT
a , νT

b , νT
v )T (85)

The connection between the kinematic model and the GPS

based measurement can be described in two ways, depending

on the capability of the GPS receiver.

Option 1 The simpler solution is when the GPS receiver

does not provide Doppler measurements. In this case only the

double differenced phase measurement is available. This can be

used in the form of

∇∆φb1,k = λ−1EkRECEF,NED(pNED,k + p1,B) + ∇∆Nb1 + z1 (86)

∇∆φb2,k = λ−1EkRECEF,NED(pNED,k + p2,B) + ∇∆Nb2 + z2 (87)

Option 2 If the receiver is able to provide precise Doppler

measurements, then they can also be used in the state estimation.

A Doppler like measurement is already introduced as δ∇∆φ in

(41). Let the double differenced Doppler measurement be de-

noted by ∇∆D and the approximation relative to δ∇∆φ is

∇∆D ≈
δ∇∆φ

Ts

(88)

Its connection to the kinematic model in discrete time is

∇∆Db1,k = λ−1EkRECEF,NED((p1,B − pIMU) × ω + vIMU) + z3

(89)

∇∆Db2,k = λ−1EkRECEF,NED((p2,B − pIMU) × ω + vIMU) + z4

(90)

Option 1 alone or together with option 2 can form an equation

y = gpos(x, z), where y contains the GPS measurements and z is

the measurement noise vector.

5.2 State estimation

The first step is the discretization of the continuous time

model. The authors used the Euler method. Let the discrete

system be in the form of

xk+1 = fpos,d(xk, uk, νk) (91)

yk = gpos,d(xk, zk) (92)

The state estimation is based on the extended Kalman filter-

ing method using the algorithm in [10]. Using the following

definition:

Ak−1 =
∂ fpos,d

∂x
|x̂k−1

(93)

Ck =
∂gpos,d

∂x
|x̄k
, (94)

the estimation algorithm is
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Time update

x̄k = fpos,d(x̂k−1, uk−1, 0) (95)

Mk = Ak−1Σk−1AT
k−1 + Rv,k−1 (96)

Gk = MkC
T
k (Ck MkC

T
k + Rz,k)−1 (97)

Σk = Mk + GkCk Mk (98)

Measurement update

x̂k = x̄k −Gk(yk − gpos,d(x̄k, 0)) (99)

5.3 Determination of the covariance matrix

It is essential to give a good estimation of the covariance ma-

trices in the Kalman filter, therefore the following method is in-

troduced in our system. Two covariance matrices appear in the

extended Kalman filter algorithm. The first is Rv,k and corre-

sponds to the state vector noise and the second Rz,k refers to the

measurement noise. The values of Rv,k can be originated from

the noise of the accelerometer. Let Ra be the covariance matrix

of the accelerometer. This can be obtained by the analysis of the

measurements in stationary situation.

It is hard to determine the σ variance of the noise of the offset

(bias) part of the state vector, denoted by Rb. In practice, good

result can be achieved, when its elements are one order less than

the elements of Ra.

The last part of the state vector covariance matrix corresponds

to the velocity of the vehicle. Its value in the kinematic model

is determined by the integration of the acceleration. Therefore

an appropriate choice for the Rv covariance matrix can be Rv =

TsRa.

Assuming that the three parts of the state vector are indepen-

dent, the Rv matrix is

Rv = blockdiag (Ra, Rb, Rv) (100)

The measurement covariance matrix can be originated from

the carrier phase and Doppler measurements. The size of Rz is

2(m−1)×2(m−1) in the case of option 1 and 4(m−1)×4(m−1)

in case of option 2. Let the covariance matrix of ∇∆φ be Rφ and

the covariance matrix of ∇∆D be RD, then

Rz = blockdiag
(
Rφ,b1, Rφ,b2, RD,b1, RD,b2

)
(101)

To determine Rφ the following method can be used. The vehi-

cle should stay in a fix position and orientation. The integer am-

biguity and the position can be determined in this situation using

the position determination method in Section 4. Then ∇∆N and

xk is known. The error of the carrier phase measurement is

εφ,k = ∇∆φk − ∇∆N − λ−1Ek xk (102)

then analyzing the measured values the covariance matrix yields

Rφ = E
〈
εφ,kε

T
φ,k

〉
(103)

A similar method can be used to determine RD.

6 System realization and experimental results

During our research a prototype of a data acquisition and sig-

nal processing system was developed. The accuracy and the re-

liability of the system are tested during car movement tests. One

of the future applications of the system will be a project where

the task is the identification of the nonlinear dynamic model of

an airplane based on the estimated states.

6.1 System realization

The structure of the onboard system can be seen in Fig. 7. The

GPS receivers are Ublox LEA-6T modules, with 5Hz sampling

rate and carrier cycle measurement capability. They are also

able to produce a precise GPS clock synchronized time pulse.

This pulse is the base of the time synchronization of the whole

system. An Atmel AT91SAM7A3 processor is responsible for

the synchronized data collection of the sensors. The accelerom-

eter module has an Analog Devices ADXL330 3D acceleration

sensor and the angular velocity sensor is based on three pieces

of Analog Devices ADXRS613. The analog outputs of the ac-

celerometer and the angular velocity sensors are sampled by 24

bit analog-digital converters. The magnetic sensor is a Freescale

MAG3110 module. The inertial and magnetic sensors are cali-

brated using the methods of [12] and [13].

Atmel
AT91SAM9XE

Ublox
LEA-6T

Ublox
LEA-6TAtmel

AT91SAM7A3

Ublox
LEA-6T

Accelerometer Angular velocity
sensor

SD Card

SPI

SPI

I C2

UART

time
pulse

Magnetic
sensor

UART
Zigbee

Fig. 7. Structure of the onboard data acquisition system

The data procession of the onboard system is running on an

Atmel AT91SAM9XE 200MHz fixed point processor using a

soft real-time Linux operating system. An XBee Pro Series 2

module is used for real time communication which is able to

operate in a Zigbee communication network. This module can

easily be replaced with a GSM module in the further develop-

ment.

The structure of the base station can be seen in Fig. 8.

The center of the station is an Olimex L9260 board, containing

an Atmel AT91SAM9XE processor. This board communicates

with the Ublox LEA-6T GPS receiver and transmits data to the

moving vehicle by an Xbee module. Both the onboard module

and the base station are logging the measurement data to SD

cards. Therefore offline procession of the data is also possible.

6.2 Real-time experiments

First test: simple car motion In our first test the orientation

and position determination methods are tested during a planar
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Olimex
L9260 board

Zigbee

SD Card
UART Ublox

LEA-6T

UART

Fig. 8. Structure of the base station

movement of a car. The path of the car can be seen in Fig. 9.

The duration of the movement was two and a half minutes. The

measurements were taken in an urban area.

0
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Fig. 9. Path of the car

First the orientation estimation was performed on the mea-

sured data set. The results can be seen in Fig. 10 and in Fig.

11. During the car movement it is hard to determine the real ori-

entation to produce information to which the calculated results

can be compared. To overcome the problem car motion consist-

ing of straight line sections in horizontal plane were chosen for

which the error can be easily detected. In this case an approx-

imated orientation was also calculated using the measurements

from the magnetometer.
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Fig. 10. Components of the calculated baseline, x12

It can be seen in Fig. 10, that in some cases the GPS based

calculation gives results which are different from the reference

value. The largest amount of error occurs after the 80th sec-

ond. The source of errors is the frequent change of the satellites.

The number of the available satellites can be seen in Fig. 12.

Comparing Fig. 10 and Fig. 12, it can be seen that larger er-

rors occur, as the number of satellites is 4 or less. If there are 4

visible satellite, Ek is quadratic and the baseline determination

problem is not over-determined. This means that the result is

sensitive for an error in the carrier phase measurement. If the

number of available satellites is below 4, the dead reckoning is

in operation.
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Fig. 11. Orientation relative to the North direction
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Fig. 12. Number of satellite in use during orientation estimation

Examining the measurements shows that before the receiver

loses the lock of a satellite, the signal to noise ratio decreases.

This phenomenon causes the errors in the measurements. It can

also be seen that when a larger number of receivers is available

again, the calculated values are close to the reference. In Fig.

11 it can be seen that even in these situations, the error in the

orientation is less than 5 degree which means that the orientation

of the car is still reliable.

It should be noted that in this test the considered number of

satellites is restricted to 6 to meet the real time computation ca-

pacity of perspective applications. In every epoch those 6 satel-

lites were chosen, that had the highest elevation angle. It should

be noted that these satellites were those 6 which have the best

SNR values.

One way to verify the reliability of the method is to examine

the measured length of x12. As receiver 1 and 2 are fixed to the

roof of the car, it is known that the real baseline length is 1.21

meters. The measured values are shown on Fig. 13.

The result of the position estimation can be seen in Fig. 14.

The detailed zoom of the lower part of Fig. 14 shows the effec-

tiveness of the state estimation. The GPS measurements have

200ms sampling time and the IMU measured with 10ms sam-

pling time. This means that between two consecutive GPS mea-

surements only the time update part of the Kalman filter (95)-

(98) was used. Hence during 200ms, the state estimation is

based on only the IMU. It can be seen in Fig. 14 that at the

end of every 200ms long period, the estimated position changes

smoothly after every GPS measurements.
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Fig. 13. The measured value of x12 during car movement
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Fig. 14. The estimated position and a detailed zoom which shows the

smooth result between the GPS measurements

During this test the Option 1 solution of Section 5 was used.

The covariance matrix determination is the method in Sec-

tion 5.3. The variances along the axes of the accelerometer

are calculated from stationary measurements. The results are

σX = 0.00096 m2

s4 , σY = 0.00103 m2

s4 , σZ = 0.0011 m2

s4 . Hence

a practical choice for Ra is Ra = diag([10−3, 10−3, 10−3]).

Based on Section 5.3 Rb = diag([10−4, 10−4, 10−4]) and

Rv = diag([10−5, 10−5, 10−5]).

The variance of a single channel carrier phase observable is

measured in stationary state. The result is σφ = 0.89 · 10−4. The

choice for Rφ was Rφ = diag([10−4, . . . , 10−4]).

The error of the position estimation can be formed as

εk,est = x̂k,7:9 − xb1,k (104)

where x̂k,7:9 is the estimated position elements of (84) and xb1,k

is the precise position measurement. This error value can be
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Fig. 15. Position estimation error during car movement

calculated when xb1,k is available. The horizontal error is shown

in Fig. 15.

Second test: complex car motion The second test involves

a more complex planar movement with car in an urban area. It

already contains more turns than the first test. In this case the

availability of the GPS signals was also restricted, 20.5% of the

whole time of the experiment should be navigated based only on

the IMU. The path of the movement can be seen in Fig. 16.
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Fig. 16. Path of a complex urban area movement

If the coordinate frame of the car is defined as on Fig. 3 then

the X axis of KB is the heading direction as well. The slipping

angle of a car is defined as the angle between the heading di-

rection and the direction of the velocity. If the car movement is

planar and straight, the side slip angle is negligible [14].

The place of the second experiment is chosen as it contains

straight line segments. The velocity of the car is a direct output

from the Ublox LEA6-T GPS receiver. During the car move-

ment this information is collected and the direction of the veloc-

ity is used as a reference in the actual test. The resulted orienta-

tion and the difference from the reference value is shown in Fig.

17.

Fig. 17 presents also the time periods when the GPS signals

are unavailable. One can see that this situation can occur fre-

quently in an urban area. After each dead-reckoning period the

recalculation of the integer ambiguities are necessary. Therefore

it is important that our algorithm can determine the ambiguities

from a single measurement epoch within 0.2 seconds.

The length of the baseline is also compered to the real value.

This length is shown in Fig. 18. In this experiment the vector

x12 was 1.18 meters long.
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Fig. 18. The length of x12 during the second test

Third test: long time car motion The third experiment ver-

ifies the long time reliability of the system. In this case typ-

ical traffic situations were tested during an about 110 km and

100 minutes long movement. The path contained crowded ur-

ban areas, smooth maneuvers in traffic, hilly areas (non-planar

movement) and high speed road movements as well. The speed

profile of the movement can be seen in Fig. 19. In this case

30.9% of the whole time was in a GPS denied area.

During the test the length of x12 was measured and compared

to the real 1.18 meters value. The measurement result can be

seen in Fig. 20.

Forth test: airplane motion The next experiment is con-

nected to one of the future applications of our system. The future

task is to determine the nonlinear dynamic model of a sail-plane.

One of the first steps of this project is the determination of the

position and the orientation of the aircraft.

In this test our system was attached to the body of a sail-plane

and a low-altitude flight was performed. The path of the plane

can be seen in Fig. 21.
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Fig. 19. Speed of a car during the long time test
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Fig. 20. Length of x12 during the long time measurement

After calculating RB,NED, the orientation is represented by

RPY angles on Fig. 22.

7 Conclusion

This paper presents a solution to precise GPS based orienta-

tion and position determination for moving vehicles. The main

problem of the carrier phase based GPS methods is the integer

ambiguity determination. In the case of the orientation deter-

mination, this problem is solved using additional sensors of the

vehicle. On the board of the moving body three GPS antennas

are present. If the integer ambiguity was determined, the ori-

entation of the vehicle can be calculated. An iterative approach

was presented for solving the integer ambiguity problem, which

meets the requirements of real-time expectations.

In the case of the position determination it is proven that the

inertial sensors have no additional information for the integer

ambiguity solution. The method presented here uses the classi-

cal LAMBDA algorithm to solve the integer least squares prob-

lem, but advantage is taken of the multiple receivers on the mov-

ing body. This way, a more reliable solution has been obtained

for the integer ambiguities.

For each of the orientation and position parts of the calcula-

tions, extended Kalman filter based state estimators have been

used to smooth the GPS based measurements and to provide

sensor fusion based on measurements of the inertial sensors and

GPS. The paper also presents the low-cost hardware/software

architecture of the navigation system. The presented methods

are tested in real environment.

The advantage of the algorithms is that the integer ambiguity

can be resolved using measurements from only one epoch. This

means that the solutions can be initialized fast and are capable

of switching back from dead reckoning to normal operation very

quickly.
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Fig. 22. RPY orientation of a sail-plane during the flight

7.1 Future work

The presented experimental results show the effectiveness of

the developed methods, however sometimes measurements with

larger error occur, especially when the number of the available

satellites is low. Methods are needed to identify these situations

and further improve the properties of the navigation system. Im-

portant new research direction is the estimation of the angle of

attack and the sideslip angle of aerial vehicles and their correc-

tion by the wind effect.

Appendices

A. The carrier phase observables

This article uses GPS receiver which has L1 frequency mea-

surements only. In this case the nominal frequency of the incom-

ing signal is fN = 1575.42MHz. Because of the movement of

the satellite and the receiver the measured frequency is affected

by the Doppler effect. The difference between the measured and

the nominal frequency is called Doppler frequency shift [11] and

denoted by fD.

The carrier cycle measured by receiver r for the ith satellite

signal is

φi
r(t) = φi

init,r +

∫ t

t0

fD(τ)dτ (105)

where φi
r(t) is the measurement output of the receiver, φi

init,r is a

random integer number relating to the initialization of the phase

locked loops (PLLs) of the receiver and t0 is the time instant

when the PLLs lock the incoming signal. The measurement out-

put is assumed to be in wavelength unit.

B. The integer ambiguity problem

The integer ambiguity problem is originated from the fact that

two carrier waves cannot be distinguished from each other by the

receiver. Therefore an integer number of wavelength ambiguity

appears in the distance measurement between the receiver and

the satellites. This problem leads to the integer least squares

problem, whose mathematical form is

y = Ax + BN x ∈ R3 N ∈ Zm−1 (106)

where x is an unknown position vector, N is an unknown vector

of integers called integer ambiguity, y is a measurement vector

from the GPS receiver, m is the number of visible satellites and

A and B are known real matrices, respectively. Equation (18) in

Section 2 belongs to this type of mathematical problems.

There are some common suboptimal solutions for this prob-

lem, the popular ones are the LAMBDA method [17] and the

(modified) MLAMBDA method [4]. There are some practical

problems with the LAMBDA based methods. They need some

minutes if the set of the visible satellites is changing (reinitial-

ization) [3]. They also require the knowledge of the correlation

matrix of the carrier phase measurements.

Although there are also methods which can determine the in-

teger ambiguity from a single measurement, but in this case the

number of false positive results is high [15].
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