
Cite this article as: Péter, G., Kiss, B. "A Collaborative Graph-based SLAM Framework Using a Computationally Effective Measurement Algebra", Periodica 
Polytechnica Electrical Engineering and Computer Science, 67(4), pp. 403–412, 2023. https://doi.org/10.3311/PPee.21358

https://doi.org/10.3311/PPee.21358
Creative Commons Attribution b |403

Periodica Polytechnica Electrical Engineering and Computer Science, 67(4), pp. 403–412, 2023

A Collaborative Graph-based SLAM Framework Using 
a Computationally Effective Measurement Algebra

Gábor Péter1*, Bálint Kiss1

1 Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics, 
Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

* Corresponding author, e-mail: petergabor@iit.bme.hu

Received: 16 October 2022, Accepted: 05 May 2023, Published online: 05 June 2023

Abstract

Simultaneous localization and mapping (SLAM) is an essential task for autonomous rover navigation in an unknown environment, 

especially if no absolute location information is available. This paper presents a computationally lightweight framework to enable 

agents with limited processing power to carry out the SLAM cooperatively and without absolute onboard localization sensors in a 2D 

environment. The proposed solution is built on a graph-based map representation, where nodes (resp. edges) represent landmarks 

(resp. odometry-based relative measurements), a measurement algebra with embedded uncertainty, and a compact database format 

that could be stored on a server in a centralized manner. The operations required by the agents to insert a new landmark in the 

graph, update landmark positions and combine measurements as a loop is closed in the graph are detailed. The resulting framework 

was tested in a laboratory environment and on a public dataset with encouraging results; hence our method can be used for cost-

effective indoor mobile agents with limited computational resources and onboard sensors to achieve a mapping while keeping track 

of the agent's position. The method can also be easily generalized for a 3D scenario.
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1 Introduction
Simultaneous localization and mapping (SLAM) are cru-
cial elements of autonomous navigation. It stands for 
the map-building process while continuously updating 
the rover's location. In-depth tutorials for understanding 
the basics of SLAM are provided by Durrant-Whyte and 
Bailey [1], and Bailey and Durrant-Whyte [2]. With per-
fect odometrical sensors and calculations or using abso-
lute sensors such as GPS, the localization problem would 
become easily feasible, as the absolute position would be 
available to prepare the map of the environment. Building 
a map still requires some simplifications in this case as 
well, as some details must be discarded to have a repre-
sentation of the environment in the on-board memory 
with limited capacity. One possible option is to use a land-
mark-based graph representation.

In many situations absolute sensors deliver measure-
ments with great precision, but an easy-to-use alternative 
of GPS is often unavailable for many typical applications 
involving indoor navigation. The usually odometry-based 
relative displacement measurements between landmarks 

carried out by robots are noisy, but multiple measure-
ments may be realized by different robotic agents in the 
same environment. Suitable, distributed algorithms may 
merge these measurements which take into consideration 
the limited computational features of the robotic agents, 
including processing power, available memory, available 
time, available communication bandwidth and so on.

A comprehensive survey of over 300 publications 
related to SLAM research, mostly from the last ten years, 
is presented by Huang et al. [3], demonstrating that this 
field is actively researched and of great importance.

Graph-based methods introduced new generations of 
SLAM algorithms. Early research results were reported by 
Thrun and Montemerlo [4], where a graph-based method 
for solving the online SLAM problem was presented. Ever 
since this method has existed as a resource-friendly alter-
native to filtering-based solutions thanks to its graph-
based sparse nature.

As edges in the graph represent relative measurements, 
one may determine the relative location of two landmarks 
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(i.e., graph nodes) by following a path. If a new mea-
surement occurs thanks to a new path between two land-
marks, this allows the fusion of the measurements along 
both paths. Such an operation is referred to as loop closure 
(LC). A robust LC method for graph-based SLAM is pre-
sented by Latif et al. [5]. Their novel algorithm enables the 
correction of previous misalignments in the graph based 
on new measurements. The authors also claim that the 
algorithm is almost real-time and works on large datasets.

Geometric primitives could be used to represent the map 
as reported by Aloise et al. [6]. However, these primitives 
are mainly found in indoor or urban environments, hence 
their usage might be limited to generic outdoor data-
sets. A more robust landmark relation-based method is 
presented by Himstedt et al. [7]. The proposed relations 
between detected landmarks could be used for outdoor 
environments as well, while storing the landmarks gives 
long-term stability to the algorithm.

A powerful landmark-based method with graph optimi-
zation is presented by Schuster et al. [8]. In their approach, 
a radar is used as environmental sensor, while inertial 
measurement unit (IMU)-boosted wheel-rotation based 
odometry is utilized for motion estimation. The land-
marks are extracted from the point cloud aggregated by 
multiple radar scans using a measurement grid method. 
This method results in a map with high landmark density.

LIDAR-based SLAM methods are called LOAM 
(LIDAR based Odometry And Mapping). With the in- 
creasing availability of LIDAR sensors, promising 
research results are available in the field of sensor fusion 
such as GR-LOAM (Ground Robots-LOAM) presented by 
Su et al. [9]. In areas with few LIDAR detectable features, 
both wheel odometry and inertial data are heavily utilized 
as reported by Júnior et al [10]. Wheel-based odometry 
is a computationally lightweight method therefore it was 
selected for our purposes as well.

This article presents a graph-based method, treating the 
map as a collection of landmarks with the edges repre-
senting the connections between these landmarks. Most 
graph-based SLAM methods use pose-graphs, where 
a node represents the pose of the mapping agent at a given 
time. In our framework, they represent landmarks – a nat-
ural representation of the map. The major contribution of 
this paper is an edge-measurement algebra with embedded 
uncertainty which allows an efficient LC fusing the mea-
surements. The method also enables collaborative map-
ping in a centralized way where the database of measure-
ments is stored and refreshed on a server accessible by all 

robotic agents. The main benefit of this framework is that 
agents require only low computational power and basic 
communication capabilities, but thanks to the graph-based 
map representation and the novel measurement algebra, 
the resulting SLAM allows efficient fusion and higher pre-
cision. The algorithm consists of the following phases: 
position estimation, landmark matching, measurement 
fusion and relaxation. A novelty of the algebra is the use 
of a Delta-Star transformation during the relaxation phase, 
often referenced as Delta-Wye transformation in the litera-
ture since the work of Lehman [11]. A few early results of 
the authors were presented in [12].

The method studied here has been implemented on the 
embedded hardware of a reduced-size rover, equipped 
with a low-cost LIDAR device. The results obtained show 
the usability of the framework. Moreover, our method has 
been also tested off-line, on a public dataset provided by 
Bosse and Zlot [13] where the results are also promising.

The remaining part of the paper is organized as fol-
lows. Section 2 presents our SLAM framework detailing 
the graph representation, the measurement algebra, and the 
update scheme, including the LC. The framework presen-
tation is followed by the implementation results on a small 
mobile platform and on a public dataset, and Section 4 sum-
marizes the results and gives some hints for future research.

2 SLAM framework
Section 2 details the graph-based map storage method, 
the edge-measurement algebra with embedded uncertainty 
and the operations on the map. The framework relies on 
two main unit types, the central server, and the agents. 
Agents gather information during the exploration phase 
in the form of odometrical data and landmark detections, 
while the server stores and updates the map, thus accumu-
lating information provided by the agents.

2.1 Map storage
A key component of the whole framework is a compact, 
graph-based storage method representing a simplified ver- 
sion of the environment. Without loss of generality, we re- 
strict ourselves to the 2D case. Graph nodes are landmarks 
(or waypoints) representing a point with special features. 
For instance, in case of a corridor, landmarks can represent 
junctions, corners and places where doors are located.

A landmark is represented by its [X, Y] coordinates 
in a Cartesian frame. The relative displacement of two 
neighboring landmarks consists of three measurements 
as depicted in Fig. 1 for a general case. The relative dis- 
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placement equals the path travelled by the agent between 
the two landmarks plus the detections themselves.

Paths or ways may connect the landmarks represent-
ing the edges in the graph. Their shape may vary accord-
ing to the navigation algorithm used by the robot. These 
ways will be characterized by the overall displacement 
expressed by the ΔX and ΔY parameters. Handling mul-
tiple measurements between the same nodes requires 
a measurement fusion operation, while evaluating mea-
surement-chains requires measurement addition. There is 
also a need for a graph-level operation - the delta-star con-
version - to simplify the graph during the relaxation phase. 
All these operations define an edge-measurement algebra.

Robotic agents contribute to the map building by detect-
ing landmarks during navigation and providing measure-
ments on their relative positions. These measurements are 
noisy, therefore a third – uncertainty – parameter is added 
to both the landmark positions and to their pairwise rela-
tions. During calculations uncertainty denotes variance, 
while for plotting, standard deviation is used. The pro-
posed algorithm relies on error-free long-term orienta-
tion estimation from the mapping agents as orientation is 
not stored in the framework. If the provided orientation 
estimation is error-free, the 1-dimensional uncertainty is 
a fair representation, although measurement vectors are 
2-dimensional. The noise model is Gaussian – it is an addi-
tive, zero mean, white noise.

The graph-based map is stored on a server which also 
carries out the map-update step, thus agents have no need 
for high computational power. It is assumed that agents 
can communicate with the server through a channel with 
appropriate bandwidth.

Memory is a valuable resource; thus, a compact repre-
sentation of the graph is necessary. The graph is stored as 
a matrix, where non-diagonal elements represent the edges 
and diagonal elements represent the nodes. Edges repre-
sent displacement between nodes combining all measure-
ments. Due to the symmetry a lower triangular matrix rep-
resentation can be chosen. The columns select the starting 

node of the edges, referred to as the From indices, while 
rows select the terminal node of the edges, referred to as 
the To indices. Having the lower triangular representation, 
the diagonal elements have the same From and To indices, 
thus giving the matrix depicted in Fig. 2.

Using the matrix representation, landmark measure-
ments are stored as a triplet: coordinates X and Y and 
the uncertainty U. The value U equals the variance, and it is 
initialized to ∞. If there is a single mapping agent with suffi-
cient memory for storing the whole map and the processing 
power to evaluate the map-update step, the entire frame-
work could be executed directly on the rover. In the case 
of multiple rovers mapping cooperatively so that only 
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Fig. 1 Landmark detection

Fig. 2 Map representation – matrix and graph form; (a) in matrix form; 
(b) in graph form
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a limited computational resource is available on a single 
mapping agent, the database could be stored and updated on 
a central processing unit to reduce the computational needs 
for each rover. This requires however some basic commu-
nication between the agents and the central processing unit.

2.2 Measurement algebra
The core of the SLAM framework is an algebra defining 
operations on measurements considering disturbances. 
A measurement 



M  is given as:
 

M X Y U D U� � ��� �� � �� ��, , , ,  (1)

where X and Y define a location (resp. displacement (D)) 
for a landmark (resp. along a path connecting two land-
marks), and U denotes the uncertainty (variance of mea-
surement errors). A home landmark position is needed for 
the framework. All other landmarks could be localized 
relative to this reference landmark. The uncertainty value 
of the home position is zero.

To define operations for measurements, let us introduce 
M1

� ���
 and M 2

� ���
 measurements as:

M D U
1 1 1

� ��� � ��
� �� ��, ,  (2)

M D U
2 2 2

� ��� � ��
� �� ��, .  (3)

The basic operation of the algebra is negation.

� � ��� ��M D U
1 1 1

� ��� � ��
,  (4)

The uncertainty value is not affected by this operation. 
Negation is used for calculating the measurement vector 
after applying an endpoint swap. With path between land-
marks A and B, the operation is straightforward since:

AB BA
� ��� � ���

� � .  (5)

The next binary operation is addition.

M M M M D D U U
1 1 1 2 1 22 2

� ��� � ��� � ��� � ��� � �� � ��
� � � � � ��� ��,  (6)

Displacement vectors and uncertainties are treated sep-
arately regarding this operation. The addition is both asso-
ciative and commutative thus the order of measurements 
does not affect the result.

AB BC AC
� ��� � ��� � ���

� �  (7)

Addition is used to calculate the resulting displacement 
of multiple vectors or to determine the position of a land-
mark, given a reference landmark and a displacement vector.

A AB B� �
� ���  (8)

A measurement addition is depicted in Eq. (7) where 
A, B and C are landmarks, while AB

� ���
 and BC

� ���
 are the two 

measurements, resulting the AC
� ���

 virtual measurement 
vector. A landmark – measurement addition is defined in 
Eq. (8) where A is the starting landmark, AB

� ���
 is the mea-

surement vector from A to B and B is the second landmark.
The last binary operation is fusion denoted as:

M M M
3 21

� ��� � ��� � ���
� � .  (9)

Fusion is used to combine measurements along same 
edges during the mapping phase and the operation is 
defined by:

D DU D U
U U

D U
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�
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U U U
U U

U
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3

1 2
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2
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1

1

�
�

�
�

.  (11)

Having a limitation for measurement uncertainty be- 
tween (0, ∞) and having an initial value of ∞ for all mea-
surement uncertainties, the second set of formulae are 
numerically stable. Thus, the fusion operation reads:

M M M
D U
U

D

U
U

U
U
U

3 21

1

2

1

2

2

1

2

2

1

1 1

� ��� � ��� � ���
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�

� �

�

�

�
�
�
�

�

,

��

�
�
�
�

.  (12)

Fusion is both associative and commutative if no mea-
surements with infinity or zero uncertainty are involved. 
In the case of measurements between the same land-
mark-pairs with different detection orders, one of them 
should be negated before the fusion:

FG FG GF
3 1 2

� ���� � ���� � ����
� � �� �.  (13)

There is no unique identity element regarding fusion. 
However, the fusion with a measurement with unbounded 
uncertainty leaves the original measurement unchanged 
as the displacement could be of any value, only the un- 
bounded uncertainty matters.

2.3 Delta-Star conversion
The Delta-Star conversion is an essential graph-level oper-
ation, as no simple operation could simplify a delta pat-
tern thanks to its strongly connected nature. During the 
relaxation phase, the need for eliminating delta patterns 
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and obtaining equivalent star patterns is a fundamental 
requirement. Fig. 3 illustrates the transformation. 

The goal is to define the virtual measurement vectors 




a b,  and c  and a virtual landmark E, knowing the esti-
mated position of A, B and C and knowing the measure-
ments  x y,  and z.  The uncertainty values for 



a b,  and 
c  are derived from the uncertainty values between points 
in the [A, B, C] set.

U
U U U
U U U

U UAB
y z x

x y z
a b�

�� �
� �

� �  (14)

U
U U U
U U U

U UAC
x z y

x y z
a c�

�� �
� �

� �  (15)

U
U U U
U U U

U UBC
x y z

x y z
b c�

�� �
� �

� �  (16)

By summing both sides, one gets:

U U U U U U
U U U

U U Ux y x z y z

x y z
a b c

� �

� �
� � � .  (17)

The uncertainties (variances) read:

U
U U

U U Ua
x y

x y z

�
� �

,  (18)

U
U U

U U Ub
x z

x y z

�
� �

,  (19)

U
U U

U U Uc
y y

x y z

�
� �

.  (20)

The position of the new virtual point E could be any-
where, but for practical reasons, it is placed in the centroid 
of the ABC triangle. The displacement values of the vir-
tual measurements could be expressed from basic geomet-
rical correlations.

D
D D

D
D D

D
D D

a
x y

b
x z

c
y z� ��

� �� � ��
� �� � �� � �� � ��
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�
�

�
� �

�
� �

3 3 3
, ,  (21)

2.4 Map update scheme
The map update scheme relies on the operations defined as 
part of the measurement algebra. The steps are presented 
in Sections 2.4.1 to 2.4.5.

2.4.1 Initialization
The SLAM framework pre-allocates the required memory 
to store the map in a matrix of a given number of land-
marks and measurements. All but one triplet is initialized 
to [(0,0) ∞]. As the algorithm needs a reference landmark, 
the first diagonal element of the matrix is set to the posi-
tion of the reference landmark, with zero uncertainty: 
[(XR, YR), 0].

2.4.2 Landmark detection and position estimation
If an agent detects a landmark, an odometry-based mea-
surement is obtained, as depicted in Fig. 1. The measure-
ment may contain errors from both the odometry calcula-
tions and due to limited detection accuracy. The position 
of the latest landmark passed by the agent combined with 
the displacement equals the estimated position of the land-
mark detected.

2.4.3 Landmark matching
Once the current landmark position is available it is 
checked against the diagonal elements of the map matrix, 
considering the uncertainties. If the detected landmark is 
already stored in the map, a measurement fusion and LC 
are triggered, otherwise it is simply inserted in the map.

2.4.4 New landmark insertion
In the case of the detection of a new landmark, two ele-
ments are modified in the map matrix. An off-diagonal 
element will store the new odometry measurement, and 
a diagonal element will store the landmark position.

Fig. 3 Delta-Wye transformation; (a) Delta form; (b) Wye form
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2.4.5 Fusion of measurements and loop closure
Reaching a landmark already detected closes a loop of mea-
surements. The measurement that was already in the data-
base must be fused with the new one, using the binary fusion 
operator of the measurement algebra. Once a new measure-
ment is added that is part of a loop, the position of all land-
marks must be updated. The estimated position of each land-
mark is recalculated in the so-called relaxation phase.

2.5 Relaxation
Once the measurements are up to date, each landmark 
position is recalculated by relaxing the graph using 
an iterative combination of the following steps: dead-end 
removal, simple node removal, and delta-star conversion.

Dead-end removal is the process of eliminating nodes 
with single connections. Simple node removal is the pro-
cess of eliminating a node with two connections, option-
ally creating a new virtual measurement, or fusing it with 
an already existing one.

Fig. 4 illustrates the algorithm for a simple exam-
ple where a is the reference landmark, and the position 
of landmark d is updated. Thus, the relaxation results in 
a simple edge connecting a to d.

3 Experimental results
The proposed framework was analyzed with real data in 
both indoor and outdoor scenarios. The public Kenmore 
dataset was used for the outdoor case [13].

3.1 Indoor tests using a simple mobile robot
The indoor test environment depicted in Fig. 5 has a simple 
geometry consisting of a square corridor with an outer two 
meters wide square and an inner one-meter wide square. 
Landmarks are the corners of the outer square.

The robot, depicted in Fig. 6, navigates along the walls, 
keeping a predefined distance while running a simple odo-
metric algorithm based on the angular displacement mea-
surements of its wheels. It is also possible to incorporate into 
the odometric calculations that the neighboring wall sections 
are perpendicular to each other. This information is consid-
ered with a Kalman-filter and it is based on a line fitting algo-
rithm for the point cloud recorded by the LIDAR on board.

The LIDAR sensor collects distance measurements at 
a rate of 4 kHz, with a rotation speed of around 10 Hz, result-
ing in an angular resolution of about one degree. The reso-
lution of the wheel rotation sensors is 6144 increments per 
revolution, while the tire perimeter equals 187 mm, resulting 
in a displacement resolution of 0.03 mm. Motion estimation 
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is based on odometry with a switchable Kalman-filter using 
LIDAR measurements. The σOdo value equals 0.01 mm as 
0.03 mm equals three sigmas. In the case of LIDAR measure-
ments, the point cloud is processed, and lines are fitted, rep-
resenting the walls. The precision of these fits is unknown, 
a worst-case estimation of 10 degrees is utilized. Having the 
three sigmas equaling 10 degrees, σLIDAR equals around 0.05.

The rover follows the centerline of the actual corri-
dor in a clockwise manner. The framework was tested 
with and without orientation correction. Fig. 7 depicts 
the trajectory after three consecutive rounds together 
with the landmark estimates without orientation cor-
rection. The radius of a landmark estimate corresponds 
to the 3-sigma threshold, while the center-point depicts 
the belief of where the landmark is estimated to be. 

The standard deviation of the measurements was set in 
a way that 3-sigmas equals 10 cm for every section.

The first LC in the graph occurs when the robot revis-
its the home position at (0,0) after the first round along 
the corridors. Having noisy orientation during the mea-
surements, the estimates are significantly changing over 
time, while the overall uncertainty decreases from mea-
surement to measurement after LC.

The uncertainty value of each landmark together with 
the Euclidean error of the estimated position is plotted 
against the iteration count starting from the detection of 
the fourth landmark. The greatest improvement is shown 
at the first LC. The 3-sigma region of the last landmark 
along the chain dropped from 5.8 cm to 2.9 cm.

By using the same measurement set combined with 
orientation correction applied off-line, the trajectory and 
the estimates have a smoother look as depicted in Fig. 8. 
As the orientation is estimated way better over the entire 
three consecutive runs, the estimates are more stable 
regarding their positions.

The robustness of the algorithm can be seen by compar-
ing Fig. 7 to Fig. 8. Although the estimated trajectories are 
way closer to the ground truth in the second case, the land-
mark position estimates are almost identical for both cases 
proving the SLAM framework uses the advantage of LC.

3.2 Kenmore dataset
The Kenmore dataset is an outdoor dataset consisting of 
odometry-based trajectory estimation and LIDAR mea-
surements [8].

With no prior knowledge of the geometry of the envi-
ronment, the previously utilized line fitting method and 
landmark selection cannot be used. Therefore, a more ver-
satile method, the NDT-algorithm was used for scan-match-
ing [14]. In order to generate measurements from the dataset, 
first the odometry-based pose estimation and the LIDAR-
based pose estimation (Fig. 9) had to be fused.

The landmarks were generated at points where the ori-
entation changed considerably using an offline smoothing 
filter. As most of the Kenmore dataset would generate no 
loops in the graph representing the map of the environment, 
only the measurement samples from 6000 to 7800 were used 
during testing. The starting position was given with coordi-
nates (0,0) and with a heading of zero to the mapping agent.

Having the fused trajectory, the local maxima of the 
curvature were identified after a simple differentiation 
and smoothing of the orientation, and these points were 
selected as landmarks. By using such a simple and coarse 
landmark definition, all measurements were given the 

Fig. 7 Mapping without orientation correction; (a) Measurement vectors 
and landmark estimates; (b) Euclidean errors and variances
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same uncertainty – corresponding to a standard deviation 
of 3 meters. The fused trajectory estimation and the gener-
ated landmarks are depicted in Fig. 10.

The Kenmore dataset was evaluated by feeding the esti-
mated measurements between upcoming landmarks to the 
framework. As there were 20 landmarks identified other than 
the reference landmark, the framework was called 20 times.

The output after the last call of the framework is de- 
picted in Fig. 11. Comparing this to Fig. 10, the differ-
ences are obvious: the framework correctly closed multi-
ple loops, thus decreasing the uncertainty value for all the 
nodes above the third node, while providing better position 
estimates for these nodes by fusing multiple measurements 
of uncorrelated errors. The uncertainty values for the land-
marks are depicted in Fig. 12 as a function of iterations.

The ground-truth is given with the dataset in form of 
an image, depicted in Fig. 11. The final graph-based rep-
resentation shows great similarity to the ground-truth, 
however no numerical values were found, and therefore no 
exact comparison could be made.

The evaluation of all 20 measurements takes roughly 
23 ms on a 4th generation mobile i7 CPU, meaning that 
the framework is well suited for embedded systems as 
evaluation is required only upon landmark detection. 
As depicted in Fig. 13 the time requirement of the open 
loop landmark addition takes less than 0.1 milliseconds, 
while closed loop update time depends on graph complex-
ity and node count. As a comparison, it takes 59 ms on 
average for GTSAM to solve the factor-graph created with 
the same measurements, however GTSAM requires both 
the landmark indices as inputs along the measurements 
and an initial estimate for all landmark positions [15]. Our 
approach does not require these as inputs, they are rather 
part of the output of our algorithm.

Fig. 8 Mapping with orientation correction; (a) Measurement vectors 
and landmark estimates; (b) Euclidean errors and variances

0 0.5 1 1.5 2

x[m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y
[
m
]

(a)

0 1 2 3 4 5 6 7 8 9 10

Iteration

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

E
u
c
l
i
d
e
a
n
 
e
r
r
o
r
 
a
n
d
 
u
n
c
e
r
t
a
i
n
t
y
 
r
e
g
i
o
n
 
[
m
]

Landmark2
Landmark3
Landmark4

(b)

0 50 100 150 200 250 300 350 400 450 500

x[m]

-350

-300

-250

-200

-150

-100

-50

0

50

100

y
[
m
]

LIDAR and odometry based trajectory estimations

LIDAR
Odometry

Fig. 9 Kenmore dataset - trajectory estimations
0 50 100 150 200 250 300 350 400 450 500

x[m]

-300

-250

-200

-150

-100

-50

0

50

y
[
m
]

Measurements and uncertainty

Fig. 10 Kenmore dataset – Uncertainty without loop closures



Péter and Kiss
Period. Polytech. Elec. Eng. Comp. Sci., 67(4), pp. 403–412, 2023|411

Our method relies on odometry calculations between 
landmark detections, which are usually executed even if 

no higher-level SLAM algorithms are present, thus giving 
only limited extra overhead between detections.

4 Conclusions
The proposed SLAM framework delivers a lightweight 
solution, thus enabling agents with low processing power 
to do the mapping during navigation. (The choice of the 
landmark detection algorithm may increase the required 
computational power.) The simple algebra with its embed-
ded uncertainty delivers a robust framework that ensures 
proper handling of real-life measurements if long-term 
error-free orientation estimation is available. Further 
research goals are the implementation of landmark de- 
scriptors (e.g., LIDAR measurements) to handle orien-
tation correction and to robustly reject false LC; and the 
addition of cooperative mapping experiments (the frame-
work supports it by design). Most of the publicly avail-
able datasets do not provide an orientation estimation with 
long-term stability. Therefore, the algorithm could not be 
tested on those datasets. A next version of the framework 
is planned to have orientation correction and 2-dimen-
sional uncertainty as well and shall be tested on datasets 
such as Intel research lab and Infinity corridor.
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Fig. 11 Kenmore dataset – Estimated map vs ground truth; 
(a) Estimated map; (b) Ground truth
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