
Cite this article as: Saleh, E., Shastry, C. "Using Heuristic Search Techniques to Reduce Task Migrations in Peer-to-Peer Volunteer Computing Networks",
Periodica Polytechnica Electrical Engineering and Computer Science, 67(3), pp. 355–367, 2023. https://doi.org/10.3311/PPee.21206

https://doi.org/10.3311/PPee.21206
Creative Commons Attribution b |355

Periodica Polytechnica Electrical Engineering and Computer Science, 67(3), pp. 355–367, 2023

Using Heuristic Search Techniques to Reduce Task Migrations
in Peer-to-Peer Volunteer Computing Networks

Ehab Saleh1*, Chandrasekar Shastry1

1	Department of Computer Science and Engineering, Jain (Deemed-To-Be University), Outer Ring Rd, 560018 Bengaluru,
Karnataka, India

*	Corresponding author, e-mail: ehab.saleh@jainuniversity.ac.in

Received: 20 September 2022, Accepted: 23 March 2023, Published online: 16 May 2023

Abstract

Massive computations in today's computer applications necessitate the use of high-performance computing environments. Unfor-

tunately, high costs and power management must be addressed while operating these environments. Volunteer computing (VC)

enables the creation of a global network of computing devices capable of accumulating their computing power to outperform any

supercomputer. VC refers to the use of underutilized computing resources donated by thousands of volunteers who want to actively

participate in solving common research problems. However, VC systems experience unexpected and sudden loss of connections

between volunteers' computing resources and the main server. In this case, the server must redistribute the work to new devices as

they become available. This process is known as task migration, and it is already used in various volunteer frameworks to address

the unavailability of computing resources. However, there is a tendency to limit the number of migrations since they are considered

a technically complex and time-consuming process. In this paper, we employ heuristic search algorithms to reduce task migrations

caused by loss of connections in Peer-to-Peer volunteer networks by locating an alternate network path to send output files to the

server when the direct link is no longer available. The simulation results demonstrate that using a heuristic search algorithm eliminates

all task migrations caused by loss of connections, resulting in less total execution time and power consumption.

Keywords

volunteer computing, Peer-to-Peer, task migration, Best First Search

1 Introduction
Distributed systems are made up of a massive number of
heterogeneous computing devices that communicate via
different networking channels and collaborate to solve
a common task that requires a lot of computing power and
a large memory capacity that a single device cannot pro-
vide. Since all of these devices' computing resources are
dedicated solely to running their share of the main task, they
must be reliable and available at all times during execution.
As a result, developing such a distributed system can be
challenging and necessitates careful power management.

To address these issues, developers have been inter-
ested in using alternative green computing resources to
perform large tasks by utilising unused computing power
donated by volunteers. This concept of voluntary partici-
pation is called volunteer computing (VC).

VC first appeared in 1996 in the project Great Internet
Mersenne Prime Search [1], which is still attracting volun-
teers to help find new large Mersenne numbers.

The project "distributed.net" [2] is also a distributed
network project that was found in 1997 to employ unused
CPU or GPU resources to perform cryptanalysis tasks
related to breaking RC5 cryptographic algorithm [3] and
OGR-28 [4]. These two applications are still fully opera-
tional and attract volunteers from all over the world.

Several distributed platforms based on the concept
of voluntary participation were developed to provide
the community with low-cost, negligible-power con-
sumption, and high-performance computing environ-
ments, such as Paraweb [5], Manta [6], Superweb [7],
Bayanihan [8], Javelin [9], Javelin 2.0 [10], Popcorn [11]
and Charlotte [12]. All of these platforms are Java-based
volunteer frameworks developed to provide an alterna-
tive distributed computing environment for various par-
allel Java-based research projects. They rely on the con-
cept of using virtual machines in the volunteers' operating
systems. Unfortunately, many of these platforms are no

https://doi.org/10.3311/PPee.21206
https://doi.org/10.3311/PPee.21206
mailto:ehab.saleh@jainuniversity.ac.in

356|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

longer in use for a variety of reasons, including the fact
that some of them require users to keep their web browsers
open all the time to execute the main task, while others do
not support all computing architectures (heterogeneity),
and the broker (middleware) does not support security or
authentication mechanisms.

In 2002, the framework Berkeley Open Infrastructure for
Network Computing (BOINC) was introduced to solve large
scientific problems by employing the simple concept of VC.

BOINC projects have approximately 700,000 active
devices. The total number of processing units is approx-
imately 4 million CPUs and 560000 GPUs, with a total
throughput of roughly 93 PetaFLOPS [13].

Other projects exist and use the BOINC framework,
such as the World Community Grid [14] from IBM (that
was running the project OpenPandemics – COVID-19 to
eradicate the COVID-19 virus.), Rosetta@Home [15] and
some others [13].

The simple concept of VC encourages thousands of vol-
unteers from all over the world to join ongoing volunteer
projects. As a result, the question of how long their devices
can perform the given work arises, and it's likely that cer-
tain devices will be turned off for extended periods of time
or that some of the network's links will be off for whatever
reason, even after performing the allotted work. In this
case, the server must abandon those devices and find new
available ones in order to complete the share of the main
task that has not been completed in a technically complex
and time-consuming process known as "task migration".

Because the loss of connection between volunteers'
devices and their server will prompt this server to initiate
task migration, we propose in this study employing search
algorithms to find an alternative route (path) for sending
output files to the server.

To refer to this process in this paper, we coin the term
"result migration", which can be achieved in a structured
Peer-to-Peer (P2P) volunteer network where each node
(peer) can act as both a server and a client at the same time,
while also utilizing lookup tables such as Distributed Hash
Table (DHT), which is distributed evenly among all nodes
and stores information about all or part of the connected
nodes (IP address, hash value of the work, the available
computing power, etc.).

The rest of this paper is structured as follows: Section 2
includes some related works on reducing migrations in dis-
tributed systems as well as searching techniques in P2P sys-
tems, Section 3 includes an elaboration of the methodology
used in this paper, Section 4 demonstrates in detail how we

design our network, Section 5 discusses the experimental
results, Section 6 concludes the paper, and Section 7 dis-
cusses the scope of future research.

2 Related work
Task migration is the process of moving a task from one com-
puting item to another one. This concept is applied not only
in distributed computing systems, but it can also be used as
part of the local scheduler job in a multi-core processor where
the task can be moved from one core to another. However,
Section 2 only addresses the concept of task migration in dis-
tributed systems in terms of migration algorithms and tech-
niques used for reducing the number of migrations. In addi-
tion, we review previous research on the use of searching
algorithms in P2P networks to justify our objectives.

The concept of migrating tasks has been developed in
a range of domains, including load balancing, with the goal
of increasing resource utilization and reducing response
time. Suen and Wong proposed in [16] a communication
protocol and a fully distributed algorithm for task migra-
tion to reduce both the average response time and the com-
munication overhead. The approach is based on finite pro-
jective planes, which Maekawa [17] used to reduce the
communication overhead for a distributed mutual exclu-
sion algorithm. Task migration will be performed by the
proposed algorithm whenever it is possible, that is, when-
ever there is at least one lightly loaded processor and
at least one heavily loaded processor.

Also, in Ma and Wang [18] suggested using a Java-
based light-weight task migration to accelerate compu-
tation. The middleware used supports an asynchronous
migration technique that allows migrations to occur virtu-
ally anywhere in the task.

Zhu and Socko [19] carried out several task migra-
tion experiments in order to investigate the impact of
using process migration to improve system performance.
All experiments were conducted on the distributed system
Amoeba [20]. Because the cost of the migrations is com-
pensated by the gain from using idle cycles, the results
showed a slight improvement in system performance.

Sharma and Nitin [21] used in both scheduling algo-
rithms, RM and EDF, as well as task migration, to improve
total task execution. Initially, a global scheduler is used,
which maintains a global task queue and independently dis-
tributes tasks to different processors. Then, the RM sched-
uling algorithm, which assigns priorities based on task time,
is used to schedule global task queues. The results show
that this combination helped the task meet its deadline.

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |357

Although the concept of task migration has already been
used in various volunteer frameworks to address comput-
ing resource availability, there is a trend to limit the num-
ber of migrations or optimize the migration in order to
save time and energy. In which, task migration entails sev-
eral steps, including looking for available peers in the net-
work and rescheduling tasks to be executed on these peers.
As a result, the total execution time of the main task will
increase in proportion to the number of peers involved in
the migration process. This will have an impact on energy
consumption because involving more peers in computing
will increase the total amount of energy consumed during
the execution of the main task.

Prediction techniques based on Machine Learning algo-
rithms were proposed to reduce the migrations processes
by predicting the availability of hosts based on their trace
records over a specific time period.

The effectiveness of availability prediction has been
studied in the context of P2P volunteer computing sys-
tems. Ramachandran et al. [22, 23] claimed that the effec-
tive prediction of the most available volunteers reduced
the number of migrations during job execution. In their
paper, they described a P2P desktop grid framework that
uses resource availability prediction based on group avail-
ability data. Improving system functionality was by sub-
mitting jobs to machines that are more likely to be avail-
able at a given time.

The use of prediction models in data migration was dis-
cussed by Bhagwan et al. [24] and Knežević et al. [25].
They employed prediction and simple replica mechanisms
to ensure data availability in P2P distributed systems and
therefore reduce data migration.

Prediction techniques to reduce migrations have been
proposed to predict the availability in other structures of
volunteer networks. McGough et al. [26] proposed the
use of machine learning algorithms to predict idle time
in the HTC server-client volunteer computing network.
Because the prediction will only target those volunteers
who are less likely to abandon their volunteer work, the
total amount of energy wasted was reduced by reducing
the number of task migrations.

Mengistu et al. [27] proposed using machine learning
techniques in volunteer cloud systems (VcaaS). Their study's
experimental results show that a prediction-based fault tol-
erance approach is appropriate for these types of systems.

Iglesias et al. [28] proposed a prediction method to esti-
mate a long-term availability of a group of computing
resources in server-client volunteer networks. According

to the authors, the prediction method handled the frequent
disconnections between hosts by selecting only those
hosts that are available at any given time, avoiding the
need to migrate unfinished work or even data.

Some works used prediction methods to address host
availability in volunteer distributed systems, but they did
not explicitly mention the beneficial effects on task or data
migration [29–33].

P2P systems uses search techniques to find sources that
contain the desired data. Whatever this data may repre-
sent, there may be multiple locations of it. Some P2P sys-
tems are only interested in finding one copy of the data,
whereas other systems consider all possible locations of
all copies to determine the best and optimal solution.
In other words, determining the best route to the location
of the desired data.

Searching techniques used in P2P systems vary depend-
ing on the network topology, which divides these systems
into two categories: structured and unstructured [34].

In unstructured P2P systems, most of the searching
techniques are flooding-based algorithms where no peer
knows the location of the desired data. Gnutella [35]
is a P2P protocol that uses flooding to find a source in a net-
work. It employs Breadth-First Search, in which the query
peer sends a query request to all of its neighbors. If the des-
tination peer is discovered, it will respond to this request
with a positive replay; otherwise, all of these neighbor peers
will repeat the same query request to all of their neighbor
peers except the original query peer until the destination
peer is discovered.

These flooding techniques can generate a large number
of requests and messages, which increases network traffic.

Yang and Molina [36] proposed alternative deepening
as a combination of artificial intelligence and searching in
P2P networks. A maximum depth limit D is set, and the
query is terminated when the query result (the destination
peer) is satisfied or the maximum depth limit D is reached
(the destination peer is not found).

Kalogeraki et al. [37] proposed two searching approach-
es in P2P network's. The first approach is a modified ver-
sion of Breadth-First Search that is designed to reduce
the number of messages required to search the network.
The second approach, on the other hand, used an intelligent
search mechanism that learns from the P2P network's past
behavior to improve the scalability of the searching.

Lv et al. [38] ran several scenarios over Gnutella's
original flooding algorithm prior to finally proposing
k-walker random walk, a new approach of searching in

358|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

unstructured P2P networks in which, instead of flooding
the same request to all neighbors, only k random neigh-
bors are chosen and thus only k copies of the requests are
generated at each peer until the destination peer is found.
Also, Jawhar and Wu [39] proposes another version of the
k-walker algorithm in which Time-To-Live (TTL) is used
to ensure that searching using k-walker stops when TTL
expires. However, in the next round of the k-walker algo-
rithm, other values will be assigned to both k and TTL.

Other approaches have been proposed in [40] and [41]
which can be classified as Breadth-First Search-based and
all aim to address flooding techniques in unstructured
P2P systems.

In terms of structured P2P systems, the network archi-
tecture is precisely defined, and the relationship between
each peer and data location is also represented in different
data structures such as DHT. However, the final structure
of these systems determines the searching technique used.
For instance, in Chord network [42] the data structure is
ring. It uses a finger table that contains addresses of differ-
ent set of peers such as half of the peers away from it, one
fourth of the peers away of it, until its immediate successor
peer. When searching is done, the query is forwarded from
the query peer to all successors in finger table, which then
sends the same query to their peers using the addresses in
finger table until the destination peer is found.

Bin et al. [43] proposed a new enhanced version of
Chord protocols, which uses tables of neighbors' neighbors
links in a dynamic P2P system with frequent peer arrivals
and departures. It estimates a shorter path length from the
source peer to the destination than the pure Chord protocol.

Pastry [44] used tree data structure for its DHTs.
Similarly to the Chord, each Pastry's peer stores the
addressing information of the closest geographically dis-
persed peers in the same space. However, instead of using
Chord's finger tables, it uses routing table, a leaf set and
a neighbourhood set.

In comparison to our work, we aim to apply the concept
of searching in the context of minimizing task migrations
caused by loss of connection in P2P volunteer comput-
ing networks. To accomplish this, we combine heuristic
search techniques and lookup tables, like DHTs, into a sin-
gle algorithm to find an alternate path from the source peer
to the destination peer. We afterwards use this algorithm
to enable peers to send result packets to their super-peers
once direct links are no longer available.

We use two different lookup tables; the first table stores
the addresses information for all peers in our network and is

used to aid routing, while the second contains performance
metrics for all peers as well as addresses information. In the
context of this paper, the first table is referred to as Network
Tree, while the second table is referred to as Computing Tree.

We evaluate our approach using two metrics: total exe-
cution time and power consumption.

3 Methodology
To ensure that our approach is properly implemented, the
following tasks must be performed in the order listed below.

3.1 Performance query
The first step in our approach is to investigate each net-
work peer's performance and store the most important
performance metrics in Computing Tree. The procedure
that initiates this querying request is performed at each
peer that functions as a server (super-peer), and peer is
added or removed from Computing Tree based on a pre-
defined threshold. For example, if the CPU availability
is the chosen performance metric, peers are added to the
Computing Tree if the provided availability ratio is greater
than 50%; otherwise, peers are not considered available
for computing at the time of querying.

It is worth noting that this query procedure is launched
whenever Computing Tree needs to be updated. This can
happen only when the super-peer has work that needs to
be distributed, and if a sub- peer does not respond to the
querying requests for whatever reason, it will not be con-
sidered for running the current task; However, the address
details of this peer will still be preserved in Network Tree
for future query requests.

3.2 Global scheduling
The second step in our method is to distribute the main
task to all connected sub-peers. To accomplish this, each
peer acting as a server is given a global scheduler whose
goal is to calculate the workload portion of the main task
to be distributed to each network sub-peer in such a way
that all devices exert the same amount of effort in terms
of power consumption and execution time. This global
scheduler is described in [45]. It is based on calculating
the accumulated computing power available at each peer
that can serve as a server. This global scheduler is briefly
explained below (Eq. (1)).

To estimate how many FLOPS each peer's processor i
can perform per second, we use Eq. (1):

FLOPS FLOPSi
Local

i
Peak

i ia c� � � , 	 (1)

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |359

where a is the processor availability given as a float num-
ber between 0 and 1, FLOPSi

Peak is the peak processor
speed per core, and c is the number of cores.

The accumulated available FLOPS of a given super-peer
i with n sub-peers can be calculated as follows in Eq. (2):

FLOPS FLOPS FLOPSi
Total

i
Local

k
Local� � � . 	 (2)

Now, for a super-peer I with a task t that has an esti-
mated number of FLOPS estFlopCount we can calculate
the workload FLOPS that can be allocated to each peer
(super-peer and sub-peers) by using Eq. (3):

FLOPS FLOPS
Load

i t i
TotalestFlopCount'

,
/ .= 	 (3)

Equation (3) is only applied if all peers have one core per
processor with availability 100%, but since each peer i pro-
vides different performance depending on the availability
a and the number of cores c, we will use Eq. (4) to calculate
the workload FLOPS that can be allocated to a peer i:

FLOPS FLOPS FLOPSi
Load Load

i
Peak

i ia c� � � �'
. 	 (4)

Equation (4) can be easily written in the following form
(Eq. (5)):

FLOPS FLOPS FLOPSi
Load Load

i
Local� �' . 	 (5)

3.3 Task migration
Following the distribution of the appropriate workload to all
available network devices, the super-peer will now expect
results from these devices and will enter a loop while wait-
ing for all result packets to be provided. The result packet
includes not only the result (or a portion of it), but also
some important details, such as the completion status,
which indicates whether or not the workload was executed
completely. If a portion of the workload is still incomplete,
it will be delivered to the server in the same packet. When
all of the sub-peers have finished execution, the server
will start a Performance Query to update Computing Tree
before initiating the task migration procedure.

The pseudo-code that follows describes in detail all of
the aforementioned tasks, as well as all of the global vari-
ables that must be defined in order for our approach to be
implemented (see in Algorithm 1).

3.4 Heuristic search
When considering AI for search problems, there are a few
common terms to be aware of:

•	 Agent: it is the entity that perceives and reacts to the
environment around it.

•	 State: it describes the configuration of the agent in
his environment.

•	 Initial state: it is the state in which the agent begins.
•	 Action: it is a choice that we can make in any state.
•	 Transition model: it is the description of what state

we get after applying an action in the current state.

Algorithm 1 Task migration algorithm

Require: Network with only one super-node(N), Task(est_flop_count),
Threshold(threshold)
Ensure: Workload per node
1: loop main_loop
2: isExecuted ← false
3: unexecutedWork ← empty list
4: availableNodes ← empty list
5: completionStatus ← empty list
6: workload ← empty list
7: PerformanceEnquiring(N,threshold)
8: GlobalScheduling(est_flop_count,availableNodes)
9: for node n in availableNodes do
10: if isExecuted is false then
11: availableNodes.remove(n)
12: unexecutedWork.add(workn)
13: end if
14: end for
15: if unexecutedWork.size() > 0 then
16: est_flop_count ← unexecutedWork.FLOPs()
17: Repeat main_loop
18: else
19: Exit main_loop
20: end if
21: end loop
22: procedure PerformanceEnquiring(N,threshold)
23: for node n in N do
24: if n.computingPower > threshold then
25: availableNodes.add(n)
26: else
27: avaliableNodes.remove(n)
28: end if
29: end for
30: end procedure
31: procedure GlobalScheduling(est_flop_count,availableNodes)
32: for node i in availableNodes do
33: FLOPSi_Local ← FLOPSi_Peak × ai × ci

34: if node i is super-node then
35: FLOPS_Total ← FLOPSi_Local
36: end if
37: end for
38: for node j is sub-node to node i do
39: FLOPS_Total ← FLOPS_Total + FLOPSj_Local
40: end for
′41: FLOPS_Load ← est_flop_count/FLOPS_Total
42: for node i in N do
′43: workload.add(FLOPS_Load × FLOPSi_Local)
44: end for
45: end procedure

360|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

•	 State space: it is a space of all the states that we can
get from applying any actions in the initial state.

•	 Goal test: the way we make a comparison in the cur-
rent state to figure out if we reach the goal state.

•	 Path cost: it is the numerical cost that is associated
with a specific path.

•	 Optimal path: it is the solution that has the lowest
cost from the initial state to the goal state.

However, when we adapt these common terms to our
problem, where we use a P2P network of connected com-
puter devices, we get the following:

•	 Agent: the network sub-peer (worker) transmitting
result files to the super-peer (server).

•	 State: in our case, it represents the addresses and
performance information in DHT tables.

•	 Initial state: it is the address from which the result
file must be transmitted.

•	 Action: transferring the output files to the next con-
nected peer in the network.

•	 Transition model: A protocol that makes two peers
in the network connect and exchange data. Our tran-
sition model mimics the functionality of the TCP
protocol.

•	 State Space: it represents the addresses of all the
direct connected sub-peers in the network.

•	 Goal test: the method by which we compare addresses
to determine if the next address is the address of the
target super-peer.

•	 Path cost: in our case, we want to use the bandwidth
given in MBps as a weight assigned to each link.

•	 Optimal path: over all possible paths from the sub-
peer to the super-peer, it is the network path with the
maximum bandwidth.

Generally, we can divide AI search algorithms into two
categories based on the parameters we pass to them:

1.	 Uninformed search: algorithms in this cate-
gory attempt to identify a solution without any
domain-specific knowledge or other information
about the state. Some of the most commonly used
uninformed search algorithms are: Breadth First
Search [46] and Depth First Search [47].

2.	 Informed search/heuristic search: Algorithms in this
category are mostly employed to locate the optimal
path according to additional provided parameters,
such as the state space, costs, and other parameters
that aid the algorithm in finding the proper solu-
tion from the initial state to the goal state. The most

commonly used algorithms that employ this heu-
ristic concept are [48]: Best First Search (Greedy
Search) and A* Search.

We will use the heuristic algorithm Best First Search in
this paper since it benefits from uniformed search in both
Breadth First Search and Depth First Search algorithms
and exceeds A* algorithm in speed while doing the search.

Greedy Best First Search algorithm's pseudo-code is as
follows in Algorithm 2.

The proposed algorithm is entirely based on determin-
ing all possible paths between the sender and the recipi-
ent. However, among all possible paths, Best First Search
algorithm selects only the optimal path based on the
weighted criteria.

In simulation, we adapted BFS to choose the optimal
path with the maximum bandwidth over all other discov-
ered paths. However, in practice, this cannot be guaranteed
because peers use different communication channels with
different bandwidths and sharing policies. Also, it is hard
to estimate how the bandwidth slows down as the number
of users on the network increases. However, we guarantee
that the search query will use the only path whose band-
width is not slowing down as much as the other paths.

Algorithm 2 Best First Search algorithm

Require: Network(G), Start Node(s), Goal Node(g)
Ensure: Path with maximum bandwidth
1: openList ← s
2: closedList ← empty list
3: path ← empty list
4: while openList is not empty do
5: b ← best node from openList
6: openList.remove(b)
7: closedList.add(b)
8: if b is g then
9: path.add(b)
10: return path
11: end if
12: N ← neighbors(b)
13: for n in N do
14: if n is n neither closedList nor openList then
15: openList.add(n)
16: else if n is in openList then
17: if path with current parent ← path with old parent then
18: Replace parents of n
19: end if
20: else if n is not in closedList then
21: openList.add(n)
22: end if
23: end for
24: end while
25: return path

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |361

4 Network configuration
We chose a structured P2P network of virtual 1500 con-
nected peers, with each peer representing a volunteer device
in the real world.

Each peer can act as both a server and a client at the
same time and there are common tasks that can be per-
formed, such as responding to any query request, and per-
forming the allotted work. However, some tasks, such as
distributing the allotted work, can only be performed in
one mode of the peer, which is only implemented in peers
that act solely as servers.

Instead of randomly flooding messages to all peers, fol-
lowing a structured overlay will reduce the effort that each
peer expends in routing to find other peers or resources in
the same network. This can be accomplished by storing
peer-related information in lookup and hash tables that are
accessible to all network peers.

Distribute Hash Table (DHT) is a large example of
a lookup table used in structured P2P networks that provides
lookup service to all network participants. Data is stored in
the <Key:Value> format, where "Key" represents a peer's
actual identifier and the associated "Value" can be any type
of information, including keys of other peers in the network.

To update DHT contents, two main operations or func-
tions must be performed: PUT (Key, Value) is used to add
a new peer to the table, and GET (Key) is used to return
the actual content of the value field that is associated with
Key value.

In our simulation, we employ two lookup tables:
Network Tree and Computing Tree. They both enable the
usage of the same operations as real DHTs.

Fig. 1 depicts the virtual network overlay that will be
used in the simulation stage. The network shape follows
a structured topology that is constructed as a result of the
real-world epidemic spread of VC's middle-ware.

To evaluate and compare results, we use the simulation
framework SimGrid [49], which allows us to write code in
C++ or Python that reflects the actual behavior of the pro-
posed distributed system or protocols.

The structure of our network is specified in an exter-
nal xml file that describes the technical specifications of
each peer and the type of connection that exists between
them. The number of cores, power consumption, speed of
all cores running concurrently (FLOPS).

Furthermore, links are distinguished by their bandwidth,
latency, and sharing policy. All links' bandwidth was set to
100 MBps, and the sharing policy was set to full-duplex,
which means that any two connected peers can transmit data
in both directions at the same time using the TCP protocol.

Regarding CPU's availability, each peer is given an
availability file describing the CPU's available percentage
taken every 5 minutes over a period of one month.

To provide the availability files of all the connected
peers in the network, we have used the dataset GWA-T-
13 Materna [50], which contains performance metrics
described as trace files of over 1500 VMs of the distrib-
uted Materna Data Centers, Dortmund, Germany.

Fig. 2 shows the available CPU power expressed in per-
cent throughout a 24-hour period on November 5, 2015.
We can notice that the CPU was idle for the majority of the
day, with the exception of the time between 10:00:00 and
14:00:00, when the observed availability shows an unsta-
ble availability rate, causing it to fall, reaching its lowest
value at 11:10:00.

In our experiments, to avoid using the host's CPU in an
intrusive manner and in order to limit CPU heat, we have
set a fixed threshold (50%) that the CPU must cease per-
forming the allotted work if its available percentage falls
below this threshold.

Each peer performs differently as they are different in
both availability and the number of cores per processor. This
was employed to ensure the heterogeneity of our network.

In SimGrid, we use the plugin plugin_host_energy [51]
to track each peer's power consumption behavior. It esti-
mates the amount of power consumed by each peer in the
network by adding the static and dynamic parts of the con-
sumed power. The plugin uses Eq. (6) to calculate the total
power consumption for a given machine i that has the fre-
quency f, the workload w, and the usage percentage u:

Fig. 1 The network overlay diagram used in the simulation stage

362|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

P P P ui f w i f
static

i f w
dynamic

, , , , ,
.� � � 	 (6)

The static part represents power usage when the peer
is idle, turned off, or turned on, and the dynamic part rep-
resents power consumption when the CPU is working.
Whereas the static part of the total consumed energy is
simple to compute, the dynamic part is linearly propor-
tional to the CPU load [52].

Table 1 groups the peers based on the number of cores
they have. The energy consumption model for each peer is
also given to each group. Each model has four parameters,
which are as follows:

•	 Idle: wattage when the peer is up but without per-
forming anything.

•	 Epsilon: wattage when all cores are not performing
the allotted work but they are not in an idle state.

•	 Allcores: wattage when all cores of the peer are per-
forming the allotted work.

•	 Off: wattage when the peer is turned off.

5 Simulation results
To conduct the experiments we considered two scenarios:
in the first scenario, we make the network execute a given

task with size of one ExaFLOPS (1018 FLOPS) without tak-
ing into account the loss of connectivity between peers,
forcing the server to migrate the whole work to other avail-
able peers. Whereas in the second scenario, we make the
network execute the same size of task but after enabling
result migration at each peer, allowing it to find an alterna-
tive route if the connection to the super-peer is lost.

In both scenarios, each peer's CPU can be in one of the
following types of execution:

•	 The CPU executes all of the allotted work until it is
finished.

•	 The CPU suspends execution when the monitored
usage percentage exceeds a predefined threshold.

•	 The CPU does not engage in executing the whole
task when the monitored usage exceeds a predefined
threshold.

The work can be considered partially or totally unfin-
ished according to the following cases:

•	 When a sub-peer suspends the execution of its work,
it provides the super-peer with the portion of the
work (in FLOPS) that was not completed, as well as
the output files of the other portion that was success-
fully completed just before the suspension.

•	 When a super-peer does not get any output files from
a sup-peer, the overall work is considered unfin-
ished. The super-peer deems the sub-peer to be no
longer available in the network in this case.

When the super-peer detects that all or part of the allot-
ted work has yet to be executed, it initiates the task migra-
tion process. However, if all peers have result migration

Fig. 2 A one day sample of CPU availability

Table 1 Specification of peers based on the number of cores

Power Consumption Parameters (Watt)

No. cores/peer No. peers Idle Allcores Epsilon Off

One-core CPU 202 100 140 120 10

Two-core CPU 953 100 160 120 10

Four-core CPU 242 100 200 120 10

Six-core CPU 39 100 240 120 10

Eight-core CPU 64 100 280 120 10

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |363

enabled, the super-peer may only receive output files if
the sub-peers discover a new route to it, eliminating the
requirement for task migration.

Charts in Fig. 3 and Fig. 4 show the execution time of
each of the 1500 peers in both scenarios after the whole
task is successfully executed.

Fig. 3 shows that the execution time of nearly 100 sub-
peers is missing, which occurred because the connection
with the super-peer of these sub-peers was lost, causing
the super-peer to consider these sub-peers as no longer
available and that their work needed to be redistributed
again. In fact, the super-peer opted to initiate task-migra-
tion and redistribute the entire incomplete work to the sub-
peers between 480 and 580 because they became available
earlier, causing their execution time to be significantly
longer than the rest of the sub-peers.

On the other hand, in Fig. 4 we can notice that loss of
connection was recovered in each sub-peer, and thus, result
migration was initiated only when it was required, and there

was an available path can be used to provide the output files
to the super-peers, reducing the need for task migration and
thus reducing the execution time of each peer.

In proportion to the execution time, Fig. 5 and Fig. 6 show
the consumed energy in both scenarios for each of the par-
ticipating peers after the whole task is successfully executed.

Fig. 5 shows that when result migration is off, the con-
sumed power in these sub-peers that lose connection with
their super-peer is considered wasted power since the
super-peer has to implement task migration and redistrib-
ute the unfinished work again to other available sub-peers.

The consumed power when result migration is used
to dispatch output files to the super-peers is depicted in
Fig. 6. When compared to Fig. 5, we can conclude that as
the number of migrations decreases, so does the amount of
power consumed by each peer in the network.

Table 2 shows the total execution time and overall esti-
mated power consumption when the two scenarios were
conducted. As a result of enabling result migration process

Fig. 3 Execution time for each peer without enabling result migration

Fig. 4 Execution time for each peer with enabling result migration

364|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

at each peer in the second scenario, 100% of task migra-
tions, which the super-peers perform due to losing con-
nections were eliminated, resulting in an 18% reduction in
total execution time and a 14.6% reduction in total power
consumption, taking into consideration that the number of
task migrations initiated as a result of losing connections
with the super-peers represents just 5% of the total migra-
tions that may occur.

In other words, in the first scenario, we can consider that
the same task was executed twice, once by peers that have
lost their links and are unable to provide results to their
super-peer, and once by peers that are located in the same

sub-network and execute the same workload that is con-
sidered unfinished. However, in the second scenario, if the
sub-peers are able to send results packets to the super-peer
despite losing connections, the task will not be duplicated
because there is another discovered path to send results.

6 Conclusion
In this paper, we coined the term "result migration" to
describe the implementation the concept of searching in
the context of minimizing task migrations caused by loss
of connection links in P2P volunteer computing networks.
We combined heuristic search techniques and lookup
tables into a single algorithm to enable peers to send result
packets to their super-peers once direct links are no longer
available. The experimental results showed that enabling
this strategy at each peer eliminated all of task migrations
that the super-peers had to perform as a result of loss of
connections, ensuring that task will not be executed more
than once, resulting in fewer task migrations and a reduc-
tion in total execution time and power consumption.

Fig. 5 Power consumption for each peer without enabling result migration

Fig. 6 Power consumption for each peer with enabling result migration

Table 2 The total execution time and estimated power consumption in
both scenarios

Total execution time
(seconds)

Total power consumption
(giga Joules)

Without result
migration 87457.5 16.36

With result
migration 71796.2 13.97

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |365

7 Future scope
The goal of this research is to propose a new approach for
reducing task migrations caused by loss of connections in
P2P VC systems. However, the suggested method can be
extended to provide more efficient performance, and our
approach can always be improved into a more sophisti-
cated version.

As a result of the current approach, the following ideas
for the feature have been proposed:

•	 Best-First-Search is initiated only at each sub-peer
when it has results to send to its super-peer, but the
direct link is turned off. However, losing of connec-
tions can occur at any time during task execution,
such as before or after the super-peer sends a que-
rying request or before sending the corresponding
sub-job. In these cases, peers who do not respond

will be considered no longer available. In such cases,
we believe that deploying the heuristic search to be
launched whenever a connection is lost can also help
improve both total execution time and power con-
sumption. However, without a reduction in the num-
ber of task migrations.

•	 If some peers are unavailable for an extended period
of time, the super-peer will not consider them for any
computation duties; however, the addresses of these
peers will be saved to inquire about their availabil-
ity when a new task is to be executed. In reality, this
long-term unavailability reflects the fact that these
peers abandoned the project and are no longer inter-
ested in computing. To save space in lookup tables,
we can suggest removing these peers' addresses after
a certain period of time.

References
[1]	 Mersenne Research, Inc. "Welcome to GIMPS, the Great Internet

Mersenne Prime Search", [online] Available at: https://www.
mersenne.org/ [Accessed: 19 July 2022]

[2]	 distributed.net "The Organization", [online] Available at: https://
www.distributed.net/Main_Page [Accessed: 19 July 2022]

[3]	 distributed.net "Project RC5", [online] Available at: https://www.
distributed.net/RC5 [Accessed: 19 July 2022]

[4]	 distributed.net "Aggregate Statistics", [online] Available at: https://
stats.distributed.net/projects.php?project_id=28 [Accessed: 19 July
2022]

[5]	 Brecht, T., Sandhu, H., Shan, M., Talbot, J. "Paraweb: Towards
world-wide supercomputing", In: EW 7: Proceedings of the 7th
Workshop on ACM SIGOPS European Workshop: Systems
Support for Worldwide Applications, Connemara, Ireland, 1996,
pp. 181–188. ISBN 978-1-4503-7339-5

	 https://doi.org/10.1145/504450.504484
[6]	 van Nieuwpoort, R., Maassen, J., Bal, H. E., Kielmann, T., Veldema,

R. "Wire-area parallel computing in Java", In: JAVA '99: Proceedings
of the ACM 1999 Conference on Java Grande, San Francisco, CA,
USA, 1999, pp. 8–14. ISBN 978-1-58113-161-1

	 https://doi.org/10.1145/304065.304087
[7]	 Alexandrov, A. D., Ibel, M., Schauser, K. E., Scheiman, C. J. "Su-

perweb: research issues in Java-based global computing", Concur-
rency: Practice and Experience, 9(6), pp. 535–553, 1997.

	 https://doi.org/10.1002/(SICI)1096-9128(199706)9:6<535::AID-
CPE307>3.0.CO;2-1

[8]	 Sarmenta, L. F. G., Hirano, S. "Bayanihan: building and studying
web-based volunteer computing systems using Java", Future Gen-
eration Computer Systems, 15(5-6), pp. 675–686, 1999.

	 https://doi.org/10.1016/S0167-739X(99)00018-7
[9]	 Christiansen, B. O., Cappello, P., Ionescu, M. F., Neary, M. O.,

Schauser, K. E., Wu, D. "Javelin: Internet-based parallel com-
puting using Java", Concurrency: Practice and Experience, 9(11),
pp. 1139–1160, 1997.

	 https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1139::AID-
CPE349>3.0.CO;2-K

[10]	 Neary, M. O., Phipps, A., Richman, S., Cappello, P. "Javelin 2.0:
Java-based parallel computing on the internet", In: 6th Internation-
al Euro-Par Conference, Munich, Germany, 2000, pp. 1231–1238.
ISBN 978-3-540-67956-1

	 https://doi.org/10.1007/3-540-44520-X_174
[11]	 Nisan, N., London, S., Regev, O., Camiel, N. "Globally distrib-

uted computation over the internet - the POPCORN project",
In: Proceedings. 18th International Conference on Distributed
Computing Systems (Cat. No.98CB36183), Amsterdam, Nether-
lands, 1998, pp. 592-601. ISBN 0-8186-8292-2

	 https://doi.org/10.1109/ICDCS.1998.679836
[12]	 Baratloo, A., Karaul, M., Kedem, Z. M., Wijckoff, P. "Charlotte:

Metacomputing on the web", Future Generation Computer Sys-
tems, 15(5-6), pp. 559–570, 1999.

	 https://doi.org/10.1016/S0167-739X(99)00009-6
[13]	 Anderson, D. P. "BOINC: A platform for volunteer computing",

Journal of Grid Computing, 18(1), pp. 99–122, 2020.
	 https://doi.org/10.1007/s10723-019-09497-9
[14]	 World Community Grid "World community grid", [online] Avail-

able at: https://www.worldcommunitygrid.org/ [Accessed: 20 July
2022]

[15]	 Rosetta@home "You don't have to be a scientist to do science",
[online] Available at: https://boinc.bakerlab.org/ [Accessed: 20 July
2022]

[16]	 Suen, T. T. Y., Wong, J. S. K. "Efficient task migration algorithm
for distributed systems", IEEE Transactions on Parallel and Dis-
tributed Systems, 3(4), pp. 488–499, 1992.

	 https://doi.org/10.1109/71.149966
[17]	 Maekawa, M. "A √N Algorithm for Mutual Exclusion in Decen-

tralized Systems", ACM Transactions on Computer Systems, 3(2),
pp. 145–159, 1985.

	 https://doi.org/10.1145/214438.214445

https://www.mersenne.org/
https://www.mersenne.org/
https://www.distributed.net/Main_Page
https://www.distributed.net/Main_Page
https://www.distributed.net/RC5
https://www.distributed.net/RC5
https://stats.distributed.net/projects.php?project_id=28
https://stats.distributed.net/projects.php?project_id=28
https://doi.org/10.1145/504450.504484
https://doi.org/10.1145/304065.304087
https://doi.org/10.1002/(SICI)1096-9128(199706)9:6<535::AID-CPE307>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1096-9128(199706)9:6<535::AID-CPE307>3.0.CO;2-1
https://doi.org/10.1016/S0167-739X(99)00018-7
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1139::AID-CPE349>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1139::AID-CPE349>3.0.CO;2-K
https://doi.org/10.1007/3-540-44520-X_174
https://doi.org/10.1109/ICDCS.1998.679836
https://doi.org/10.1016/S0167-739X(99)00009-6
https://doi.org/10.1007/s10723-019-09497-9
https://www.worldcommunitygrid.org/
https://boinc.bakerlab.org/
https://doi.org/10.1109/71.149966
https://doi.org/10.1145/214438.214445

366|Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023

[18]	 Ma, R. K. K., Wang, C.-L. "Lightweight Application-Level Task
Migration for Mobile Cloud Computing", In: 2012 IEEE 26th
International Conference on Advanced Information Networking
and Applications, Fukuoka, Japan, 2012, pp. 550–557. ISBN 978-
1-4673-0714-7

	 https://doi.org/10.1109/AINA.2012.124
[19]	 Zhu, W., Socko, P. "Migration impact on load balancing-an expe-

rience on Amoeba", In: Proceedings of 5th IEEE International
Symposium on High Performance Distributed Computing, Syra-
cuse, NY, USA, 1996, pp. 531–540. ISBN 0-8186-7582-9

	 https://doi.org/10.1109/HPDC.1996.546224
[20]	 Fireball Amoeba "Amoeba: A Distributed Operating System",

[online] Available at: https://fsd-amoeba.sourceforge.net/amoeba.
html/ [Accessed: 05 November 2022]

[21]	 Sharma, R., Nitin. "Task Migration with EDF-RM Scheduling Al-
gorithms in Distributed System", In: 2012 International Confer-
ence on Advances in Computing and Communications, Cochin,
India, 2012, pp. 182–185. ISBN 978-1-4673-1911-9

	 https://doi.org/10.1109/ICACC.2012.42
[22]	 Ramachandran, K., Lutfiyya, H., Perry, M. "Decentralized re-

source availability prediction for a desktop grid", In: 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, Melbourne, VIC, Australia, 2010, pp. 643–648. ISBN
978-1-4244-6987-1

	 https://doi.org/10.1109/CCGRID.2010.54
[23]	 Ramachandran, K., Lutfiyya, H., Perry, M. "Decentralized ap-

proach to resource availability prediction using group availabil-
ity in a P2P desktop grid", Future Generation Computer Systems,
28(6), pp. 854–860, 2012.

	 https://doi.org/10.1016/j.future.2010.10.006
[24]	 Bhagwan, R., Tati, K., Cheng, Y.-C., Savage, S., Voelker, G. M.

"Total recall: System support for automated availability man-
agement", In: NSDI '04: Proceedings of the First Symposium on
Networked Systems Design and Implementation, San Francisco,
CA, USA, 2004, pp. 337–350. ISBN 9781931971195 [online]
Available at: https://www.usenix.org/legacy/events/nsdi04/tech/
bhagwan.html [Accessed: 05 November 2022]

[25]	 Knežević, P., Wombacher, A., Risse, T. "DHT-Based Self-adapting
Replication Protocol for Achieving High Data Availability", In:
Second International Conference on Signal-Image Technology and
Internet-Based Systems, Hammamet, Tunisia, 2009, pp. 201–210.
ISBN 978-3-642-01349-2

	 https://doi.org/10.1007/978-3-642-01350-8_19
[26]	 McGough, A. S., Forshaw, M., Brennan, J., Al Moubayed, N.,

Bonner, S. "Using machine learning to reduce the energy wasted in
volunteer computing environments", In: 2018 Ninth International
Green and Sustainable Computing Conference (IGSC), Pittsburgh,
PA, USA, 2018, pp. 1–8. ISBN 978-1-5386-7467-3

	 https://doi.org/10.1109/IGCC.2018.8752115
[27]	 Mengistu, T. M., Che, D., Alahmadi, A., Lu, S. "Semi-Markov

process based reliability and availability prediction for volunteer
cloud systems", In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), San Francisco, CA, USA, 2018,
pp. 359–366. ISBN 978-1-5386-7236-5

	 https://doi.org/10.1109/CLOUD.2018.00052

[28]	 Lázaro, D., Kondo, D., Marquès, J. M. "Long-term availability pre-
diction for groups of volunteer resources", Journal of Parallel and
Distributed Computing, 72(2), pp. 281–296, 2012.

	 https://doi.org/10.1016/j.jpdc.2011.10.007
[29]	 Ren, X., Lee, S., Eigenmann, R., Bagchi, S. "Prediction of resource

availability in fine-grained cycle sharing systems empirical evalu-
ation", Journal of Grid Computing, 5(2), pp. 173–195, 2007.

	 https://doi.org/10.1007/s10723-007-9077-5
[30]	 Yang, D., Cao, J., Yu, C., Xiao, J. "A multi-step-ahead CPU load

prediction approach in distributed system", In: 2012 Second
International Conference on Cloud and Green Computing,
Xiangtan, China, 2012, pp. 206–213. ISBN 978-1-4673-3027-5

	 https://doi.org/10.1109/CGC.2012.32
[31]	 Lili, S., Shoubao, Y., Liangmin, G., Bin, W. "A Markov chain

based resource prediction in computational grid", In: 2009 Fourth
International Conference on Frontier of Computer Science and
Technology, Shanghai, China, 2009, pp. 119–124. ISBN 978-1-
4244-5466-2

	 https://doi.org/10.1109/FCST.2009.32
[32]	 Kondo, D., Andrzejak, A., Anderson, D. P. "On correlated avail-

ability in internet-distributed systems", In: 2008 9th IEEE/ACM
International Conference on Grid Computing, Tsukuba, Japan,
2008, pp. 276–283. ISBN 978-1-4244-2578-5

	 https://doi.org/10.1109/GRID.2008.4662809
[33]	 Kianpisheh, S., Kargahi, M., Charkari, N. M. "Resource availabil-

ity prediction in distributed systems: An approach for modeling
non-stationary transition probabilities", IEEE Transactions on
Parallel and Distribute Systems, 28(8), pp. 2357–2372, 2017.

	 https://doi.org/10.1109/TPDS.2017.2659746
[34]	 Lua, E. K, Crowcroft, J., Pias, M., Sharma, R., Lim, S. "A survey

and comparison of peer-to-peer overlay network schemes", IEEE
Communications Surveys & Tutorials, 7(2), pp. 72–93, 2005.

	 https://doi.org/10.1109/COMST.2005.1610546
[35]	 Ripeanu, M. "Peer-to-peer architecture case study: Gnutella net-

work", In: Proceedings First International Conference on Peer-
to-Peer Computing, Linköping, Sweden, 2001, pp. 99–100. ISBN
0-7695-1503-7

	 https://doi.org/10.1109/P2P.2001.990433
[36]	 Yang, B., Gracia-Molina, H. "Improving search in peer-to-peer

networks", In: Proceedings 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, 2002, pp. 5–14.
ISBN 0-7695-1585-1

	 https://doi.org/10.1109/ICDCS.2002.1022237
[37]	 Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D. "A local

search mechanism for peer-to-peer networks", In: CIKM
‘02: Proceedings of the eleventh international conference on
Information and knowledge management, McLean, VI, USA,
2002, pp. 300–307. ISBN 978-1-58113-492-6

	 https://doi.org/10.1145/584792.584842
[38]	 Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S. "Search and replication

in unstructured peer-to-peer networks", In: ICS '02: Proceedings
of the 16th international conference on Supercomputing, New
York, NY, USA, 2002, pp. 84–95. ISBN 978-1-58113-483-4

	 https://doi.org/10.1145/514191.514206

https://doi.org/10.1109/AINA.2012.124
https://doi.org/10.1109/HPDC.1996.546224
https://fsd-amoeba.sourceforge.net/amoeba.html/
https://fsd-amoeba.sourceforge.net/amoeba.html/
https://doi.org/10.1109/ICACC.2012.42
https://doi.org/10.1109/CCGRID.2010.54
https://doi.org/10.1016/j.future.2010.10.006
https://www.usenix.org/legacy/events/nsdi04/tech/bhagwan.html
https://www.usenix.org/legacy/events/nsdi04/tech/bhagwan.html
https://doi.org/10.1007/978-3-642-01350-8_19
https://doi.org/10.1109/IGCC.2018.8752115
https://doi.org/10.1109/CLOUD.2018.00052
https://doi.org/10.1016/j.jpdc.2011.10.007
https://doi.org/10.1007/s10723-007-9077-5
https://doi.org/10.1109/CGC.2012.32
https://doi.org/10.1109/FCST.2009.32
https://doi.org/10.1109/GRID.2008.4662809
https://doi.org/10.1109/TPDS.2017.2659746
https://doi.org/10.1109/COMST.2005.1610546
https://doi.org/10.1109/P2P.2001.990433
https://doi.org/10.1109/ICDCS.2002.1022237
https://doi.org/10.1145/584792.584842
https://doi.org/10.1145/514191.514206

Saleh and Shastry
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 355–367, 2023 |367

[39]	 Jawhar, I., Wu, J. "A Two-Level Random Walk Search Protocol for
Peer-to-Peer Networks", In: Proceedings of the 8th World Multi-
Conference on Systemics, Cybernetics and Informatics, Orlando,
FL, USA, 2004, pp. 1–5. ISBN 9789806560130

[40]	 Rhea, S. C., Kubiatowicz, J. "Probabilistic location and routing",
In: Proceedings. Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies, New York, NY,
USA, 2002, pp. 1248–1257. ISBN 0-7803-7476-2

	 https://doi.org/10.1109/INFCOM.2002.1019375
[41]	 Tsoumakos, D., Roussopoulos, N. "Adaptive probabilistic search

for peer-to-peer networks", In: Proceedings Third International
Conference on Peer-to-Peer Computing (P2P2003), Linköping,
Sweden, 2003, pp. 102–109. ISBN 0-7695-2023-5

	 https://doi.org/10.1109/PTP.2003.1231509
[42]	 Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek,

M. F., Dabek, F., Balakrishnan, H. "Chord: a scalable peer-to-peer
lookup protocol for Internet applications", IEEE/ACM Transactions
on Networking, 11(1), pp. 17–32, 2003.

	 https://doi.org//10.1109/TNET.2002.808407
[43]	 Bin, D., Furong, W., Ma, J., Jian, L. "Enhanced Chord-Based

Routing Protocol Using Neighbors' Neighbors Links", In: 22nd
International Conference on Advanced Information Networking
and Applications - Workshops (aina workshops 2008), Gino-wan,
Japan, 2008, pp. 463–466. ISBN 978-0-7695-3096-3

	 https://doi.org/10.1109/WAINA.2008.53
[44]	 Rowstron, A., Druschel, P. "Pastry: Scalable, Decentralized Object

Location, and Routing for Large-Scale Peer-to-Peer Systems",
In: IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware 2001),
Heidelberg, Germany, 2001, pp. 329–350. ISBN 978-3-540-42800-8

	 https://doi.org/10.1007/3-540-45518-3_18
[45]	 Saleh, E., Shastry, C. "A new approach for global task schedul-

ing in volunteer computing systems", International Journal of
Information Technology, 15(1), pp. 239–247, 2023.

	 https://doi.org/10.1007/s41870-022-01090-w

[46]	 Bundy, A., Wallen, L. "Breadth-First Search", In: Bundy, A., Wallen,
L. (eds.) Catalogue of Artificial Intelligence Tools, Springer, 1984,
p. 13. ISBN 978-3-540-13938-6

	 https://doi.org/10.1007/978-3-642-96868-6_25
[47]	 Kozen, D. C. "Depth-First and Breadth-First Search", In: The

Design and Analysis of Algorithms, Springer, 1992, pp. 19–24.
ISBN 978-1-4612-8757-5

	 https://doi.org/10.1007/978-1-4612-4400-4_4
[48]	 Grosan, C., Abraham, A. "Informed (Heuristic) Search", In: Intel-

ligent Systems: A Modern Approach, Springer, 2011, pp. 53–81.
ISBN 978-3-642-21003-7

	 https://doi.org/10.1007/978-3-642-21004-4_3
[49]	 Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.

"Versatile, scalable, and accurate simulation of distributed appli-
cations and platforms", Journal of Parallel and Distributed Com-
puting, 74(10), pp. 2899–2917, 2014.

	 https://doi.org/10.1016/j.jpdc.2014.06.008
[50]	 TU Delft: The Grid Workloads Archive "Gwa-t-13 materna",

[online] Available at: http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-
materna [Accessed: 01 March 2022]

[51]	 Heinrich, F. C., Cornebize, T., Degomme, A., Legrand, A., Carpen-
Amarie, A., Hunold, S., Orgerie, A. C., Quinson, M. "Predicting
the energy-consumption of MPI applications at scale using only
a single node", In: 2017 IEEE International Conference on Cluster
Computing (CLUSTER), Honolulu, HI, USA, 2017, pp. 92–102.
ISBN 978-1-5386-2327-5

	 https://doi.org/10.1109/CLUSTER.2017.66
[52]	 Orgerie, A.-C., de Assuncao, M. D., Lefevre, L. "A survey on tech-

niques for improving the energy efficiency of large-scale distrib-
uted systems", ACM Computing Surveys, 46(4), 47, 2014.

	 https://doi.org/10.1145/2532637

https://doi.org/10.1109/INFCOM.2002.1019375
https://doi.org/10.1109/PTP.2003.1231509
https://doi.org//10.1109/TNET.2002.808407
https://doi.org/10.1109/WAINA.2008.53
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/s41870-022-01090-w
https://doi.org/10.1007/978-3-642-96868-6_25
https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1007/978-3-642-21004-4_3
https://doi.org/10.1016/j.jpdc.2014.06.008
http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna
http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna
https://doi.org/10.1109/CLUSTER.2017.66
https://doi.org/10.1145/2532637

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Performance query
	3.2 Global scheduling
	3.3 Task migration
	3.4 Heuristic search

	4 Network configuration
	5 Simulation results
	6 Conclusion
	7 Future scope
	References

