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Abstract

For SOC (state of charge) assessment techniques based on electrical circuit models, the parameters of the model are strongly biased 

by: battery aging, temperature, causing some errors in the estimation of the SOC. One approach to solve this problem is to update 

the model parameters constantly. We suggest a new algorithm VRLS (variable recursive least squares) to update the parameters of 

a 2-resistor-capacitor (RC) network and to estimate the output battery voltage. VRLS is compared to the recursive least squares (RLS) 

and the adaptive forgetting factor recursive least squares (AFFRLS) algorithms. For algorithm assessment, we utilized real experimental 

data conducted on the Samsung 18650-20R lithium-ion cell. The tests indicate that compared to RLS and AFFRLS methods, VRLS 

recorded a low distribution in the high error range, in addition to small predictive performance indicators (RMSE, MAE, and MAPE) in all 

tests, which implies that VRLS has a good parameter identification ability.
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1 Introduction
The lithium-ion battery (LIB) has emerged as a prominent 
energy storing device for EVs (electric vehicles) due to its 
long durability. The LIBs are supervised by a BMS (battery 
management system) in these applications. The involved re- 
sponsibilities of the BMS include state of charge and health 
(SOC and SOH) estimation, battery cell balancing, etc. 
The global effectiveness of these functionalities is strongly 
related to the correctness of the model developed [1].

There are three groups of battery models:  Electrochemical 
models, Data-based models, and Equivalent circuit models 
(ECMs) [2]. Electrochemical models show high potential 
to capture battery dynamics. But, because of their compu-
tational complexity, they are not suitable for online appli-
cations [3]. One of the key issues with data-driven models 
is that they use exhaustive tests to capture large sets of bat-
tery data in order to learn from the data to represent the 
battery's behavior in various regimes [4].

ECMs' (Equivalent circuit models) robustness and sim-
plicity have made them a viable choice for BMS applica-
tions [5]. The ECM of a battery contain resistors, capaci-
tors, and a source voltage to represent the cell's behavior, 

ECMs typically contain n RC resistor capacitor networks. 
The second order ECM has been shown to provide an accu-
rate simulation of the cell's dynamical behavior [6, 7].

Using high order battery models with over two RC net-
works causes computational overhead while not signifi-
cantly improving the accuracy of the battery model [8]. 
Furthermore, along with the battery model, a precise iden-
tifier of battery model parameters is a major contributor to 
enhance the accuracy of the model and the estimation of 
SOC and SOH. We can categorize the techniques used for 
ECM parameter identification into two types: offline and 
online identification.

Electrochemical impedance spectroscopy [9, 10] and 
hybrid pulse power characterization [11] are amongst the 
most popular offline methods. In these methods, the iden-
tified parameters are constants. Tests have shown that bat-
tery parameter values vary with SOC, temperature, and 
charge levels. Considering fixed values for these parame-
ters results in an imprecise ECM. Hence, an online param-
eter estimator is needed for the battery model to enhance 
BMS performance [12].
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In this context, various studies have been conducted, 
here we are going to focus on the most recent ones. In [13], 
Thevenin model parameters are identified from voltage 
feedback data collected from a constant current discharge 
battery. From this voltage response, a sensitiveness test is 
utilized to assess the parameter identifiability. To tackle 
the identification, a non-linear least squares optimization 
problem is formulated, bounds have been set to reduce 
the search space. The identification problem is solved by 
a confidence region method. In [14] an exponential regres-
sion algorithm (ERA) based online parameter estimator 
is proposed for the identification of the parameters of the 
ECM. In addition, the authors have also proposed an adap-
tive sliding mode observer based on the proposed adap-
tive ECM for SOC estimation. Wang et al. [15] suggested 
in an online adaptive prediction algorithm for a fractional 
equivalent circuit model on the basis of the fractional 
order theory of computation and the indirect Lyapunov 
method. Mouncef et al. [16] and Elmarghichi et al. [17] 
adapted the sunflower optimization algorithm (SFO) to 
derive the parameters of a first order RC battery model, 
and to predict battery terminal voltage. In [18], a par-
ticle filter is employed to continuously identify the bat-
tery model parameters in real time taking into account 
the battery states. At the same time, a cubature Kalman 
is employed to predict the SOC. The partial least squares 
regression with the moving window structure was imple-
mented on the second-order ECM in [19] to derive a set 
of linear piecewise battery models. The estimation of the 
SOC was made simpler by this method as a linear Kalman 
filter (KF) can be applied to the linear model developed. 
In [20], an ECM that is temperature dependent was con-
structed and embedded in the ensemble membership tech-
nique for state of charge estimation. The major charac-
teristic of this approach is that it addresses the effects of 
measurement noise in the estimation process.

The large amount of research published for parameter 
identification indicates that this is still an issue that needs 
to be addressed (refer to Table 1 for a summary of the most 
common battery model parameter estimation techniques). 
On one side, higher order battery models are required to 
obtain proper transient and static behavior in battery volt-
age prediction. However, the improved models increase 
the complexity and require more powerful and expensive 
CPUs. Thus, there is still a need to develop algorithms that 
can efficiently and correctly address the nonlinearity of the 
battery at a rational computational cost. For this purpose, 
we suggest a new algorithm, the VRLS (variable recursive 

least square) to update battery model parameters and to 
estimate the terminal voltage, we also propose a new 
expression to adapt the forgetting factor. VRLS is con-
trasted against the Adaptive Forgetting Factor Recursive 
Least Squares (AFFRLS) and the Recursive Last Squares 
(RLS) applied to a second order ECM model. The main 
contributions of this paper include:

• We propose the VRLS algorithm to estimate the 
parameters of a second order battery model and to 
estimate the output terminal voltage.

• Real data collected from the CALCE research group 
was used to evaluate the algorithm performance. 
Results show that VRLS has high accuracy and 
reliability.

• Comparison of the suggested approach with 
two robust recursive methods (AFFRLS, RLS). 
Assessment tests showed high accuracy of VRLS 
with low errors in all scenarios in comparison with 
AFFRLS and RLS algorithms.

The reminder of the document is structured as follows: 
in Section 2, we describe the battery model used in this 
study and formulate the required equations. Section 3, con-
tains the steps for the algorithm implementation. Section 4 
shows the implementation setup for the SAMSUNG cell. 
In Section 5 we give a detailed discussion of the results. 
In Section 6 we draw the conclusion.

Table 1 Summary of the common method used to estimate battery 
parameters

Method Merits Disadvantages

Electrochemical 
models

High potential to capture 
battery dynamics

Not suitable for 
online applications 

due to computational 
complexity

Data-based 
models

Capture large sets of 
battery data in various 

regimes

Require exhaustive 
tests

Equivalent 
circuit models

Robustness and 
simplicity

High order models 
cause computational 
overhead and may 

not improve accuracy 
significantly

Offline 
identification

Electrochemical 
impedance spectroscopy, 

hybrid pulse power 
characterization

Identified parameters 
are constants and not 
accurate for varying 
battery conditions

Online 
identification

Various studies 
conducted

Need to develop 
efficient algorithms 
that address battery 

nonlinearity 
at a rational 

computational cost
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2 Modeling of the lithium-ion battery
The model of the cell employed is represented in Fig. 1. 
In this design, an R0 resistor is included to emulate the 
momentary voltage drop, two parallel R-C elements to 
depict the transitory regime (R1, C1, and R2, C2). The open 
circuit voltage (OCV) Eq. (1) is defined with an adjust-
ment of NERNST's equation with three coefficients K2, K1 
and K0. The hysteresis effect is denoted by s-M, where s is 
linked to the sign of the current, and M is a ratio term. Vout 
is the terminal voltage.

The open circuit voltage VOCV is defined as (adjustment 
of NERNST's equation [21]):

V k K z k

K k z k K k
OCV � � � � � �� �
� � � � �� � � � �

2

1 0

1ln

ln .

 (1)

z is the state of charge defined as:
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Q is the battery nominal capacity, η stands for the cou-
lombic efficiency assumed to be 0.98 while charging and 
1 while discharging. I(k) is the battery current flowing out 
and in, ∆t is the interval of sampling time.

VRLS is used to recursively estimate the battery model 
parameters (K2, K1, K0, M, R2, R1, R0, C1, C2) and the termi-
nal voltage Vout:
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Vout (k) is the output voltage in time k, with:
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U1(k−1) and U2(k−1) represent respectively the prior 
voltage drop in R1 and R2:
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s(k) is defined as the sign of the current:
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where α is a constant small number and k is the time index.

3 VRLS implementation
The parameters (K2, K1, K0, M, R0, R2, R1, C1) are saved in 
θ(k):
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Fig. 1 The second order battery model with hysteresis
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G(K), P(K) are respectively the error and gain cova-
riance matrices. The forgetting factor λ is used to assign 
weights to new and old data. The model parameters (in 
θ(k)) are upgraded using the expression below:

�� k� � � �� � � � � � � � � � �� ��� ��� � �k G k V k k kT
1 1

out
. (15)

VRLS uses the above equations to update the battery 
model parameters in θ(k) based on the prior values θ(k−1), 
the error covariance and the gain matrices P(K) and G(K). 
Fig. 2 displays the chart of the VRLS approach applied to 
extract the parameters.

VRLS employs an adjustable forgetting factor λ to 
update the battery parameters. λ allocates weights to new 
and old data (generally lies ranging from 0.95 to 1 [21, 22]).

The forgetting factor should vary with the error of the 
identification parameter adaptively, particularly when 
the error is very high, in order for the online identifica-
tion to have a more rapid convergence speed and in order 
to decrease the identification error [22]. Here, we suggest 
a new equation to compute the forgetting factor given by:

� � � �k k� � � � �� �� � �� �� �min exp , ,
min min

1 1  (16)

� k V k V kest� � � � � � � �out
.  (17)

λmin is the smallest value of λ which is fixed at 0.98 to 
achieve a better trade-off between precision and rapid-
ness [22]. β(k) is the error between the real measured and 
the output voltage estimated at time k.

From Eq. (16), it is obvious that the lower the value of 
the error β(k), the lower the forgetting factor, conversely 
when the error is high. The value of the forgetting factor 
lies between 0.98 and 1. In this way, the forgetting factor 
does change with the identification error.

The second-order RC model Fig. 1 is employed as a model 
wherein parameters to be extracted are hold in the vector 
θ(k) Eq. (11). VRLS is applied in a recursive manner to com-
pute θ(k) vector with an adaptive weight factor λ Eq. (16).

The presented approach is demonstrated in Fig. 2. 
It comprises two steps: data pre-processing and an esti-
mation step.

In step 1: corrupted data are eliminated through clean-
ing (cleansing): data cleaning is extremely critical. It is 
used to clean the data to prepare it for the next step. Here, 
we attempt to delete all data that are potentially corrupted, 
incomplete, improper or duplicate data; then, the data 
extracted are evenly spaced.

In step 2: the VRLS algorithm takes over to estimate the 
model parameters and the output voltage. First, we provide 

the starting values of: the vector θ(0), the error and gain 
covariance matrices (P(0), G(0)), and the forgetting factor 
λ. For each iteration, VRLS computes the past voltage drops 
U1(k−1) and U2(k−1) using Eq. (8) and Eq. (9) respectively, 
then readjusts the state of charge z(k) using Eq. (2). The gain 
matrix G(k) is evaluated in accordance with Eq. (13) before 
calculating θ(k) vector.

The parameters (K2, K1, K0, M, R2, R1, R0, C1, C2) can be 
then extracted from the vector θ(k). Afterwards, the algo-
rithm updates the covariance matrix P(k) Eq. (14) using 
the G(k) matrix and the forgetting factor λ. Lastly, the 
voltage output is evaluated using Eq. (3), and the forget-
ting factor is readjusted considering the current error β(k) 
Eq. (17). The same process is reiterated until the estima-
tion is completed.

4 Simulation setup
In this section, we are going to compare the VRLS Fig. 2 
with RLS (recursive least square) and AFFRLS (adaptive 
forgetting factor recursive least squares) algorithms pre-
sented respectively in [21] and [23], we applied the algo-
rithms to the model Fig. 1 to estimate the battery model 
parameters and the terminal voltage.

The performance of the algorithms is verified using 
experimental data given by the CALCE Research Group 
performed on the Samsung INR 18650-20R [24–26] cell 

Fig. 2 The proposed VRLS method



El Marghichi et al.
Period. Polytech. Elec. Eng. Comp. Sci., 67(3), pp. 239–248, 2023 |243

in two EV dynamic profiles: The Beijing dynamic stress 
test (BJDST), and the supplemental federal test procedure 
(US06) [24–26]. The configuration of the experiment is 
shown in [24–26].

The Samsung 18650-20R dataset [24–26] is a wide-
ly-used benchmark dataset for evaluating the performance 
of battery estimation algorithms and models. It is import-
ant to evaluate the performance of these algorithms under 
different driving conditions, as this can have a significant 
impact on battery life and safety.

The BJDST and US06 dynamic profiles are two common 
driving cycles that are used for this purpose. The BJDST 
cycle is a drive cycle that was developed by the Beijing Joint 
Driving Simulation Team, while the US06 cycle is a driv-
ing cycle developed by the US Environmental Protection 
Agency [24–26]. These cycles have been designed to simu-
late real-world driving conditions and are commonly used 
for testing and evaluation of battery systems.

The current and voltage data for the Samsung 18650-
20R battery cycled under the BJDST and US06 pro-
files [24–26] are shown in Fig. 3. It is evident from Fig. 3 

that the current in these profiles oscillates vigorously, 
which can make it challenging to accurately estimate the 
battery parameters. Therefore, the correctness of the algo-
rithms for parameter identification needs to be carefully 
checked under such conditions.

Battery estimation algorithms typically use a combina-
tion of electrical and thermal models to predict the behav-
ior of the battery. These models rely on accurate estimates 
of the battery parameters, such as capacity, internal resis-
tance, and open-circuit voltage. The accuracy of these 
estimates is critical for ensuring the safe and reliable oper-
ation of the battery.

To compare the performance of VRLS, RLS, and 
AFFRLS algorithms in estimating battery parameters and 
output voltage, all three algorithms were initialized with 
the same values. These initial values included the battery 
parameter vector θ(0), error and gain matrices P(0) and 
G(0), initial voltage drops across resistors R2 and R1 (U2(0) 
and U1(0)), and the forgetting factor λ.

The forgetting factor is an important parameter in 
adaptive filtering algorithms as it determines the influence 
of past observations on the estimation process. A higher 
value of λ indicates a higher level of adaptability to chang-
ing conditions, while a lower value of λ gives more weight 
to older observations. In this study, the forgetting factor 
for RLS was set to 0.9996, as in [21], while for AFFRLS, 
it was set as in [23]. For VRLS, the forgetting factor was 
initialized as specified in Section 3 of the paper. Once 
the algorithms were initialized, they were applied to esti-
mate the battery parameters and output voltage using the 
current and voltage measures provided in the Samsung 
18650-20R [24–26] dataset for the appropriate test cycle. 
The algorithms were run for multiple cycles to evaluate 
their performance over time and under varying condi-
tions. The use of the same initialization values for all three 
algorithms ensures a fair comparison of their performance 
in estimating battery parameters and output voltage. 
The inclusion of the forgetting factor further enhances the 
adaptability of the algorithms to changing conditions and 
improves the accuracy of the estimates.

Overall, the methodology employed in this study pro-
vides a robust and comprehensive approach to evaluate the 
performance of battery estimation algorithms in real-world 
conditions. The use of a benchmark dataset and standard 
driving cycles, along with careful initialization and parame-
ter selection, enables the comparison of different algorithms 
and the identification of their strengths and limitations.

Fig. 3 Current for: (a) BJDST, (b) US06 profiles

(a)

(b)
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5 Results and discussion
Figs. 4 and 5 demonstrate the findings of the identifica-
tion of the parameters using the three algorithms. It is 
evident from Figs. 4 and 5 that the parameters extracted 
by VRLS and AFFRLS are more stable, whereas the 
parameters identified by RLS change gradually with cur-
rent variation. This can be attributed to the fact that both 
VRLS and AFFRLS allow the forgetting factor to change 

dynamically to reduce the error between the measured and 
estimated terminal voltage. In contrast, RLS has a steady 
forgetting factor, and to minimize the error, it varies the 
parameters in the vector θ(k), leading to more fluctuations 
and occasional peaks in the battery parameters collected 
by this method.

Figs. 6 and 7 show the comparison between the esti-
mated voltage for the three methods and the real terminal 

Fig. 4 Parameter identification results (BJDST): (a) K0, (b) K1, (c) K2, (d) R0, (e) R1, (f) R2, (g) C1, (h) C2, (i) M, (j) λ

        (a)      (b)        (c)

            (d)          (e)            (f)

            (g)           (h)            (i)

          (j)
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voltage (measured value recorded in the dataset). The esti-
mation error of the output voltage is also displayed 
in Figs. 6 and 7. The voltage estimated by the algorithms 
is close to the actual measured voltage, with VRLS show-
ing a slightly lower accuracy.

Figs. 8 and 9 provide a more detailed analysis of the 
absolute relative error distribution for each algorithm. 
Figs. 8 and 9 reveal that VRLS is more accurate in terms 
of parameter identification than AFFRLS and RLS meth-
ods. The absolute relative error distribution of AFFRLS has 
a higher proportion for small errors (< 1%) than VRLS and 
RLS. However, the distribution decreases for high intervals 

(greater than 2%), up to 6% less compared to the other meth-
ods. This means that VRLS is superior in terms of accuracy 
in identifying the lithium battery model parameters.

To further demonstrate the efficiency of VRLS, we cal-
culated three predictive performance indicators that reveal 
the validity of the algorithms: mean absolute percentage 
error (MAPE), mean absolute error (MAE), and root mean 
square error (RMSE):

MAPE % ,� � �
� � � � �

� ��
�100

1n
V i V i

V ii

n
est true

true

 (18)

Fig. 5 Parameter identification results (US06): (a) K0, (b) K1, (c) K2, (d) R0, (e) R1, (f) R2, (g) C1, (h) C2, (i) M, (j) λ

        (a)         (b)         (c)

        (d)         (e)         (f)

        (g)         (h)         (i)

        (j)
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2

n
V i V i

i

n

est true ,  (20)

where n denotes the cycle number, Vtrue is the measured 
output voltage, and Vest is the estimated value.

Table 2 provides a summary of the predictive perfor-
mance of all the algorithms in terms of RMSE, MAE, and 
MAPE. These are commonly used metrics to evaluate 
the accuracy of prediction models. The results show that 
VRLS performs better than RLS and AFFRLS in all three 
metrics. The lower values of RMSE, MAE, and MAPE 
for VRLS indicate that the algorithm has better predictive 
accuracy and a lower degree of prediction error. This is 
an important finding since accurate prediction of battery 
performance is crucial for optimizing battery usage and 
extending its lifetime.

Table 3 summarizes the minimum, maximum, and mean 
error values for the two battery cells. The results reveal that 
VRLS has the lowest maximum and mean errors compared 
to RLS and AFFRLS. The maximum error represents the 
worst-case scenario in terms of prediction accuracy, while 

Fig. 6 BJDST profile results: (a) true measured voltage vs estimated 
output voltage, (b) error of estimation by the algorithms

(a)

(b)
Fig. 7 US06 profile results: (a) True measured voltage vs estimated 

output voltage, (b) error of estimation by the algorithms

(a)

(b)

Fig. 8 Percent of absolute relative error points of the three algorithms 
for the BJDST profile
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the mean error gives an overall idea of the accuracy of the 
algorithm. The highest mean error was recorded by the 

RLS method, which indicates that this method is less accu-
rate than the other two methods. This finding is consistent 
with the results presented in Table 2.

Overall, the results suggest that VRLS outperforms 
RLS and AFFRLS in terms of prediction accuracy and 
estimation precision. This is an important contribution to 
the field of battery modeling since accurate battery mod-
eling is crucial for the development of efficient battery 
management systems. The findings of this study can help 
researchers and practitioners to choose the most appropri-
ate algorithm for battery parameter identification and pre-
diction, depending on their specific needs and applications.

6 Conclusion
In this work, a second order Thevenin model is used, the 
OCV is described with an adjustment of Nernst equation, and 
the hysteresis effect is denoted with a zero-correction term.

The parameters of the equivalent model are depicted 
by the proposed VRLS method and compared to RLS and 
AFFRLS methods. The output voltage estimated by all 
methods is compared with the measured voltage (saved 
in the dataset).

The accuracy of the algorithms was verified using exper-
imental data for the lithium-ion batteries: SMASUNG 
INR 18650 [24–26] cycled in two dynamic profiles.

We provided the data to the algorithms and compared the 
voltage estimated by the three algorithms. We have shown 
that the distribution of the relative absolute error of VRLS 
is small for errors greater than 2% less than AFFRLS and 
RLS. This means that VRLS is superior in terms of accu-
racy. In view of this work. The suggested algorithms can be 
adjusted and coupled with approached like Kalman filters, 
sliding mode observers, sunflower optimization algorithm 
(SFO), H  ∞ filter or particle filtering (PF) to evaluate the 
state of health or charge of a lithium-ion battery.

Fig. 9 Percent of absolute relative error points of the three algorithms 
for the US06 profile

Table 2 Predictive performance indicators

Profiles Methods RMSE (mV) MAE (mV) MAE (%)

BJDST

VRLS 30.61 28.39 0.79

AFFRLS 34.64 31.62 0.88

RLS 59.31 49.35 1.39

US06

VRLS 32.87 30.53 0.85

AFFRLS 35.88 33.08 0.92

RLS 63.02 52.85 1.49

Table 3 Max, min and mean error

Profiles Methods Max (mV) Min (mV) Mean (mV)

BJDST

VRLS 105.04 0.026 28.84

AFFRLS 330 0.02 68.79

RLS 330.6 0.026 96.98

US06

VRLS 124 0.007 30.53

AFFRLS 141.42 0.007 33.08

RLS 232.11 0.008 52.85
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