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Abstract

The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, 

for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. 

These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. 

The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. 

Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly 

adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.
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1 Introduction
The motion planning of mobile robots in dynamic envi-
ronments poses significant challenges. To generate effec-
tive evasive maneuvers, mobile robots may utilize internal 
or external sensors to gather data.

By applying state estimation methodologies to this sen-
sor data, the state of the mobile agent can be estimated at 
discrete time intervals. There exists a variety of estima-
tion methods that can be employed for this purpose.

The Kalman filter, a classic algorithm in the field of 
state estimation, was initially developed to tackle the prob-
lem of estimating the state of linear systems [1, 2]. Later, 
the Particle filter, based on Bayesian filtering, was pro-
posed as a solution for nonlinear systems with non-Gauss-
ian distributions [3]. However, despite the effectiveness of 
these algorithms and their extensions [4, 5] in determining 
the location of the robot, they were not capable, or they 
were not focused on providing information about obsta-
cles in the workspace.

The primary objective of this study was to investi-
gate the adaptation of a perception method for the esti-
mation of obstacle position vectors using LiDAR sen-
sor data. To achieve this goal, both Kalman filter and 
Particle filter methods were employed for state perception. 

The performance of the proposed methodologies was eval-
uated through comparison of the results obtained.

The key findings of this paper can be summarized as:
• We propose an adaptation of a state perception 

method for the estimation of obstacle position and 
velocity vectors in the workspace of a mobile agent.

• The proposed method leverages both Kalman filter 
and Particle filter algorithms for state perception of 
the obstacles using LiDAR simulation data.

• An uncertainty parameter was also introduced, which 
can be used in the mobile robot's motion planning 
task.

• A set of experimental evaluations were conducted to 
compare the performance of the Kalman filter-based 
perception algorithm with that of the Particle fil-
ter-based solution. 

Section 2 presents a review of relevant prior research on 
estimation methods in the field of robotics. Section 3 pro-
vides an overview of the Kalman filter and Particle filter 
algorithms. The measurement method with the introduced 
LiDAR simulation is presented in Section 4.1 and the pro-
posed perception methods are detailed in Section 4.2, 
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where the extended Kalman filter-based approach is pre-
sented, and Section 4.3, where the Particle filter-based 
method is described. The performance of these methods 
is evaluated through a set of experiments and the results 
are presented in Section 5. Finally, in Section 6, the main 
contributions and implications of the proposed perception 
methods are summarized.

2 Previous work
In the field of mobile robotics, the Kalman filter algorithm 
has been widely utilized for the task of estimating the 
position and velocity of the mobile agent, also known as 
self-localization problem [6–8].

In recent years, Bayesian filtering methods have become 
increasingly prevalent in the field of state estimation for 
mobile robots, playing a significant role in advancing the 
capabilities of these systems [9–11].

Using the Extended Kalman Filter (EKF), the state esti-
mation problem can be solved for not only linear but also 
for nonlinear systems [12]. The EKF algorithm linearizes 
the nonlinear model at each time step and then applies the 
Kalman filter to the linearized model, thus enabling the 
estimation of the state of the system. The EKF has been 
successfully applied in various domains, particularly in 
the field of mobile robotics for the localization problem of 
the agent [7, 13, 14]. It is a widely accepted method in the 
field of robotics and has been used in various applications 
and research studies in the last decade [15, 16].

The Unscented Kalman Filter (UKF) can also be used 
for the localization of the mobile agent considering a non-
linear system. Comparing the EKF and UKF, the UKF can 
generate a more appropriate solution for the localization 
problem, by avoiding the linearization step [17–19].

The Particle filter algorithm was first introduced in 
1955 [20]. This approach simulated a large number of par-
ticles, or "molecules", to estimate the state of a system. 
In 1993, the Particle filter was re-named as the Bootstrap 
filter [3], as it was implemented as a recursive Bayesian fil-
ter. The core concept of this algorithm is to define a poste-
rior distribution using a set of samples, each with different 
weights, that are calculated and updated at every sampling 
time using measurement data. This type of Bayesian filter 
has been found to achieve better results for nonlinear sys-
tems compared to the unscented and extended Kalman fil-
ters (EKF and UKF), even when using limited particles [21].

The Multi-robot collision avoidance with the localiza-
tion uncertainty (CALU) algorithm utilizes the Particle fil-
ter for addressing the localization problem of mobile robots. 

The proposed method incorporates the Optimal Reciprocal 
Collision Avoidance (ORCA) method [22] for generating 
collision-free motion plans. The primary objective of this 
approach is to bound the error present in the localization 
process. The implementation of the algorithm is carried out 
using the Robot Operating System (ROS) framework.

The Simultaneous Localization and Mapping (SLAM) 
algorithm consists of two steps: continuously constructing 
and updating a map of the environment while simultane-
ously keeping track of an agent or robot's location within 
it [23–25]. The SLAM algorithm was also used with the 
combination of the Kalman filter [26] and the Particle fil-
ter [26, 27]. At the initial SLAM algorithm, the segmenta-
tion of the obstacles from the environment cannot be gen-
erated and only the position information of the map can 
be determined. In our approach, we can calculate also the 
velocity vectors of the different obstacles that occur in the 
workspace of the agent.

3 Background
3.1 Kalman filter algorithm
In Section 3.1, the Kalman filter algorithm is presented in 
a structured manner. The methodology of the algorithm 
is divided into two key components: the time update and 
measurement update processes. These two components 
are crucial in achieving the desired state estimation for the 
system under consideration. In this paper, we use linear 
system models in discrete time.

The time update can be defined in Eq. (1):

x Ax Buk k k� �� �1 1
,  (1)

where k is the actual discrete time step, A is a square 
matrix, B is a column vector in the case, when the system 
has one input, xk  is the a priori state estimation, xk−1 is the 
previous state prediction using the Kalman filter and uk−1 
is the control input.

Additionally, at the system equations, the output can be 
calculated as:

y Cx Duk k k� � � � ,  (2)

where C is a vector or matrix depending on the size of the 
output, D is a scalar or a vector depending on the number 
of the outputs.

After that, the error covariance Mk can be calculated:

M A A Rk k
T

v� ����
1

,  (3)

where Σk−1 is the variance of the prior estimate and Rv is 
the covariance matrix of the process noise.
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The Kalman gain Kk can be calculated, which mini-
mizes the a posteriori error covariance Σk:

K M C CM C Rk k
T

k
T

z� �� ��1 ,  (4)

where Rz is the covariance matrix of the measurement noise.
The a posteriori error covariance is:

�� k k k� �� �I K C M .  (5)

Finally, receiving a measurement from the sensor (  yk ), 
the measurement update can be calculated for the esti-
mated state:

x x K y Cxk k k k k� � �� �.  (6)

3.2 Particle filter algorithm
In Section 3.2, we provide a detailed description of the 
steps involved in implementing the Particle filter algo-
rithm. The Particle filter is a method for approximating the 
posterior distribution of a system using a discrete density. 
One of the key advantages of the Particle filter over other 
recursive Bayesian filtering methods is its ability to han-
dle nonlinear dynamic models, in addition to linear ones. 
Additionally, the Particle filter can be applied to systems 
with non-Gaussian noise.

In the Particle filter algorithm, a weighted set of points 
(Sk ) is utilized to approximate the posterior distribution. 
The set comprises of pairs of xk

i
k
iw� � � �,  where xk

i� �  rep-
resents a possible state of the ith particle at time k, and wk

i� �  
denotes the likelihood (weight) of that state. The number 
of particles, represented by N, is not fixed and may change 
during the iteration. The vector of weights, denoted as wk, 
is constrained by the requirement that the sum of its ele-

ments is equal to 1 
i

N

k
iw

�

� �� �
�

�
�

�

�
�

1

1 .

Prior to implementing the Particle filter algorithm, it is 
necessary to initialize the filter. This includes defining 
the state transition function, the resampling strategy, and 
the number of particles, denoted as N. The state transition 
function is mathematically represented in Eq. (7):

x x uk k k kf� � � � �1
, ,��  (7)

where f is a linear or nonlinear function, uk means the 
actual control input and ξk is the system noise.

In the initialization step of the Particle filter algo-
rithm, a random set of points, denoted as x

1

i� �
,  is gen-

erated via sampling from the a priori distribution Px0. 
The initial weight assigned to each particle is w Ni

1 0
1

|
/ ,

� � �  
where 1|0 indicates that the current weights are calcu-
lated at time step k = 1 using information from the prior 
 

iteration. In the absence of available measurement data 
at the beginning of the algorithm, the volume of the 
weights is set to 1/N. The steps of the Particle filter algo-
rithm, as outlined in [21], involve the following:

1. Step of measurement update:
The process of updating the weights of the particles 
in the Particle filter algorithm is critical in ensur-
ing accurate state estimation. This is accomplished 
by incorporating sensor measurements (zk ) into the 
weight update equation for each particle:

w
w p

w p
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i
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|
.  (8)

2. Estimation:
The approximated state can be calculated:

x xk i

N
k
i

k
iw�

�

� � � �� 1
.  (9)

3. Resampling:
Usually, N samples will be selected from the set 
of the particles with replacement, considering the 
weights of the particles. Several resampling meth-
ods can be used that were investigated in previous 
research [28].

4. Time update:
In this step, prediction can be defined:

x Ax Buk
i

k
i

k�
� � � �� �
1

,  (10)

when the system is a linear model. If it is not, then 
Eq. (7) can be used in the time update step. wk k

i
�
� �
1|

 can 
be calculated using Eq. (8) with the new sample of 
particles after the resampling step.

4 Perception method of an obstacle with the Kalman 
filter and particle filter
4.1 Particle filter algorithm
This study introduces the utilization of a 2D LiDAR sensor 
in a simulated environment. The sensor boasts a maximum 
range of 12 meters and a resolution range of [0°, 1°], with 
a resolution of 0.5°, chosen for the scenario at hand. Fig. 1 
depicts the LiDAR measurement data obtained. The posi-
tion of obstacles in the workspace can be determined through 
segmentation of the measurement data and identification 
of the angles associated with said obstacles. The mea- 
surement noise is also simulated in the introduced environ-
ment. It is assumed that all obstacles present in the work-
space possess a disk-like shape. These calculations are per-
formed in the global coordinate system. The position of 
center point of the obstacle, represented by (  px, py ), can 
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then be calculated using the Least Square (LS) method. 
The methodology of obstacle measurement employed in 
this study is previously detailed in our prior work [29, 30].

4.2 Perception method with the Kalman filter
Two different methods can be introduced in the Kalman 
filter solution:

• The perceived state is the position of the obstacle 
(the velocity vector is calculated from the position): 
xk x y

Tp p
2
� �� ��, .

• The perceived state includes the position and the ve- 
locity vector of the obstacle: xk x y x y

T
p p v v

4
� �� ��, , , .

In the first aspect, the time update can be formulated 
with Eq. (11):

x x x xk k k k2 2 2 21 1 2
� � �� �� � � ,  (11)

where it is assumed that the velocity vector is constant 
between the time steps. It is important to note that in the 
aforementioned equation, the control input is not present. 
This is due to the fact that during the estimation of the 
obstacle, it is not possible to control its motion, and thus, the 
position of the obstacle can only be estimated using sensor 
data acquired from a LiDAR sensor. The state vector in this 
scenario comprises the px and py coordinates of the obstacle.

In addition to the position of the obstacle, the time 
update step of the state vector can also include the velocity 
vector. This allows for the definition of the time update as:

x Axk k4 4 1
� � ,  (12)

where the state vector consists px, py, vx, vy of the obstacle.
Equations (3) to (6) can be used in the same format 

as they were described in Section 3.1. The size of the 
covariance matrices has a size of [2 × 2] in the first case 
and [4 × 4] in the second case. Using the LiDAR sensor, 
the center point of the obstacle can be calculated as it was 
introduced in Section 4.1.

4.3 Perception method with the Particle filter
The Particle filter methodology is described here, which 
utilizes a weighted set of particles to represent the possible 
states of the system at a given sampling time. These states 
can be represented by the particles matrix, with dimen-
sions of 2 rows and N columns, and the vector of weights, 
denoted by w. The prediction of the states of the obsta-
cles is accomplished utilizing measurement data obtained 
from the LiDAR sensor. The algorithm also accounts for 
the system and measurement noise. The methodology for 
executing the algorithm is outlined in Section 3.2, with the 
main steps being iteratively implemented.

4.3.1 Weight calculation method
Assuming that there are only disk-shaped obstacles in 
the workspace, the center point can be calculated using 
the measurement data of the LiDAR sensor. In this case, 
a measured x center (zpx ) and measured y center (zpy ) can 
be calculated using a Least square error estimation consid-
ering every point that is measured by the sensor as it was 
presented in Section 4.1.

Every particle denotes the center point of the obsta-
cle (  px and py ). The measurement noise of the distance is 
denoted by (MNd ). Each particle has the x position (zpx(i)) 
and the y position (zpy(i)) data.

Firstly, the x position can be considered for the calcula-
tion of the weights:

w
MN

ep
d

z z i

MN
x

px px

di� �
�

� � �� �
�

1

2

2

2

�
.  (13)

The weights of the x position must be normalized:

w
w

w
px

px

j

N
px

i
i

j

� �
� �

�

� �
�
� 1

.  (14)

In this case, the sum of the weights of particles is equal 
to 1.

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

ˆ
ˆ

ˆ

Fig. 1 Measurement data using the LiDAR sensor. The agent is in 
the origin position (red circle). The onboard sensor distance data can 

be seen with green lines. There is one obstacle in the workspace, 
represented by a black circle
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After that, the weights can be calculated considering 
the y position:

w
MN

epy
d

z z i

MN
py py

di� �
�

� � �� �
�

1

2

2

2

�
.  (15)

The weights of y position must be normalized too:

w
w

w
py

py

j

N
py

i
i

j

� �
� �

�

� �
�
� 1

.  (16)

The final weights of the particles can be calculated 
using the weights of the x and y positions:

w w wpx py
i i i� � � � � �� � .  (17)

The final weights must be also normalized:

w w
w

j

N
i

i

j

� �
� �

�

� �
�
� 1

.  (18)

4.3.2 State estimation method
After determining the weights of each particle, the esti-
mated state of the obstacle, specifically its position, must 
be calculated. Various methods exist for determining this 
perceived state, one of which is through the computation 
of the mean of the particles.

S
particles

i

N
k
i

� �

� �� 1

N
,  (19)

where S means the perceived state.
An alternative method for determining the perceived 

state is to utilize the weights of the particles as well. At 
this case Eq. (9) can be used.

In our perception method, we used the Eq. (9) to esti-
mate the state of the obstacle.

4.3.3 Resampling algorithm and state transition 
method
We used the systematic resampling algorithm to select the 
particles at this step.

The state of the dynamic obstacle model consists of two 
coordinates (  px, py ) according to the position. The veloc-
ity (vx, vy ) can be calculated after the position perception. 
At the state transition model, both the perceived position 
and the velocity are used. The state transition model can 
be described as it was introduced in Eq. (10).

At every time step, an uncertainty parameter (α) can be 
also calculated which can be useful in the motion planning 
algorithm for the mobile agent:

� � � �� �� �min ,max ,1 std particlesk  (20)

where std means the standard deviation which is calculated 
for both the x positions and y positions of the obstacles 
and the highest value will be selected for the uncertainty 
parameter. The maximum value is saturated to 1. The big-
ger the value of the uncertainty parameter is, the higher 
the uncertainty of the accuracy of the actual perception is.

5 Results
In Section 5, a comparison was made between the pro-
posed Kalman filter-based perception methods and the 
previously introduced Particle filter-based algorithm.

The simulations were done using the following envi- 
ronment:

• Processor: Intel(R) Core(TM) i5-3320M CPU @ 
2.60 GHz;

• Operation system: Win10, 64 bites;
• Memory (RAM): 8.00 GB;
• MATLAB 2021a.

5.1 One moving obstacle with constant velocity vector
In Section 5.1, the investigation of a moving obstacle is 
presented. The initial measurement data with the LiDAR 
sensor can be seen in Fig. 2, the value of measurement 
noise (MNd) was set in this example to 0.05 m.

ˆ

ˆ

ˆ

Fig. 2 Measurement with LiDAR sensor at the initial time step. 
The robot is in the origin, the centre point of the obstacle is in [2;2]. 

The red x-s are the measured points on the disk-shaped obstacle
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In this example, a single moving obstacle was present 
within the operational space of the agent, possessing a con-
stant linear velocity ([vx = 0.25 m/s, vy = 0.1 m/s]). At the 
Particle filter algorithm, N = 50000 particles were used. 
The absolute error in the perception of the px and py posi-
tions, as represented in Figs. 3 and 4. The red line illus-
trates the results obtained from the Particle filter-based 
solution, the blue line (Kalman filter 1) illustrates the 
absolute error of the Kalman filter-based method when 
only the position is included in the state vector, and the 
black line (Kalman filter 2) represents the results obtained 
from the Kalman filter-based method when the velocity 
vector is also included in the state vector. The simulation 
was conducted for a total of 100 iterations, with a sam-
pling time of 0.1 seconds.

The results obtained from the Kalman filter-based solu-
tions, and the Particle filter-based method were found to 

be similar. At the beginning of the simulation, the abso-
lute error in position perception of the Particle filter-based 
solution was observed to be higher, however, after a few 
time steps, it was able to attain a more accurate solution 
in the perception. The average error of the px position per-
ception was found to be 0.0228 m, for the Particle filter, 
0.0245 m for the Kalman filter 1, and 0.0218 m for the 
Kalman filter 2 solutions. The average absolute errors in 
the y position were found to be 0.0144 m and 0.0195 meters 
and 0.0176 m, respectively.

The results of the vx and vy velocity perception using the 
introduced methods are presented in Figs. 5 and 6 respec-
tively. In contrast to the results of the perception of the posi-
tion vector, a notable difference can be observed between 
the Particle filter-based solution and the Kalman filter-based 
solutions. Specifically, the Particle filter-based solution 
demonstrates superior performance in terms of velocity 

Fig. 3 Absolute error in the perception of the x position of the obstacle

Fig. 4 Absolute error in the perception of the y position of the obstacle

Fig. 5 Absolute error in perception of the x velocity (vx ) of the obstacle

Fig. 6 Absolute error in perception of the y velocity (vy ) of the obstacle
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perception, with an average absolute error of 0.0435 m/s 
for vx and 0.0292 m/s for vy. In comparison, the Kalman fil-
ter-based solutions yield significantly higher absolute errors 
of 0.1914 m/s and 0.1523 m/s at Kalman filter 1 method for 
vx and vy respectively. The Kalman filter 2 has an absolute 
error of 0.0818 m/s and 0.0905 m/s respectively. This sug-
gests that the Particle filter-based method may be a more 
effective solution for velocity perception in this context.

The computational efficiency of the proposed Kalman 
filter-based perception methods were compared with that 
of the Particle filter-based algorithm using varying num-
bers of particles. The results, as illustrated in Table 1, 
demonstrate that as the number of particles increases, the 
running time also increases. When the number of particles 
is 100000, the running time exceeds 0.1 seconds, making 
it unable to provide real-time solutions. However, when the 
number of particles is less than 100000, the algorithm can 
generate online solutions. Additionally, it was observed 
that at smaller numbers of particles, the running time 
does not scale linearly. In this scenario, the results were 
tested with a particle number of 50000, striking a balance 
between computational efficiency and perception accuracy.

5.2 One moving obstacle with changing velocity vector
In this scenario, a moving obstacle was present in the 
workspace of the agent, with a variable linear velocity 
vector. The results of the evaluation of the absolute error 
in the px position perception can be observed in Fig. 7. 
As previously observed, it can be inferred that the Particle 
filter-based solution initially generates a higher average 
error. However, it is worth noting that when the obstacle 
changes its velocity vector (at time 10 s), the Particle fil-
ter-based perception solution generates a higher average 
error for a brief period, subsequently reaching a better 
perception of the position than the Kalman filter-based 

solutions. The Kalman filter-based solutions produce sim-
ilar average errors throughout the motion of the obstacle.

Fig. 8 illustrates the results of the average absolute error 
in the vx velocity perception obtained using the different 
methods introduced. It is evident that the Particle filter-based 
solution demonstrates the best performance, with an aver-
age error of 0.069 m/s. The Kalman filter 2 solution follows 
closely, with an average error of 0.0819 m/s. Conversely, 
the worst performance is observed in the Kalman filter 1 
solution, with an average error of 0.2023 m/s.

5.3 One static obstacle and one moving obstacle
In this example, there are two obstacles present in the 
workspace of the agent, one static and one moving obstacle. 
The perception of multiple obstacles can be approached in 

Table 1 Running times considering the number of the particles

Number of particles (N) Running time [s]

100 0.0039

500 0.0043

1000 0.0030

Kalman 1 0.0080

Kalman 2 0.0080

5000 0.0082

10000 0.0127

50000 0.0512

100000 0.1009

500000 0.5294

Fig. 7 Absolute error in perception of the x position of the obstacle in 
the second example

Fig. 8 Absolute error in perception of the x velocity of the obstacle in 
the second example
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a variety of ways. One option is to employ different Particle 
or Kalman filters for each obstacle present in the agent's 
workspace. Another solution is to utilize a single Particle 
filter for the perception of the state of each obstacle. Given 
the previous results, this example presents only the Particle 
filter-based solution as the perception of the velocity vector 
is also deemed important.

As depicted in Fig. 9, the path of the two obstacles in the 
workspace is represented. The moving obstacle is located 
behind the static obstacle for a period of time (while it is 
moving from up to down), during which sensor informa-
tion from the moving obstacle is not available to the agent. 
In this scenario, the agent relies on previous estimations to 
predict the path of the moving obstacle. Once the moving 
obstacle emerges from the coverage of the static obstacle, 
the perception can be updated. The uncertainty parameter, 
as introduced in Eq. (20), can be calculated at each time 
step during the motion of the obstacle.

In Fig. 10, a comparison is presented between the 
actual, measured, and estimated positions of the obsta-
cles. It is evident that the position of the static obstacle can 
be accurately measured and estimated. However, when 
the moving obstacle is obscured by the static obstacle, the 
measurement will be significantly incorrect. The Particle 
filter-based estimation method is capable of utilizing pre-
vious estimation results in the absence of new measure-
ment data. As can be seen, the estimation error increases 
with the duration of the absence of measurement infor-
mation. Upon receipt of information from the moving 

obstacle again, the estimation method can promptly pre-
dict its state with minimal absolute errors.

Fig. 11 depicts the temporal evolution of the uncertainty 
parameter throughout the motion of the static and moving 
obstacle. The graph illustrates that the uncertainty param-
eter initially decreases at both obstacles, however, when 
the moving obstacle is obscured by the static obstacle, 
there is a significant increase in the uncertainty param-
eter, reaching a saturation value of 1. At this point, the 
absence of sensor information from the moving obstacle 
results in the dispersion of particles. In such instances, it is 
imperative for the robot to execute safe evasive maneuvers 
to avoid collisions. Considering the uncertainty parameter 
of the static obstacle, it is constant after a while because 
there is always available sensor information in every time 
step that can be received from the LiDAR sensor. In that 

Fig. 9 Two obstacles are in the workspace of the agent. The moving 
obstacle executes its motion behind the static obstacle

Fig. 10 Comparing the real, measured and estimated path of the obstacles

Fig. 11 Uncertainty parameter in every time step for the moving obstacle
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case, the uncertainty parameter of the static obstacle is not 
0 because of the measurement noise of the LiDAR sensor. 
The uncertainty parameters can also be utilized in con-
junction with cost function-based motion planning algo-
rithms, as described in [31].

6 Conclusion
In this paper, we presented and compared various per-
ception methods that leverage LiDAR measurement data 
to estimate the position and velocity vectors of obstacles 
in the workspace of the agent. The results in terms of 
position perception were found to be comparable across 
the different methods, however, the Particle filter-based 
method demonstrated superior performance in veloc-
ity perception in comparison to the Kalman filter-based 

method. Additionally, we proposed a method for calculat-
ing the uncertainty parameter based on the current sen-
sor information. As potential avenues for future research, 
these perception methods could be integrated into motion 
planning tasks for mobile robots. Furthermore, the intro-
duced uncertainty parameter could be utilized in a cost-
function-based velocity selection method for the mobile 
agent. Additionally, the uncertainty parameter could be 
also calculated using other techniques like considering the 
weights of the particles at every sampling time.
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