
Cite this article as: Jenei-Kulcsár, D., Fiala, P. "Piano Soundboard Analysis at Radiated Sound", Periodica Polytechnica Electrical Engineering and Computer 
Science, 67(3), pp. 291–299, 2023. https://doi.org/10.3311/PPee.21181

https://doi.org/10.3311/PPee.21181
Creative Commons Attribution b |291

Periodica Polytechnica Electrical Engineering and Computer Science, 67(3), pp. 291–299, 2023

Piano Soundboard Analysis at Radiated Sound

Dóra Jenei-Kulcsár1*, Péter Fiala1

1 Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of 
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

* Corresponding author, e-mail: dkulcsar@hit.bme.hu

Received: 15 September 2022, Accepted: 31 January 2023, Published online: 18 April 2023

Abstract

The piano is a complex musical instrument consisting of several components influencing vibration and sound production. 

By understanding the sound production mechanism virtual instruments can be created (physics-based sound synthesis) and the design 

and manufacturing of soundboards can be supported (virtual prototyping). Based on previous results published in the literature, 

a  piano model was built and extended by a near field sound radiation model capable for physics-based sound synthesis. In  this 

paper a simplified piano model is presented, including hammer strike and hysteretic felt models, coupled lossy string model and a 2D 

FEM based stiffened plate model for soundboard. This paper contains a parametric study where the soundboard parameters, such 

as its material characteristics and boundary conditions, are modified and their effect on the soundboard's modal behavior and the 

radiated sound is analyzed. Instead of using only musical (qualitative) descriptors, e.g. brightness or coloring, the piano sounds are 

characterized based on standard quantitative descriptors (e.g. harmonic ratio, spectral centroid). It is shown that these descriptors 

are determined by soundboard admittance, string characteristics and position on the soundboard; radiated sound from wooden 

soundboards can be characterized as harmonic for wide range of initial material descriptors; the string position is essential, and the 

perceived sound can differ significantly for different listening positions, even for the same harmonic decay pattern.
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1 Introduction
Mechanical and acoustic modeling of the piano has been 
of great interest for more than a hundred years due to the 
variety of elements from strike to sound radiation. Besides 
the hammer action and strings, soundboards are amongst 
the most widely modelled parts in the sound production 
chain. Their geometry and material properties affect the 
sound quality through inter-string coupling and sound 
radiation mechanism. By understanding the sound pro-
duction mechanism development and manufacturing of 
traditional and experimental soundboards can be sup-
ported (virtual prototyping e.g. [1]) and virtual instru-
ments (e.g. [2]) can be created.

Piano soundboards are complex structures where the 
main resonator (plate) is stiffened and slightly bent with 
ribs on the bottom, while on the upper side bridges are 
installed. The main resonator is traditionally built from 
solid music wood.

The modal behavior of the piano soundboard and 
its influence on tone quality has widely been examined 
(e.g. [3–7]). It is mostly modelled based on numerical 

abstractions (e.g. [8–14]), but some research for (semi)ana-
lytical solutions also exists (e.g. [5, 15–17]). 

The published and widely used material characteris-
tics, frequency response and vibrational properties for 
wood materials are outputs of measurements and struc-
tural models (e.g. [18–24]). Wood choice for instruments 
manufacturing is also affected by geo-cultural and eco-
nomic motives (e.g. [25, 26]), resulting in traditional wood 
species for given instruments. Based on this informa-
tion, wood properties for piano models can be determined 
(e.g. [10, 27, 28]).

To be able to study the soundboard, the present research 
applies a reduced model of the piano that covers the 
sound production chain from hammer strike to the radi-
ated sound. Different elements of the system are modelled 
using diverse (1D, 2D, 3D) approaches. The piano ham-
mer's wooden core, covered by multi-layer felt, is mostly 
modeled as elastic and hysteretic spring [29]. Piano strings 
are made of piano wire, which is a tempered high-carbon 
steel wire having very high tensile strength. The motion of 
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excited strings is complex, but Smith [30] has shown that 
these can be successfully modelled by digital waveguides. 
Bank [31] improved the excitation model so that it can be 
properly applied for the struck strings.

The piano sound is radiated by the soundboard into the 
surrounding acoustic field. Without modeling the room 
around the instruments, resulting sound can be considered 
by a near field sound radiation model, neglecting mul-
tipath propagation and acoustic short circuits. This simple 
model is appropriate to analyze the impact of the piano 
soundboard on the radiated sound.

This paper, besides a brief piano model overview, pres-
ents a finite element model of the traditional piano sound-
board. The material model is based on the generalized 
Hooke's law valid for orthotropic materials. The result-
ing equation of forces and moments is derived from the 
Kirchhoff-Love thin plate theory. The numerical model 
of the geometry is based on the finite element approach, 
applying the master-slave concept in ribbed case. 

Our modeling objective is to determine the modal 
behavior of this structure: how is it affected by the parame-
ter selection, and how does it influence the resulting sound. 
Based on eigenfrequencies, mode shapes and modal damp-
ing coefficients it is possible to consider the modelled 
piano soundboard as terminator and coupling element 
in the string model and as acoustical radiator for near field 
sound synthesis. In both cases predefined filter sets can be 
parametrized and applied using the modal description. 

In the current study on the impact of modifying the ini-
tial mechanical and geometrical parameters is not only 
assessed through the investigation of the soundboard's 
modes, but also on the produced near field piano sound. 
Piano tone is characterized using standard quantitative 
indicators (as decay, harmonic ratio, loudness, spectral 
slope, flux and centroid), instead of qualitative effec-
tive parameters, influenced by psycho-acoustical effects 
(as e.g. brightness, pleasingness and coloring).

In the next sections we briefly introduce the developed 
model and present some simulation results based on a sim-
plified but quasi-realistic piano model.

2 The soundboard model in the piano model
2.1 Piano model overview
The piano model is limited to the hammer-string-sound-
board interaction, terminated by the near field sound radi-
ation model.

2.1.1 The hammer felt model
The input force created by the piano hammer as a function 
of actual displacements is well defined by the second law 
of Newton 
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of the hammer.

The felt force can accurately be modelled as a hyster-
etic spring. The elastic (Ff

el ) and dissipative (Ff
dis) parts of 

the acting force are additive [27]. While the elastic part is 
described by the elastic force model, different dissipative 
force descriptions are published (see e.g. [32–36]).

2.1.2 The string model
The piano string is well approximated by a one-dimen-
sional system, described by the wave equation for trans-
versal displacements 
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where Fs is the excitation force acting on string (because of 
the force continuity it equals Fh ), Ts is the longitudinal tension 
in string, λs is the damping coefficient, μs is the string mass 
per unite length and us is the transversal string displacement.

In the current study, piano strings are modelled using 
the digital waveguide method. The method is based on 
d'Alembert's solution: the propagating waves are formu-
lated as the sum of opposite directed half-waves 

u x t u ct x u ct xs s s, ,� � � �� � � �� �� �  (3)

where c is the vibration propagation velocity and + and − 
denote the half-waves. The discretization of Eq. (3) is 
straightforward and can be found in detail in [30, 37].

The original formulation is not suitable to model the 
hammer-string interaction, because it is known that in the 
point of impact the resulting displacement is incorrect. 
Bank dealt with that phenomenon and proposed a delayed 
force input model (Fig. 1) [31].

Since piano strings are of finite length and clamped 
on both ends, losses along the string and reflections on 
terminations have to be modelled. In the case of digital 
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waveguides all these effects are concentrated in termina-
tions, which are realized through fitted filter sets. In the cur-
rent study all soundboard-connected effects are modelled in 
one termination (marked as HS ) and remaining ones (damp-
ing, pitch-correction, inharmonicity) are combined in the 
other one (marked as HDPI ). The soundboard filters can be 
designed based on the modal description of the soundboard, 
namely on mode shapes (Φ), eigenfrequencies ( ωr ), modal 
masses ( mr ) and modal damping coefficients ( ξr ) [38].

2.1.3 Sound radiation
Since the weak sound of the strings are amplified by the 
soundboard, the sound radiation model is based on the 
soundboard model. In the case of modeling of near field 
sound radiation Rayleigh's integral is a practical choice. 
For the analytical solution the soundboard is embedded in 
a hypothetic infinite perfectly rigid plate, so each point of 
the radiator can be considered as a monopole. The required 
sound pressure function for arbitrary position in the near 
field (P(y,ω)) is the superposition of the pressure field of 
these monopoles of area dS 
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The normal component of the soundboard velocity 
(V(y,ω)) can be derived from the modal description of the 
soundboard. As a result, the transfer function forms a FIR-
filter set of the size of the used soundboard modes.

2.2 The soundboard model
2.2.1 Mechanical properties
Wood is mostly described as an orthotropic material: 
"The longitudinal axis is parallel to the fiber (grain); the 
radial axis is normal to the growth rings (perpendicular to 
the grain in the radial direction); and the tangential axis is 
perpendicular to the grain but tangent to the growth rings." 
([18]:p.5-1). High quality piano soundboards are made of 
spruce (especially Sitka or Norway spruce). The typical 

mechanical parameters (density ρ, Young's moduli Ei , 
Poisson's ratio vij and shear moduli Gij ) for spruce occur 
within the ranges shown in Table 1 ([10, 18, 27, 28]). 

2.2.2 The material matrix
The material model is based on the generalized Hooke's law 
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where σ̂  ij stands for elements of the stress tensor ([σ̂]), 
ε̂  ij for the strain tensor and D̂  ijkl are the elements of the 
material tensor. The symmetry of the stress and strain ten-
sors implies that the Voigt matrix notation can be applied, 
where the material tensor is reduced to a 6 × 6 symmet-
ric matrix D̂ . The elements of the material matrix can be 
derived from mechanical properties ( Ei , vij , Gij ) and it is 
well documented in the literature. To determine the applied 
material matrix (D) a transformation from material basis 
to the reference basis of the geometry must be performed.

To determine forces and moments, the material matrix 
should be reordered to represent separate groups of mem-
brane (m for 1, 2, 6 indices) and transverse shear (s for 3, 
4, 5 indices) stiffnesses. The resulting material matrix has 
the form of a 2 × 2 block-matrix with symmetric sub-ma-
trices ( Dm and Ds ) of size 3 × 3 in the diagonal and zeros 
in the anti-diagonal: 
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2.2.3 The displacement equation
The dynamics of a general elastic volume (Ω), given by 
arbitrary boundary (Γ), made from a general Kelvin-Voigt 
material, is given by the differential equation (balance of 
linear momentum) 
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Table 1 Typical mechanical properties of spruce

Property Metric Min. Max. Model

ρ kg m−3 380 460 380

E1 GPa 10 16 11

E2 GPa 0.47 0.9 0.65

v12 1 0.26 0.44 0.26

G12 GPa 0.66 1.2 0.66

G23 GPa 3.9 4.2 -

Fig. 1 One-string-waveguide with filters
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divergence of the stress vector applying frequency- 
dependent damping matrix H, b contains the body forces, 
ρ is the density and u describes the displacement of the 
volume [39].

In the specific case of piano soundboard, the volume is 
a finite thin plate holding ribs on one side and the bridges 
on the other one. Assuming that the displacement of the 
board (u) is based on the Kirchhoff-Love theorem, the dis-
placement equation can be rewritten in the form 
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The goal is to solve the weak formulation of Eq. (8) 
through discretization of the geometry and function space. 
To discretization the finite element method is used: the 
given volume is split into elements, and the solution for 
displacement equation is approximated by superposition 
of finite number of polynomial base function (N ). Outputs 
of the finite element representation are the so-called mass 
and stiffness matrices (M, K) [39]. 

The damping coefficient in matrix H are of engineer-
ing appraisals or (based on Rayleigh's method) the lin-
ear combination of mass- and stiffness matrices [40, 41]. 
To reduce the size of the resulting matrices, the mas-
ter-slave multi-freedom constraint theory can be applied: 
the plate can be handled as master geometry, the ribs and 
bridges as slave geometries.

2.2.4 The modal description
To determine the modal description, we use the differen-
tial equation equivalent to the week formulation of Eq. (8)
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in which u(x,t) marks the space and time dependent dis-
placement. Since the modes are free vibrations the damp-
ing matrix and the external force f is all zeros. After some 
algebraic modifications and transformation to frequency 
domain, the modal description (eigenfrequencies ( ωk ) and 
mode shapes ( Φk )) can be determined by solving a gener-
alized eigenvalue problem: 

K M� �� � � � � �� �2
0U x, .  (10)

Arbitrary displacement of the board can be approxi-
mated by linear combination, in which mode shapes and 
modal weights form the required base 
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Based on Eq. (16) also the time-dependent displace-
ment for arbitrary excitation can be determined, and so 
the coupled vibration of strings, and the characteristics of 
the radiated near field sound. 

In practice the mode shapes are chosen such that the 
modal mass matrix M � � ��� ��T M  equals identity and 
the modal stiffness matrix K � � ��� ��T K is diagonal. 
The modal damping matrix H � � ��� ��T H  in case of 
Rayleigh's method will also be diagonal, otherwise diago-
nalization methods are widely in use [42]. 

3 Numerical example
The model output is demonstrated on a grand piano like 
geometry (Fig. 2) applying mean extent values based 
mostly on [9]. The board has a uniform thickness of 8 mm. 
Bridges are 3 cm wide and of 3 and 1.75 cm high for bass 
and treble bridges, respectively. Ribs are 2.5 cm wide. 
Their height varies from 0.5 cm near the edge to 3 cm near 
their mid-section. For material properties applied in cur-
rent model see in Table 1 (last column).

The finite element model of the board is represented by 
2D triangle plate elements, while the bridges and ribs are 
modelled using 1D beam elements. The average edge size 
is 5 mm. Displacements of ribs and bridges are interpo-
lated on the triangular mesh using master-slave multi-free-
dom constraints.

The modal damping coefficient of the soundboard is set 
to constant 8% [41], and is considered to be homogenously 
distributed overall the geometry [43].

One string (MIDI60 ≡ C4 ≡ 261.63 Hz) is attached to the 
defined soundboard. The string and hammer parameters 
are estimated based on [27]. The string loss factors are set 
based on Wograms T20 measurements published in [44]. 
The initial hammer velocity is set to 1 m/s. The listening 
position is set to 25 cm distance from the soundboard.

Fig. 2 Example geometry
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In the case of soundboard modeling the question of 
boundary condition is widely discussed, since the special 
condition of the soundboard glued to the rim. It is supposed 
that a complex combination of generally used simply sup-
ported and clamped condition would be able to model the 
behavior more properly without modeling the geometry of 
the rim [7, 45, 46]. For current study the first 1000 eigen-
frequencies are computed. For the clamped case the lowest 
eigenfrequency is at 64 Hz. (Because of the use of modal 
superposition, the values in the analysis are supposed to 
be valid up to about 4 kHz.) As expected, the mode density 
slightly increases for the higher order modes. On the mode 
shapes (Fig. 3) the stiffening effect of the bridges (in the 
middle: displacement mostly on both side of the bridges) 
and ribs (on the right: displacement mostly among ribs) is 
observable. When the boundary condition is modified to 
simply supported the eigenfrequencies are shifted down-
ward (by 20 Hz Fig. 4). 

It is known that in piano soundboard manufacturing 
ribs are aligned perpendicular to the board fiber direction 
(90°). It is very important, not only because of the static 
properties of the soundboard, but of the modal behavior 
as well. In the hypothetical case, when ribs are removed, 
the first eigenfrequency is shifted downward (by 40 Hz), 
in accordance with the dominance of the stiffeners. 
Analyzing the results of several numerical simulations 
it can also be assumed that the modal frequencies decrease 
for higher-order modes, when the stiffener-fiber angle is 
adjusted. This effect is independent from the boundary 
shape and original rib placement. The soundboard is least 
stiff in the case, when this relative angle is 0°. In this case 
the overall change in eigenfrequencies is approximately 

twice as for setting the boundary condition to simply sup-
ported, and a bit more than the half as for removing of ribs 
(bare board Fig. 4). For lower modes the effect of adjust-
ment depends on soundboard shape and rib orientation, 
the first few eigenfrequencies can even increase. 

The computed mode shapes and the bridge position of 
the selected string affect the computed point admittance 
heavily. The peaks and valleys of the admittance curve 
are related to the deviations and quasi stationary parts of 
the mode shapes and their frequencies. For frequencies 
with larger peaks, more energy is dissipated by sound-
board deformations (Fig. 5). For lower modes this effect 
is much larger. For higher order modes the curve will be 
flatter. The cut-off is determined by the frequency, up 
to which the modal behavior is numerically computed. 
The characteristic of the computed curve is in quite good 
match with published measurements for quasi-identical 
position and soundboard [7]. 

The radiated sound pressure pattern is as expected 
(Fig. 6): at the initial part of the pressure-time history 
the effect of hammer strike is observable (prompt sound: 
quick rise and fast decay in attack part), then it fades away 
more slowly (after sound: sustain part [44]). The velocity 
and decay pattern, as well as the amplitude of the attack 
depends on the modal behavior of the soundboard, on the 
bridge position, on the coupling among strings and on the 
listening position in the room. 

In the following paragraphs the radiated sound will be 
analyzed using some standard descriptors. To be able to com-
pare different soundboards and the effect of their modifica-
tions on the radiated sound, quantitative indicators are intro-
duced. A collection of possible indicators is listed e.g. in [47].

Fig. 3 Example modes

Fig. 4 Eigenfrequencies for different soundboards

Fig. 5 Admittance for different bridge positions (clamped boundary)

Fig. 6 Sound pressure MIDI60 for different soundboards



296|Jenei-Kulcsár and Fiala
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 291–299, 2023

Coloring depends on spectral components of the radiated 
sound. These components can be classified in a harmonic 
part determined by the strings (fundamental frequency and 
overtones) and in peaks caused by the modal behavior of the 
soundboard. The ratio of the harmonic part over total energy 
is a possible descriptor (harmonic ratio). On the spectrum the 
string harmonics are dominant, but the effect of the sound-
board modal behavior can also be observed clearly (Fig. 7). 
It is known that besides the fundamental frequency the first 
five harmonics characterize mostly the piano tone [41], so it 
is worth concentrating on these. In case of the same strike 
(same input conditions at the start of our model), sound-
boards can differently amplify the same frequency range. 
In the specific loudness diagram, that visualizes the loud-
ness of spectrum components over the whole simulation, 
this effect is observable, and the first few harmonics seem to 
play a dominant role in the radiated sound. 

Coloring changes over time, because of the different 
intensity, duration and decay of the harmonics. The domi-
nant harmonics and their ratio to total energy determine how 
natural and pleasing the tone will be. Spectral flux defines 
the temporal variation of the spectrum along time and spec-
tral centroid, spread and slope are considered as important 
parameters of timbre characterization [47, 48]. These indi-
cators are the barycenter of the spectrum, its variance and 
the amount of decrease of the spectral amplitude. 

For the current numerical simulations, it can be 
assumed that the harmonic ratio increases over 0.9 at 
about 0.5 s and begins to fall after 5 s depending on the 
overall decay of the sound for a given soundboard (Fig. 8). 

So, the harmonic character can be considered indepen-
dent of adjusting the soundboard within reasonable limits. 
Based on spectral flux, the spectrum is stable over time 
(Fig. 9), and the spectral slope shows quite good match 
with the sound pressure function (Figs. 6 and 10).

Examining the decay pattern of harmonic components, 
one can see that there is a close relationship between the 
admittance and harmonic decay: for frequencies where the 
board mobility is higher the harmonic components decay 
faster (Fig. 11). So, the spectral descriptors and their vari-
ation over time is determined directly by the point mobil-
ity. It is why, when the listening position is shifted the spe-
cific loudness of the sound is changed a bit, but the decay 
velocity of the harmonic components and so the spectral 
centroid, flux and slope (for long-term) remain unchanged. 
The sound pressure level of harmonics at the beginning 
differs, but the spectral centroid for long-term goes to 
the same value. On the contrary changing the position of 
the string along the bridge can cause a significant change 
in the admittance curve (as extreme case Fig. 5) and so in 
spectral components of the radiated sound. Likewise, the 
different boundary conditions and material properties can 
affect the results heavily through the point mobility. 

(a)

(b)

Fig. 7 Radiated sound spectrum (a) and specific loudness (b) MIDI60 
for different soundboards

Fig. 8 Harmonic ratio for different soundboards

Fig. 9 Spectral flux for different soundboards

Fig. 10 Spectral slope for different soundboards
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In the literature there are numerous parameter sets pub-
lished to describe the mechanical properties of soundboard 
wood (in our case spruce). The variance can be explained 
by the natural diversity of wood samples and the different 
environmental conditions. It is worth examining the effect 
of parameter setting.

In first case the soundboard is set to heavier increas-
ing the density from 380 kg/m3 to another valid value of 
460 kg/m3. As expected, the eigenfrequencies are shifted 
downward systematically. The fundamental frequency 
and the first harmonic decay double so fast as in original 
case. But e.g. the third harmonic decays much slower and 
becomes dominant in the long term. That can be seen also 
in spectral centroid (Fig. 12). 

If the soundboard is made from stiffer material (longi-
tudinal Young's modulus set to 16 GPa from 11 GPa) the 
eigenfrequencies (and so the admittance curve) are shifted 
upward. Because of the modification of the admittance 
curve in this case the fundamental frequency decays much 
slower and stays dominant over harmonics in time. 

The differences in spectral damping (Fig. 11) or 
in spectral centroid over time (Fig. 12) can also be clearly 

noticed in the sound samples, as they will be more or less 
bright by time. 

4 Conclusion
A simplified 2D piano model was introduced from strike 
to sound radiation. Instead of dealing only with the modal 
behavior of the soundboard, or with the softly defined 
quality of the piano tone, the near field radiated sound 
for different soundboards was compared using standard 
quantitative indicators.

It was shown that the modal behavior, positions and 
eigenfrequencies of strings determine the characteris-
tics of the near field radiated sound, while modal behav-
ior depends on the geometry, boundary condition and 
selected material parameters. The effect of modification of 
these parameters was discussed. 

The presented simulation results show that although 
the stiffening effect of ribs can be considered as dominant, 
the effect of the fiber orientation of the board cannot be 
neglected completely. The effect of fiber direction on the 
eigenfrequencies is of similar magnitude as e.g., changing 
the boundary condition from clamped to simply supported.

The admittance is related to the modal behavior and 
determines the calculated sound parameters directly, so 
the descriptors of the sound quality can show huge dif-
ferences for different string positions, even for the same 
string and soundboard combination. 

Based on current simulations wooden soundboards result 
in harmonic radiated sounds even for large modifications in 
the initial mechanical descriptors of the applied material. 

It was shown that although the harmonic decay veloci-
ties are independent from the listening position, the loud-
ness and so the perceived sound can differ significantly.

(a)

(b)

Fig. 11 Point mobility on bridge in position MIDI60 with harmonic 
components (grey lines) of MIDI60 string (a), and Decay of their 

harmonic components clamped board (b)

Fig. 12 Spectral centroid for different soundboard materials
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