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Abstract

The control of overhead cranes is a benchmark problem, since it is an underactuated mechanism and its mathematical model is 

nonlinear. During operation the mass of the load is unknown, representing an uncertainty in the inertial parameters, which requires 

robustness of the controlled system. Our paper proposes a novel robust control method, that combines the differentially flat property 

of the dynamics with the robustness of the sliding mode control. The sliding surface is constructed to ensure the tracking of the 

configuration variables whose accelerations is calculated using the flatness property of the dynamic model. This formulation also 

allows achieving the matching conditions of the parameter uncertainties. Considering a simplified overhead crane model where the 

load motion is restricted in a vertical plane, two sliding surfaces are defined for the rope angle and rope length, since the cart position 

can be calculated from the previous two. The suggested control method is successfully validated in simulations as well as using 

a reduced-size overhead crane. For the real crane, the rope angle was estimated by utilizing the dynamical model, which uses the 

estimated cart acceleration.
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1 Introduction
Overhead cranes assist the handling of heavy loads in 
many industrial activities at construction sites, in harbors, 
and in factories to name a few. Their widespread use jus-
tify largely the continuous attention of scientists in control 
theory since robust and time optimal automation of crane 
operations have considerable practical benefits in terms of 
efficiency and safety.

Overhead cranes, and other similar equipment using 
ropes, show ability for underdamped sway of the load. 
Since the motion of the suspended load in any horizon-
tal direction requires that the force in the suspending rope 
have horizontal components such sway is always poten-
tially generated if the load is displaced. Load sway can be 
further amplified by external disturbances such as wind or 
other environmental conditions.

Automatic control of cranes has a rich literature where 
the suggested methods aim to move the load quickly and 
without residual sway. A more comprehensive review of 
crane control methods can be found in [1] and [2].

Open-loop strategies exist to minimize load sway. 
The so-called input shaping filters out frequency compo-
nents of the input signal that may excite the oscillation of 
the load [3, 4].

For closed-loop control, one may linearize the nonlin-
ear dynamics and design linear controllers, such as serial 
compensators [5], LQG [6] or robust [7, 8] feedback laws. 
Controllers designed based on the linear approximation 
of the dynamics can only guarantee the stability of the 
closed-loop system in a neighborhood of the operating 
point. However, quick operations require large accelera-
tions, which imply that the variables wander away from the 
operating point, where the linearized model remains valid.

Another family of controllers is suggested consider-
ing the nonlinear crane dynamics. One such approach is 
based on the differential flatness property [9, 10], where 
the load coordinates are shown to be the flat (or linear-
izing) outputs. The flatness property implies exact lin-
earizability, a comfortable parameterization of available 

https://doi.org/10.3311/PPee.21771
https://doi.org/10.3311/PPee.21771
mailto:finta@iit.bme.hu


214|Finta and Kiss
Period. Polytech. Elec. Eng. Comp. Sci., 68(2), pp. 213–221, 2024 

system trajectories using the load coordinates, and the 
design of a stabilizing tracking controller. However, this 
model-based approach requires the knowledge of the iner-
tia parameters including the load mass with adequate pre-
cision. To solve this problem adaptive algorithms can be 
used, that estimate the mass of the load, but during opera-
tion this can change very quickly when the load is hoisted 
from the ground or is being detached from the crane [11].

In this paper we propose a nonlinear control algorithm 
that combines the differential flatness property of the crane 
with sliding mode control to ensure robustness and provide 
increased disturbance rejection properties. The main con-
tribution of the paper is to consider the effects of parameter 
uncertainties and external disturbances lumped into a sin-
gle perturbation term, that satisfies the matching condi-
tions [12] for the plant inputs. Then two sliding manifolds 
can be constructed along which the matched disturbances 
are exactly canceled. This effectively means that the flat-
ness-based trajectory tracking controller achieves nomi-
nal performance even for the uncertain plant. The use of 
sliding mode control in crane systems with different tech-
niques is also widely used [13, 14].

The remaining part of the paper is organized as fol-
lows. Since the proposed controller is model based section 
2 derives the model of the overhead crane system using the 
Euler-Lagrange equations. This model is developed for the 
purposes of tracking a reference trajectory with the load 
and as such, some reasonable simplifications are made, 
which doesn't reduce the effectiveness of the developed 
control method in normal operating conditions. A more 
elaborate model for vibration control purposes is devel-
oped in [15]. Section 3 deals with the controller synthesis. 
First, in subsection 3.1 the exact linearization of the nomi-
nal system based on differential flatness is reviewed. Then 
the perturbed model is introduced in Section 3.2. Finally 
in Section 3.3 the full closed loop system is robustified uti-
lizing sliding mode control. Section 4 contains the simu-
lation results and Section 5 presents the measurements on 
a reduced-size crane setup in a laboratory setting.

2 Model of the crane system
The first step is to determine the dynamic equation of the 
plant to be controlled.

The setup is illustrated in Fig. 1. The load can move in 
a vertical plane. The configuration variables of the sys-
tem are the cart position R, the rope length L, and the rope 
angle θ. The parameters are the cart and load masses M and 
m respectively, the rotational inertia J, and radius ρ of the 

winch. The cable is assumed massless, since the mass of 
the load is significantly greater than that of the cable itself.
To obtain the mathematical model for the crane one might 
use the Euler-Lagrange equations in the form:

d
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where q = [R L θ]T and the Lagrangian reads L(q, q̇) = 
E(q, q̇) – P(q) so that that the kinetic energy and the poten-
tial energy is given with the expressions:
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The load velocity is expressed as function of q and q̇:
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The velocity of the cart is trivially vcart = Ṙ. The result-
ing crane dynamics has the form:
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For later use, let us remark that the model is invariant 
with respect to R and Ṙ. Let us also note that the model 

m

M

R(t)

FT

Fig. 1 Variables and parameters of the planar overhead crane
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does not include (nonlinear) friction phenomena of the 
cart and the winch as these effects are later considered as 
external disturbances.

The model equations are valid if the rope tension is pos-
itive (the load is not pushed using the rope) and the sway 
angle stays in the (−90°, +90°) interval (where cos θ > 0). 
Both conditions are fulfilled for realistic crane operations, 
no small angle approximations are employed.

3 Controller synthesis
This section walks over the necessary steps of design-
ing a novel robust controller for the two dimensional (2D) 
overhead crane system using differential flatness based 
exact linearization and sliding mode control.

3.1 Exact linearization based on differential flatness
The 2D overhead crane system's model belongs to the class 
of differentially flat systems. Roughly speaking a system 
is differentially flat, if one can find a set of so-called flat 
outputs (that are equal in number to the inputs), such that 
all the states and inputs of the system can be expressed 
by the flat outputs and some finite number of their deriv-
atives. Moreover, if a system possesses the flatness prop-
erty, then it is linearizable by dynamic state feedback and 
a change of coordinates.

The method presented here follows the developments 
in [16], and also referenced in [10]. It is shown that exact 
linearization is only possible via dynamic feedback [17].

It can be shown that the load's coordinates, denoted by 
xm and zm , are the flat outputs of the system. To obtain the 
expressions of the model variables R L R L, , , , ,� �  � �  
using ( xm, zm ) and their derivatives, let us consider the 
free-body diagram of the load, depicted in Fig. 2.

The load's equations of motion read

mx F
mz F mg

m L

m L





� �
� � �

sin

cos

�
�

. (8)

Using these equations and elementary geometry one gets:
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The input variables F and T can be obtained as func-
tions of xm, zm and their time derivatives using Eq. (4). 
To construct the dynamic feedback we use the steps pre-
sented in [10]. The variables ζ1, ζ2 are introduced as:
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They correspond to the states of the dynamic state feed-
back so that the closed-loop linear system is linear and has 
the form:
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The linearizing feedback structure is presented in Fig. 3. 
Let us introduce the standard notation of Sθ = sin θ and 
Cθ = cos θ.

Block A realizes the expression:
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Block B contains:







  

  

R
L

L S L
g L C L S

�

�
�
�

�
� �

�

�
�

�

�
� �

�
� �

�F F
1

1

2

1

2

2

2

2

�
�

� �
� �

�

� ��

�

�
�

�

�
�

�

�
��

�

�
�� ,  (13)

where:

F F
1 2

1

0
�
�

�
�

�

�
� �

� �
�
�

�
�

�

�
�

S
C

S LC
C LS

�

�

� �

� �

, ,  (14)

and Block C contains Eq. (4), namely the dynamic model 
of the crane. 

Let us emphasize that all inertia parameters are con-
centrated in Block C. The inputs of this block, denoted by 
  R Ld d d

T
, , ,��� ��  can be thought of as the desired acceler-

ations of the configuration variables for which the inputs 
are calculated.

Thus exact linearization of the crane system is 
achieved with the feedback structure shown in Fig. 3. 
This is achieved by dynamic feedback. It can be shown 

Fig. 2 The forces acting on the load
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Fig. 3 The feedback structure of exact linearization resulting Eq. (11) in 
closed-loop
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that no exact linearization can be achieved with less than 
two states in the feedback. Thus the closed loop system 
becomes two decoupled chains of integrators as in Eq. (11).

Eq. (11) allows the design of an additional tracking con-
troller for sufficiently smooth load reference trajectory xr(t), 
zr(t), ensuring the exponential decay of the tracking errors 
defined as ex = xr− xm and ez = zr− zm. For, it is enough to set 
the linear differential equations for the tracking errors:
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Using Eq. (11). The scalar coefficients λx,i , λz,i are 
design parameters used to set the decay rate of the error 
so that all roots of the characteristic equations of Eq. (15) 
are in the stable region of the complex plane. The deriv-
atives of the load coordinates in Eq. (16) can be calcu-
lated using q, q̇, ζ1, ζ2, hence no numerical differentiation 
is required. Fig. 4. depicts the closed loop after applying 
the tracking controller so that xr r r

T

rx x x� �� ��� � �
, , ,
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The reference path xr and zr needs to be constructed 
such that their time derivatives up to the fourth degree 
exists. Typically, idle-to-idle trajectories are constructed 
with polynomial time functions.

The feedback constructed so far considered only the 
model with nominal inertia parameters. The following 
subsection deals with the case where the parameters of the 
crane differ from the nominal ones and the system is sub-
ject to disturbances such as non-modeled friction forces.

3.2 The perturbed model
Here we analyze the effect of uncertain inertia parame-
ters and external disturbances on the crane dynamics. 
Uncertain inertia parameters are the mass of the cart and 
load. Nonlinear friction forces can be considered as exter-
nal disturbances. The following assumption is made.

The external disturbances d are modelled as:
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such that d = [d1, d2, 0]T, hence we assume that the external 
disturbance only affects the acceleration of the cart and 
the acceleration of the rope length (e.g., in the form of fric-
tion), no disturbance acts directly on the rope angle.

The assumption defines the types of disturbances for 
which the closed loop can be made invariant, since later in 
this subsection it is shown that these satisfy the matching 
conditions [12]. Based on the form of the disturbance d in 
Eq. (17), the last component of Eq. (4) reads:
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Eq. (19) contains no inertia parameter or forces/torques 
so one can express R̈ as:
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Thanks to the invariance of the model with respect to 
R and Ṙ, a reduced model can be obtained by substituting 
Eq. (20) back into Eq. (4). For the reduced configuration 
vector q ̃= [L, θ]T the reduced model reads:
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Note that in the matrix of Eq. (22) some elements are 
divided by Cθ , meaning that the effects of uncertainties 
are magnified as the rope angle approaches ±90°, which is 
a singularity of the model.
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Fig. 4 Closed-loop interconnections with the tracking controller
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Let us denote by H̃  and h̃  the matrices H̃  and h̃  with 
components calculated with the nominal inertia parameter 
values. The linearizing feedback law for the nominal sys-
tem without disturbance can be calculated as

� � � � � � ���� � � � � � �H q a q qh , ,  (24)

where ã = [aL, aθ]
T denotes the accelerations. The parame-

ter uncertainties modify the nominal components as:
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Applying Eq. (24) to the reduced model of Eq. (21), 
the closed-loop dynamics read:

��� � � � � � � �q H H H� � � �� �� �a a h d1 1� � .  (26)

Next, we show that the uncertainties satisfy the 
so-called matching conditions.

For the sake of completeness, let us summarize the con-
cept of matching conditions [14]. Consider an uncertain 
nonlinear state equation in the form:
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This system is said to satisfy the matching conditions if 
the uncertain terms can be factorized as follows:
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The uncertainties satisfying the matching conditions 
are called matched uncertainties.

If the matching conditions are satisfied, then Eq. (27) 
can be rearranged into the form:
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where Δ(x, u) is a uniformly bounded unknown func-
tion that lumps together uncertainties and external dis-
turbances. To ensure robustness against Δ(x, u) the upper 
bound of its norm �� x u,� �  needs to be known.

Let us now show that the crane dynamics satisfy the 
matching conditions. Considering the dynamics given by 
Eq. (26), the corresponding state equation reads:
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The matched uncertainties act along the control dis-
tribution spanned by the columns of G(x), so matched 
uncertainties generate motion directions in the state space 
which can be directly eliminated by the control action.

For the crane system we define u and Δ(x, u) as:
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3.3 Robustifying the closed loop system
The aim is to introduce a new component in the feed-
back loop of Fig. 4 which ensures robustness against the 
matched uncertainties.

In the differential flatness-based control of Fig. 4 
Block B calculates the term    qd � �� ��R Ld d d

T
, , ,�  which 

contains the desired acceleration for the rope length and 
the rope's angle.

Let us remark first that the compatible time functions 
for L Ld d d d, , , θ θ  can be calculated by integration as:
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Now it is possible to define a tracking error in the 
reduced configuration variables:
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A sliding mode controller is constructed to eliminate qẽ 
so that the sliding surface is defined as:

s q q� ��� �e e�� , (36)

The initial values of the integrators after the desired 
accelerations can be set as the initial values of the system, 
this way we start on the sliding surface, since the errors 
would be zero. A corresponding Lyapunov function is:
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whose time derivative along the trajectories of the per-
turbed subsystem is:
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The time derivative of the sliding variable is thus:
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Now we need to choose ã such that Eq. (38) holds. For 
that we use the following control signal:

� ��� ��a q q K s� � � � � �d e sign�� ,  (40)

where Λ = diag (λL, λθ ), K = diag (KL, Kθ ) and λL, λθ, KL, 
Kθ > 0 are constants that the designer needs to choose.

If we choose the gain K such that:
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then Eq. (38) holds, meaning that the sliding surface is 
reached. The system becomes invariant to matched pertur-
bations and the tracking errors decay exponentially, guar-
anteeing robust stability and performance. If the inequal-
ity (Eq. (38)) holds globally, then the sliding surface is 
reached from the whole state space. Thus, the robust con-
trol law τ can be written as:

�� � � �
�

�

�
�
�

�

�

�
�
�
� � �H q h q q

a
a
a

R

L

�

, ,  (42)

where the variable a with subscript R, L, θ denotes that it 
is the signal for the virtual acceleration inputs. The term 
aR is calculated similarly to Eq. (20), where  R, θ  are 
replaced with aR, aθ.

To sum up, the robustified controller structure is the 
differential flatness based exact linearization depicted in 
Fig. 5, with the additional sliding mode controller. For this 
figure we used the shorthand notation of:

L L K sign s

K sign s
SW L e L L

SW e

� � � � �
� � � � �
�

� � �� � �





. (43)

The reference signals for the SMC are the integrals of 
the desired accelerations in the configuration variables 
computed by the Blocks A and B. The tracking controller 

is left unchanged compared to Fig. 4. The final control 
structure is depicted in Fig. 5, where the block C is sub-
stituted by the block C̃ , to show that it now performs the 
calculations of Eq. (42), instead of Eq. (4).

This structure ensures the satisfaction of the matching 
conditions. If instead the robustifying sliding mode signal 
is inserted into the tracking block, then one can show the 
opposite. The matching condition property is ruined by 
the integrators in the A-B block of Fig. 5, which are neces-
sary for exact linearization.

4 Validation using simulation
This section is dedicated to the validation of the designed 
controller using simulations. Both the original exact lin-
earization based controller (abbreviated as NORC after 
’non-robust controller') and the robustified version with 
the sliding mode extension (abbreviated as SMC) are sim-
ulated to compare the results. The simulations are carried 
out using Matlab and Simulink [18].

The nominal plant has parameter values M = 0.3 kg, 
m = 0.2 kg, ρ = 0.03 m, J = 0.001 kg/m2. The tracking con-
troller is synthesized such that the characteristic polyno-
mial of the tracking error differential Eq. (15) has all four 
of its roots at 1/T, T > 0, which results in:

� � � �
3 2 2 1 3 0 4

3 6 3 1
� � � �

T T T T
, , , .  (44)

The time constant T was chosen as 0.2 seconds. The val-
ues of KL and Kθ are both 10 and λL, λθ are both 5. These can 
be further tuned to improve the controller.

A simple, polynomial, idle-to-idle trajectory was 
planned. Simulation runs are executed so that the load's 
mass is increased to four times its nominal value m = 0.8 kg. 
Fig. 6 depicts the simulation results. Significant differences 
can be observed between the performances of the two con-
trollers, the SMC achieves the same performance as with 
the nominal parameter values, while NORC could not 
achieve exponential decay of tracking errors.

Fig. 7 shows the control effort produced by the two con-
trollers in case of perturbed parameters. It is clear that the 

ˆ ˆ

aR(Eq. 20)
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Fig. 5 The block diagram of the robustified closed loop system
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cost of better trajectory tracking is higher control effort, 
which is needed to attenuate the effects of uncertainties 
and disturbances. The spike in the force actuation may be 
caused by the reaching of the sliding surface.

5 Validation on a reduced-size crane setup
To test the controller, experiments were performed on 
a real, reduced-size 2D overhead crane setup in the labo-
ratory of our department. This model, depicted in Fig. 8, 
is built upon the AMIRA inverted pendulum platform, the 
pendulum part is replaced with a winch mechanism.

There are incremental encoders measuring the dis-
placement R(t) and the rope length L(t). The rope angle 
θ(t) is also measured by an incremental encoder, how-
ever these measurements were no used in the feedback. 
Instead, the rope angle was estimated by calculating the 
rope angle's second derivative:

   � � � �est est est estL
R L g� � � �� �1

2cos sin ,  (45)

which is a rearrangement of Eq. (20). The est in the sub-
script expresses that the value is computed using Eq. (45) 
the derivatives   R t L t R t� � � � � �, ,  are obtained by discrete 
differentiation of the corresponding measurement values. 
The output of the angle acceleration estimator Eq. (45) 
is integrated twice, the results θ θest est,   are fed back to 
the estimator, their initial values are zero, since the sys-
tem starts from a resting position. The control system is 
operated by Quarc, which makes possible to run Simulink 
diagrams in real-time using Windows operating system. 
The sampling time was chosen as Ts = 1 ms.

Fig. 9 shows the x and z load coordinates calculated 
with the rope angle measurement. It is clear that the slid-
ing mode controller improved the trajectory tracking per-
formance. The main source of uncertainty was friction, 
which was robustly compensated by SMC.

Fig. 6 Load coordinates for a system with perturbed parameter values 
and initial error in the horizontal direction

Fig. 7 Control signals for a system with perturbed parameter values

Fig. 8 The measurement setup in the laboratory

Fig. 9 Load coordinates calculated with the measured rope angle
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In Fig. 10 the load's trajectory is drawn in the Euclidean 
coordinates to compare it to the reference shape. This also 
illustrates well the increased robustness of the tracking 
performance.

The controller effort is depicted in Fig. 11. The robust 
variant results in more chattering due to the higher gains 
of sliding mode control. For SMC, instead of the sign 
function the saturation function was applied, that gener-
ally results in less chattering, but it was not completely 
eliminated in this case.

Note that the aim here was to compare the robustified 
controller's behavior to the classical one. Likely these results 
can be significantly improved with more careful tuning of 
the controllers and taking into consideration the dynamics 
of the actuators. Also during the experiment a rather strict 
saturation term was inserted after the controllers output 
before the signal could appear at the actuators for safety 
reasons, removing this effect likely improves performance 
as well. Also, another possibility is to use more advanced 
differentiators to obtain   R t L t R t� � � � � �, ,  (e.g., ones that 
use sliding modes), here only simple numeric backward 
differentiation was applied with some filtering to reduce 
noise, which also introduces phase lag.

6 Conclusion
The paper presented a sliding mode control based robust 
method for the trajectory tracking of a crane. The nominal 
control law is a dynamic exact linearizing feedback. This 
is augmented with the SMC by considering the desired 
accelerations in the configuration variables as virtual 
inputs. These accelerations are computed by the endoge-
nous feedback. Two sliding surface corresponding to the 
rope length L and rope angle θ are used to achieve invari-
ance to the matched perturbations.

Simulations show that the effect of external distur-
bances are greatly attenuated by the proposed control 
law, compared to the nominal control only, without SMC. 
Laboratory measurements were also performed, that also 
validated the control design.

Fig. 10 Load coordinates in x-z calculated with the measured rope angle

Fig. 11 Control signals during the measurement
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