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Abstract

The electricity demand is increasing daily, so the generation power should be raised to fulfil that demand. Renewable distributed 

generation-based photovoltaic sources are one of the best solutions to satisfy the Power Distribution System (PDS) as long as the 

fossil resources are on the verge of extinction. At the same time, connecting the Photovoltaic Distributed Generation (PVDG) to the 

PDS may cause issues with the system's technical parameters, such as a protection system based on overcurrent relays, unless 

they are optimally allocated. In this context, this paper will be devoted to optimally allocating multiple PVDG units in the PDS using 

the Slime Mould Algorithm (SMA), meanwhile studying the impact of that optimal integration on the overcurrent protection system 

that will be represented and based on various chosen non-standard overcurrent relays (NS-OCRs) which many researchers develop, 

and trying to figure out and pick up the best type that provides improvement to the protection system including the minor impact on 

the coordination time interval. To achieve the maximum and best of the requested results, a multi-objective function was proposed to 

be minimized based on the sum of total active power loss, total voltage deviation, and total operating time of the relays.

Keywords

optimal allocation, photovoltaic distributed generation, power distribution system, non-standard overcurrent relays, operation time, 

integration impact assessment

1 Introduction
The use of green energy resources has been raised in the 
last decade. The interest of Renewable Energy Sources 
(RESs) is to reveal an economic and technical improvi-
sation of the presence of RESs in the Power Distribution 
System (PDS), where at the same time, minimize the 
requirement of the increased load demand in the future, 
also mitigate the polluted emission [1].

Recently, PV technologies have been implemented rap-
idly, which makes that technology viable even for power 
generation in PDS. The considerable role of PV integra-
tion in the PDSs as a major part of RES is being exten-
sively used on a full scale. Despite its promising success, 
PV integration reveals different problems, and its effect 
on the PDS should address for seamless presence in the 
PDS [2, 3].

Nevertheless, as the capacity of PV rises and starts to 
represent a significant portion of produced power, con-
cerns about grid quality and reversed power flow, also the 
possibility of a miscoordination in the protection equip-
ment of the distribution grid [4, 5].

Despite the actual merits that the installation of Photo- 
voltaic Distributed Generation (PVDG) units provides to the 
distribution system, their apparent effect on the protection 
system reveals many concerns and challenges regarding how 
a fault current would be sensed and removed in PDSs [6]. 
The installation of PVDGs into distribution systems can 
present either positive or negative effects depending on the 
characteristics of the PDS and the PVDG itself [7].

All trendy research shows that this type of conven-
tional protection is threatened by installing PVDG in the 

https://doi.org/10.3311/PPee.21780
https://doi.org/10.3311/PPee.21780
mailto:m.zellagui@univ-batna2.dz


28|Zellagui et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(1), pp. 27–36, 2024

PSD [8]. Besides, in recent literature, many researchers 
studied and analyzed the effect of DG installation in dis-
tribution system on system of protection as:

• impact on OCR relay coordination for different sce-
narios [9],

• fault current characteristics for the OCR perfor-
mance under variant fault scenarios [10],

• impact on short-circuit current and fault detection in 
PDS in the presence of DG sources [11],

• analyzed time inverse characteristics of standard 
relays [12],

• investigation of RES impacts on standard protection 
relay operate under different conditions [13],

• impact on transient stability constrained by conven-
tional overcurrent relay [14],

• impact on variable tripping time differential protec-
tion operation [15],

• impact on differential relay coordination considering 
various topology [16],

• impact on protection of autonomous micro grids [17],
• lightning protection performance with PV integra-

tion in distribution system [18],
• impact on current differential protection system [19],
• impact on differential sequence component protec-

tion scheme [20],
• impact on the reliability of transformer differential 

protection [21],
• impact on existing protective schemes and investi-

gate reverse power relay [22],
• studies the impact on overvoltage relay based 

Thevenin equivalent impedance [23].

Recently, the Salp Swarm Algorithm (SSA) was intro-
duced as a modern algorithm that was introduced by 
Dr. Mirjalili in 2017 [24] and applied to various problems 
in power system engineering [25]. By following the con-
text, this paper is consisted of finding the optimal allo-
cation of multiple PVDG units into different distribu-
tion systems of the Institute of Electrical and Electronics 
Engineers (IEEE): IEEE 12-bus in [26], IEEE 33-bus 
in [27] and IEEE 69-bus in [28] test distribution systems. 

The proposed multi-objective function (MOF) in this 
paper minimizes the Total Voltage Deviation (TVD), the 
Total Active Power Loss (TAPL), and the Total Operation 
Time (TOT), all simultaneously using the Slime Mould 
Algorithm (SMA) approach while investigating the impact 
of that optimal integration on various recent types of 
non-standard overcurrent relays (NS-OCRs).

It is chosen five types of NS-OCRs for this study, 
wherein generally it will be five studied cases to achieve 
a better contribution about the type that should be widely 
used, besides guaranteeing an optimal function of the 
protection system with and without the PVDG inclusion 
while avoiding the miscoordination for three test systems.

2 Mathematical problem formulation
2.1 Multi-objective function
The proposed MOF in this paper was devoted to solving 
the allocation problem of multiple PVDG units into differ-
ent PDS while minimizing the three technical parameters 
simultaneously, while it would be formulated as:

MOF Minimize TAPL TVD TOT� � ��� ��
���
��� i j j i
i

N

j

N

i

N Rbusbus

,

121

.    (1)

The TAPL in the distribution line is presented as [29, 30]:

TAPL APLi j i j
j

N

i

N busbus

, ,
,�

��
��
21

 (2)

APLi j ij i j i j ij i j i jPP QQ Q P PQ
,

,� �� � � �� �� �  (3)

� � � � � �ij
ij

i j
i j ij

ij

i j
i j

R
VV

R
VV

� �� � � �� �cos , sin .  (4)
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The TOT of NS-OCRs is presented as [30–33]:
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The relay operation time ( T  ) formulation is varied based 
on the chosen relay's type, as mentioned in Table 1 [34–38]. 
Before, the NS-OCRs detected and removed faults based 
only on the fault current value.

However, recently, the NS-OCRs became widely acces-
sible by measuring both parameters of the line current 
and voltage values via current and voltage transformers to 
diagnose the faulty parts of the power systems and also to 
guarantee the reliable performance of the protection sys-
tem, especially while the DG units are being integrated. 
Many researchers developed various NS-OCRs based 
either on the double function of detecting fault current and 
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voltage or by including some constants in the mathemati-
cal formulation of the operation time of NS-OCRs. Table 1 
contains the chosen NS-OCRs of this study.

2.2 Equality constraints
The equality constraints of the distribution system are rep-
resented by the next equations:

P P P PG D Loss� � �
PVDG

, (8)

Q Q QG D Loss� � . (9)

2.3 Distribution line constraints
The distribution line constraints are represented by:
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2.4 The PVDG units' constraints
The PVDG units' inequality constraints are expressed as:
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3 Analyzing and discussions of optimal results
The Slime Mould Algorithm (SMA) was tested and 
proved on the standards IEEE 12-bus [26], 33-bus [27], 
and 69-bus [28], as represented in Fig. 1. The base voltage 
equals 11 kV for the IEEE 12-bus and 12.66 kV for the 33- 
and 69-bus standards.

The total demand of loads is 435.00 kW and 405.00 kVar 
for the first PDS, 3715.00 kW and 2300.00 kVar for the 
second PDS, and 3790.00 kW and 2690.00 kVar for the 
third PDS. Each system's bus is protected by an OCR con-
sidered primary, followed, and covered by its backup. 
Between the mentioned relays, a coordination time inter-
val is set above 0.2 seconds. The MATLAB software, 
version (R2022b) [39] on a computer equipped with 
an Intel(R) Core i7-1065G7 CPU running at 1.50 GHz and 
16 GB RAM is used to implement the SMA approach for 
three IEEE standard test systems [26–28].

Fig. 2 illustrates the convergence curves while mini-
mising the MOF, including all types of NS-OCRs.

By analyzing the convergence curves shown in Fig. 2, 
it is clear that the SMA approach was capable of deliv-
ering very favorable results by optimally allocating the 

Table 1 The operation time of various types of NS-OCR
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Fig. 1 Single diagram of power distribution systems; (a) IEEE 12-bus; 
(b) IEEE 33-bus; (c) IEEE 69-bus
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PVDG units into the three studied PDS while minimiz-
ing the multi-objective function every time the NS-OCRs 
type was changed.

By comparing the minimum values of MOF, it is evi-
dent that the case when the NS-OCRs 4 was present is the 
one that provided the best MOF minimization results and 
values until 4.30 for the standard IEEE 12-bus [26], until 
17.15 for the standard IEEE 33-bus [27], and until 30.15 
for the standard IEEE 69-bus [28], including a late con-
vergence characteristic which seems mostly settles down 
after 80 iterations for the IEEE 12-bus and 69-bus PDS, 
meanwhile after 140 iterations for the IEEE 33-bus PDS.

Tables 2 to 4 represents the results after optimization of 
multiple PVDG units' allocation in the presence of the var-
ious types of NS-OCRs using the SMA approach.

The optimized results mentioned in Tables 2 to 4 reveal 
that the optimal integration of the multiple PVDG units 
into all the studied test systems PDS based on using the 
Slime Mould Algorithm had a considerable impact on all 
levels of study, even for all the cases of the NS-OCRs type.

By comparing the studied cases when the NS-OCRs was 
present, it is clear that the optimal and best results were 
achieved for the case of NS-OCRs 4, which delivered the 
minimum values of MOF until 4.30 for the standard IEEE 
12-bus [26], until 17.15 for the standard IEEE 33-bus [27], 
and until 30.15 for the standard IEEE 69-bus [28].

Including the minimum values of each of the parameters 
of TOT and TVD on their own, where until 4.00 seconds 
and 0.28 p.u., 16.15 seconds and 0.89 p.u. also 29.00 sec-
onds and 1.02 p.u. for the first, second and third test sys-
tems PDS respectively, except for the term of TAPL which 
the case of the NS-OCRs 5 presence provided the best 
results of minimization for the three studied systems PDS 
until 11.20 kW, 84.49 kW, and 70.05 kW, respectively.

Fig. 3 represents the voltage profiles of various NS-OCRs 
types after integrating PVDG units in all test systems.

From the results in Fig. 3, it is clear that the optimal 
integration of multiple PVDG units into the three test sys-
tems has a considerable impact by ameliorating the volt-
age profiles in each of their buses, even while varying and 
changing the chosen relays NS-OCRs.

Another remark is that the presence of the type NS- 
OCRs 4 was the superior and best case where the voltage pro-
files got improved, which is clearly based on the minimized 
value of voltage deviation as mentioned previously, where its 
value has been reduced from a total value of 0.44 p.u. until 
0.28 p.u. for the standard IEEE 12-bus [26], from 1.81 p.u. 
until 0.89 p.u. for the standard IEEE 33-bus [27], and from 
1.87 p.u. until 1.02 p.u for the standard IEEE 69-bus [28]. 
For this reason, the formulation of the voltage deviation is 

Fig. 2 Convergence curves for various NS-OCRs applied; (a) IEEE 12-bus; 
(b) IEEE 33-bus; (c) IEEE 69-bus

(a)

(b)

(c)
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represented as the nominal value of 1 p.u. minus the actual 
voltage's value at the base case, as previously noted.

Fig. 4 shows the operating time of all types of NS-OCRs 
after the presence of PVDG units in all test systems.

Overcurrent relays are dispositive that widely used 
in power distribution systems to cover and ensure their 
protection against fault currents where their princi-
pal task is to sense and detect the fault current and give 
the order to the breaker to remove the fault by opening 

and to disconnect the circuit when the abnormal condi-
tions occurred. They are represented by the formulation 
of their operation time, which is related to the level of 
fault current, time dial setting, and some other constants 
depending on the type of the OCR relay.

Minimizing the operation time of the relays is very 
beneficial and favorable in many aspects, such as protect-
ing the parts of the targeted system, extending the equip-
ment's lifetime, and maintaining the continuity of service.

Table 2 Optimization results for types of NS-OCRs using SMA approach for IEEE 12-bus

NS-OCRs types
PVDG parameters

TAPL (kW) TVD (p.u) TOT (sec) MOF
Bus PPVDG (MW)

Basic case – – 20.83 0.44 5.29 –

After installation, PVDG units

NS-OCRs 1

3 0.0100

12.30 0.32 5.09 5.4211 0.0100

12 0.1368

NS-OCRs 2

3 0.0598

11.37 0.29 4.68 4.996 0.0100

12 0.1924

NS-OCRs 3

3 0.0100

12.35 0.32 5.34 5.675 0.0100

12 0.1353

NS-OCRs 4

3 0.6276

13.07 0.28 4.00 4.309 0.0683

10 0.1347

NS-OCRs 5

3 0.0338

11.21 0.29 4.19 4.508 0.0153

9 0.2883

Table 3 Optimization results for types of NS-OCRs using SMA approach for IEEE 33-bus

NS-OCRs types
PVDG parameters

TAPL (kW) TVD (p.u) TOT (sec) MOF
Bus PPVDG (MW)

Basic case – – 210.98 1.81 20.50 –

After installation, PVDG units

NS-OCRs 1

4 1.1276

95.07 1.11 19.41 20.6716 0.4421

30 0.5492

NS-OCRs 2

5 2.3385

101.76 0.93 18.03 19.086 0.8370

16 0.3838

NS-OCRs 3

2 0.3003

110.56 0.95 20.72 21.805 2.9992

12 0.3853

NS-OCRs 4

5 2.0558

111.56 0.89 16.11 17.1513 0.5501

27 1.3650

NS-OCRs 5

5 1.7999

84.49 0.91 16.60 18.9813 0.7546

30 0.9904
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Table 4 Optimization results for types of NS-OCRs using SMA approach for IEEE 69-bus

NS-OCRs types
PVDG parameters

TAPL (kW) TVD (p.u) TOT (sec) MOF
Bus PPVDG (MW)

Basic case – – 224.94 1.87 38.70 –

After installation, PVDG units

NS-OCRs 1

3 0.4330

98.43 1.24 37.71 39.0318 0.3000

61 1.0056

NS-OCRs 2

11 0.4850

75.38 1.07 34.52 35.7222 0.3016

61 1.3411

NS-OCRs 3

3 0.3011

126.4 1.12 41.20 42.1462 0.9699

69 0.3540

NS-OCRs 4

3 0.3013

73.71 1.02 29.00 30.1517 0.6514

61 1.9710

NS-OCRs 5

12 0.6436

70.50 1.03 33.11 34.9922 0.3211

61 1.8358

Fig. 3 The voltage profiles for various NS-OCRs studied; (a) IEEE 12-bus; (b) IEEE 33-bus; (c) IEEE 69-bus

(a) (b)

(c)
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The results shown in Fig. 4 reveal the effect of the 
PVDG units' optimal presence in the studied PDS on the 
chosen NS-OCRs, where it is clear that there was a clear 

and significant impact on all types studied for the three sys-
tems where the operation time was considerably minimized 
as long as the operation time is related to the fault current, 
where this last is proportional to the voltage values, where 
the more the voltage improved, the fault current raised and 
consequently, the operation time got minimized. The big-
gest and the best impact of that minimization was clear 
when using the NS-OCRs 4, which provided the minimum 
values in all the relays of protection for the three test sys-
tems, also clearly got reduced from a total value of 5.29 sec-
onds until 4.19 seconds for the 12-bus, from 20.57 seconds 
until 16.63 seconds for the 33-bus and finally from a total 
value of 38.70 seconds until 33.10 seconds for the 69-bus.

Fig. 5 represents the CTI value for the studied cases 
of the NS-OCRs presence after the optimal installation of 
PVDG units in the three distribution systems.

The coordination time interval is the delay between the 
primaries and backups relays, which is set above 0.2 sec-
onds between all the NS-OCRs for three test systems. 
It is clear that after the optimal integration of the multiple 
PVDG units into all PSD studied, the coordination time 
interval was significantly minimized between all the stud-
ied NS-OCRs with different impacts in each.

The best and the closest results that did not get reduced 
far from the referenced values at the basic case and 
remained above the limit of 0.2 seconds for the three test 
systems are the results from the use of relays NS-OCRs 1, 
NS-OCRs 2, NS-OCRs 3, and NS-OCRs 4, where the 
worst one was the NS-OCRs 5 which got reduced under 
the allowable limit of 0.2 seconds and led to the risk of 
having a miscoordination when the fault current occurs.

In conclusion, the NS-OCRs 4 is the best choice 
because its presence in the three distribution systems pro-
vided the minimum values of MOF, the optimal values, 
and the operation time results, including maintaining the 
CTI interval above the allowable limit of 0.2 seconds.

4 Conclusions
This paper was devoted to solving the problem of the opti-
mal allocation of multiple PVDG units into different power 
distribution systems using a recent metaheuristic optimiza-
tion algorithm called the SMA algorithm, including inves-
tigating the impact of that optimal integration on various 
recent types of non-standard overcurrent relays that been 
proposed by many researchers, while developing and min-
imizing a multi-objective function that represented as the 
total of the technical parameters of TVD, TAPL, and TOT 
for three standards IEEE 12-, 33- and 69-bus [26–28].

Fig. 4 Operation time for various NS-OCRs studied; (a) IEEE 12-bus; 
(b) IEEE 33-bus; (c) IEEE 69-bus

(a)

(b)

(c)
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The simulation results showed that the SMA approach, 
in this case, offered favorable results by minimizing 
the active power losses, enhancing the voltage profiles, 
and improving the protection system simultaneously when 
optimally integrating the PVDG units and minimizing the 
multi-objective function.

These achievements have been reached while satisfying 
the system's operational constraints. Also, the obtained 
results reflect that the overcurrent relay is an essential ele-
ment to cover and satisfy the protection system. As pre-
viously discussed, the chosen types of NS-OCRs used 
in this study revealed good behavior and provided good 
results with much better and superior achievement from 
the NS-OCRs 4.

At least, it is recommended to widely utilize the type of 
NS-OCRs 4 in a practical distribution system due to its bene- 
fits in showing the best behaviors and results of operation 
time minimization when the PVDG is connected while 
maintaining coordination within the allowable limits.

Nomenclature
Parameters of protection relay
Ti Relay operation time

VF Measured fault voltage magnitude 

IF Measured fault current magnitude

TDS Time Dial Setting 

IP Pickup current 

CTI Coordination Time Interval 

A, B, k Relays constants

C Constant for the NS-OCRs 3 

χ, ξ Constant for the NS-OCRs 4 

NR Number of relays 

Parameters of problem formulation
TAPL Total active power loss 

TVD Total voltage deviation 

TOT Total operating time of relays

PLoss , QLoss Total power losses

Rij , Zij Line resistance and impedance

Pij , Qij Powers in branch ij

Pi , Qi Powers at bus i

Fig. 5 Coordination time interval for various NS-OCRs applied; 
(a) IEEE 12-bus; (b) IEEE 33-bus; (c) IEEE 69-bus

(a)

(b)

(c)
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PG, QG Powers of sub-station

PD, QD Powers of load demand

PPVDG Injected power from PVDG units  

Vmin, Vmax Bus voltage's limit

ΔVmax Maximum voltage drops

Sij Apparent power in branch

Smax Maximum apparent power 

Nbus Bus number

PVDGPosition PVDG unit position

NPVDG PVDG unit number

NPVDG × max PVDG unit maximum number 

nPVDG PVDG unit location
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