
55Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

Computer-Aided Geometric Sensitivity 
Analysis of Plane Trusses with a 
Square Grid Topology

Péter Dóbé / Gábor Domokos

received 17 July 2013; accepted 10 February 2014

Abstract
A recent theory assigns a single scalar 0 ≤ r ≤ 1 to pin-jointed 
plane trusses, characterising their geometric sensitivity with 
respect to small displacements of individual joints. Here we 
investigate how r is varying in n × m minimally rigid quadran-
gulations and find that nontrivial patterns correspond both to 
maximal and minimal values of r.
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1 Introduction
In structural engineering, a truss is a structure consisting of 

rigid bars connected by pinned joints to each other at endpoints. 
Trusses are broadly applied as bridges, roofs, transmission tow-
ers and other large-scale structures.
The theoretical model of a physical truss consists of one-dimen-
sional rigid bars and point-like pinned joints. Two or more bars 
can be connected to each other at endpoints by joints, which 
allow relative rotation of bars around the axis of the joint. 
Forces are considered to act on joints only [18].
Realisations of trusses are in most cases supported, i.e. fixed to 
the ground or a wall. If external loads and equilibria of forces 
are to be taken into consideration, then the theoretical model 
must reflect the supports. In this case additional joints acting 
as unmovable support points are introduced. The nature of our 
current analysis makes it more convenient to have unsupported 
trusses as input. If necessary, however, it is easy to convert a sup-
ported truss into an unsupported one with similar properties [5].

The topology of the truss is described by the undirected topol-
ogy graph G(V, E). The vertex set V of the topology graph is in 
one-to-one correspondence with the set of joints in the truss. 
Likewise, the edge set E is in one-to-one correspondence with 
the set of bars. A given vertex is incident with a given edge if 
and only if the corresponding joint and bar are connected. Geo-
metric information such as coordinates of joints and lengths of 
bars are excluded from the topology graph.

A truss is rigid if the distance of any two joints is constant. 
A truss is said to be minimally rigid if it is rigid, and by remov-
ing any bar, it becomes non-rigid. These concepts are illus-
trated in Figure 1. Minimally rigid trusses are often considered 
more desirable than non-minimally rigid ones, not only because 
they require less building material, but also to avoid self-stress 
caused by kinematic load. For checking the rigidity of a truss, 
the most straightforward way is the direct mechanical analysis. 
A statical approach - which is applicable to supported trusses - 
writes constraints on external forces in equilibrium [18], while a 
kinematical one writes constraints on the first-order derivatives 
of the position vectors (i.e. the speed vectors) of joints [21].
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An important feature of rigidity and minimal rigidity is that 
in almost all cases they can be checked by observing only the 
topology graph G, without regard to geometric data. Topology 
graphs of rigid trusses are called generically rigid graphs, and 
those of minimally rigid trusses are called minimally generically 
rigid graphs [21]. Based on a theorem by Laman [15], several 
polynomial-time algorithms have been designed for checking the 
two-dimensional minimal generic rigidity of a topology graph 
[16,10]. A more recent one is capable of checking non-minimal 
generic rigidity as well [3]. These algorithms are suitable for 
determining the rigidity or minimal rigidity of all plane trusses 
with the exception of those with a degenerate geometry. Exam-
ples for such degenerate geometries can be seen in Figure 2b.

A concept recently introduced is geometric sensitivity [20]. 
A truss is said to be geometrically sensitive if a small relocation 
of a joint with no external forces applied causes a change in the 
internal forces in a large part of the truss. The influenced zone 
of an unloaded joint is the subset of bars in which the internal 
forces change when the given joint is slightly moved. The geo-
metric sensitivity of a truss can be measured by the average 
size of its influenced zones. Bars of an influenced zone along 
with joints connected to their ends constitute a rigid truss in its 
own right [20].

Similarly to rigidity, influenced zones in a non-degenerate 
truss are a function of the topology graph only: finding them 
can be reduced to finding minimally generically rigid sub-
graphs of the topology graph [20]. This has led to algorithms 
for finding the influenced zones by topology, including the first 

polynomial-time algorithm for minimally rigid trusses [5] and 
a more efficient algorithm applicable to non-minimally rigid 
trusses as well [13]. Section 5 discusses geometric sensitivity 
analysis in detail.

Our main target of examination is a specific class of unsup-
ported plane trusses: those having a square grid topology with 
added diagonals in some of the squares (see Figure 3 and Fig-
ure 4 for examples). The rigidity and geometric sensitivity of 
such trusses depend on the number and location of the diagonal 
bars. We wish to count and select all minimally rigid cases and 
find the connection between their diagonal bar locations and 
the geometric sensitivity. The main steps of our analysis are 
detailed in Section 2.

It is important to note that regarding rigidity, a regular square 
grid truss (see Figures 4a, 4b and 4c) may have different prop-
erties than a grid having the same topology but consisting of 
non-regular quadrilaterals (see Figures 4d, 4e and 4f). The 
explanation for this is that concerning geometry, irregular grids 
are generic, while regular ones are degenerate. Figures 4c and 
4f show an example for two trusses with the same topology but 
different geometries, where only the irregular one is rigid.

Fig. 3. Four examples out of the 1 087 992 minimally generically rigid
5 × 5 grid truss topologies

Fig. 1. Simple examples for a non-rigid, a minimally rigid and a non-minimally rigid truss. For the non-rigid truss, a deformed version is shown in grey.

(a) not rigid (b) rigid, minimally (b) rigid, not minimally

Fig. 2. Pairs of trusses having the same topology but differing in rigidity. In 
the non-rigid cases, arrows represent possible  infinitesimal motions of joints.

(a) non-degenerate, rigid (b) degenerate, not rigid

(a) (b)

(c) (d)
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Degenerate trusses are non-existent in reality, as actual con-
structed trusses always have small errors, making their geom-
etries generic. As a mathematical model however, degenerate 
cases are easier to handle. Consequently, the rigidity analysis 
of degenerate grid trusses is a highly researched topic: results 
include a method for checking rigidity specialised for such 
trusses [4]. Based on this, we can even count and directly enu-
merate all minimally rigid cases, as explained in Section 3.

In this paper, we primarily study generic grid trusses, which 
are more interesting from an engineering point of view. Being 
a more difficult problem, the rigidity analysis of such trusses 
boasts fewer scientific results. No specialised methods for 
selecting rigid cases are known, so we must resort to numeri-
cal solutions, as explained in Section 4. It is clear though that 
the number of topologies of rigid generic grids is not less than 
the number of topologies of rigid degenerate ones, since if a 
degenerate truss is rigid, then all generic trusses having the 
same topology are rigid as well.

To calculate the geometric sensitivity of generic grids, we 
use a general-purpose topology-based method, which assumes 
genericity of the input truss. The geometric sensitivity of degen-
erate grids is out of the scope of this paper, but it is known that 
a degenerate truss is never more sensitive than a generic truss 
with the same topology [20].

Due to the large number of trusses to be processed, the analy-
sis is highly compute-intensive. This computational requirement 
will be served by a high performance computing system, detailed 
in Section 8.

2 Goal and steps of examination
We intend to analyse minimal rigidity and sensitivity proper-

ties of trusses constrained to a two-dimensional plane, having 
a square grid topology, with diagonal bars placed in some of 

the squares. Only the topology of the truss is at our disposal 
as input data, no geometric information is used. Examples for 
such topologies can be seen in Figure 3.

The first stage of our examination is to find the diagonal bar 
combinations that yield minimally rigid trusses for different 
grid sizes. A direct enumeration of all such cases would be the 
most suitable solution to this. If that is not possible, enumera-
tion of a larger superset of cases and filtering out the minimally 
rigid cases is also an option. Sections 3 and 4 discuss how to do 
it for degenerate and generic grids, respectively. For the latter, 
less researched type of grids, the number of minimally rigid 
cases of a given size is an additional result of interest.

The second stage is to calculate the geometric sensitivity of 
each minimally rigid non-degenerate case, observing how sen-
sitivity depends on the locations of diagonal bars. Two specific 
outcomes of this sensitivity analysis are most interesting for us. 
First, we wish to find the configurations of diagonal bars result-
ing in the least and most sensitive grids. Second, we would like 
to obtain distribution plots of the geometric sensitivity values 
of all trusses analysed.

We take into account only trusses with diagonals slanted in 
a single direction, for example where each one is aligned along 
a “southwest-northeast’’ line, as illustrated in Figure 3. How-
ever, it can be easily seen that changing the orientation of the 
diagonals does not affect rigidity, and the difference in sensitiv-
ity becomes infinitely small as the size of the grid approaches 
infinity, so this is not a significant limitation.

The topology of the grid truss can be described by the height 
and width of the grid along with the identifiers of squares con-
taining a diagonal bar. This form of input leads to redundant 
cases as some of the topologies are isomorphic (e.g. Figures 3a 
and 3b, or Figures 4a and 4b). Nevertheless, such isomorphy 
classes within the whole input domain contain no more than 

Fig. 4. 2 × 3 degenerate (top) and generic (bottom) quadrilateral grid trusses with matching topologies. For non-rigid trusses, a deformed version is shown in grey. 
The twelve other possible diagonal bar placements yield rigid trusses in both the degenerate and the generic case.

(a) (b) (c)

(d) (e) (f)
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four topology graphs, regardless of the size of the grid. Such a 
small level of redundancy does not necessitate an algorithm or 
any other means for filtering the isomorphic topologies.

Due to the lack of known analytical solutions for the prob-
lem, we follow a numerical approach, checking rigidity and 
calculating geometric sensitivity with software implementa-
tions of efficient algorithms. As the number of rigid square 
grids of a given size is an exponential function of the height 
and width of the grid, our analysis is limited to small trusses. 
Even for small trusses the number of cases is too large to be 
handled on a single processor core, therefore we also aim to 
parallelise the problem formally and use a distributed system in 
order to gain speed. Distributed high performance computing 
(HPC) infrastructures that can suit our goals include a com-
puting cluster or supercomputer with a job scheduler (such as 
Condor [19]) installed, or a computing grid [9] with a modern 
middleware (such as ARC [2]) deployed. In Section 6, we give 
an overview of parallelisation possibilities, and in Section 7 we 
formulate performance metrics for the chosen approach.

3 Counting and enumerating
minimally rigid degenerate grids
Regular square grids have degenerate geometries, so the 

minimal generic rigidity of their topology graphs does not nec-
essarily mean that such trusses are rigid (see Figure 4c for a 
counterexample). Therefore the algorithms for checking mini-
mal generic rigidity cannot be applied to these cases.

Instead, we can use a result by Bolker and Crapo [4] to test 
the minimal rigidity of degenerate grids by topology. For this, 
we construct an auxiliary bipartite graph H(A, B, F). The ver-
tices in set A and set B correspond to rows and columns of the 
grid respectively. We place an edge ( )i j F, ∈  for i A j B∈ , ∈  if 
and only if there is a diagonal bar in the intersection of the row 
matching i and the column matching j. According to observa-
tions by Bolker and Crapo, the square grid truss is rigid if and 
only if H(A, B, F) is connected, and minimally rigid if and only 
if H(A, B, F) is a tree. This can be easily checked for example 
with a breadth-first search. Figure 5 demonstrates that using 
this technique we can make sure that a square grid truss with 
the topology shown in Figure 3d is in fact minimally rigid.

This connection between minimally rigid cases and bipartite 
graphs forming trees leads to further information. For example, 
since the number of spanning trees of the complete bipartite 
graph Kn,m is nm-1 mn-1, this is also the number of minimally rigid 
degenerate n × m square grids.

Hurlbert provides an encoding of spanning trees in a com-
plete k-partite graph [12], which is similar to Prüfer’s encod-
ing of spanning trees in the complete graph [17]. This encoding 
is a one-to-one mapping between the spanning trees and tuples 
of integers. The mapping can be efficiently performed in both 
directions, and each tuple can be easily converted to a unique 
integer. Utilising this encoding for k = 2 we can map the set of 

all H(A, B, F), |A| = n, |B| = m bipartite trees - and thus the set 
of all n × m minimally rigid square grid trusses - to an interval of 
integers. This allows us to enumerate all minimally rigid cases, 
and also to partition the input domain of the sensitivity analysis 
to disjoint subdomains, which is invaluable aid in distributed 
execution, as explained in Section 6.

As mentioned in the Introduction, instead of degenerate 
square grids we focus on grids consisting of irregular quadri-
laterals, which have non-degenerate, generic geometries. For 
enumerating all rigid cases among them, the method presented 
above would provide incomplete results: although all generic 
grids having the enumerated topologies are rigid, cases such as 
Figure 4f are excluded. Consequently, we need different tech-
niques, detailed in the next section.

4 Filtering minimally rigid generic grids
A quadrilateral grid truss where joints are randomly placed 

on the plane with algebraically independent position vectors 
has a non-degenerate geometry. Therefore, in order to test 
whether such a truss is minimally rigid, we can check the mini-
mal generic rigidity of its topology graph with one of the poly-
nomial-time generic rigidity checking algorithms.

However, there is presently no known way to enumerate all 
minimally generically rigid grid topologies, or even to calcu-
late their number with a closed-form expression. Nor is there 
a known algorithm for checking minimal generic rigidity spe-
cialised for square grid topologies that is more efficient than 
the general purpose ones. The following was the only specific 
connection we found:

Statement 1. An n × m square grid topology graph with d diag-
onal edges is minimally generically rigid if and only if

1. d = n + m − 1, and
2. for all n′ × m′ rectangular areas of the grid where d′ is 

the number of diagonal edges, d′ ≤ n′ + m′ − 1.

This can be proven using Laman’s theorem [15] and Hen-
neberg’s “vertex addition’’ step [11]. Since even these two rules 
were insufficient to establish a way for enumeration, the only 
possibility is to filter the minimally generically rigid graphs out 
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Fig. 5. A minimally rigid square grid (a) and its corresponding auxiliary 
bipartite graph (b)
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of a larger set of cases. To do this, we traverse all potentially 
minimally generically rigid cases, test the rigidity of each with 
a fast algorithm, and only if the test is passed do we proceed 
with the sensitivity analysis.

The total number of possible diagonal placements in an n × m 
grid is 2nm, as for each square we can decide whether to place a 
diagonal bar or not. On the other hand, by taking advantage of 
Rule 1 in Statement 1, the input domain of the rigidity test can be

reduced to nm
n m+ −








1
 cases, which are all possible placements 

of n + m − 1 diagonals in the grid. To enumerate all such com-
binations of diagonals, we can use the combinatorial number 
system [14], which assigns a unique integer between 0 and

nm
n m+ −








1  − 1, called rank, to each combination. From the 

rank, the truss topology can be easily recreated. This mapping 
to a contiguous interval of integers also helps in the distributed 
execution of the rigidity testing.

5 Sensitivity analysis
To get a picture on the geometric sensitivity of a truss con-

firmed to be rigid, the influenced zones of all joints have to be 
determined. For this, we can take advantage of the following 
connection [20]:

Theorem 1. For non-degenerate geometries, the bars in the 
influenced zone of a selected joint correspond to the edges in 
the rigid core of the vertex in the topology graph matching the 
joint.

The rigid core of a vertex v V∈  in a minimally generically 
rigid topology graph G(V, E) is defined as

• the empty graph or the graph ({v}, Ø) if d(v) < 3 (the 
trivial case);

• the smallest minimally generically rigid induced sub-
graph of G(V, E) that contains v and all its neighbour 
nodes if d(v) ≥ 3.

where d(v) denotes the degree i.e. the number of neighbour 
nodes of v. It should be noted that we have provided two alter-
native definitions for the trivial case. According to the original 
definition formulated in [20], the trivial rigid core is the empty 
graph. However, during our calculations, we included the sin-
gle node v in the rigid cores of 2-degree nodes. In our cur-
rent case, the choice of definition does not affect the sensitivity 
measurement significantly, since a quadrilateral grid never has 
more than four trivial rigid cores.

A naive way to find a rigid core of a vertex with at least 3 
neighbours is to exhaustively seek through all induced subgraphs 
containing v and its neighbours in increasing order of the num-
ber of additional nodes, check its minimal generic rigidity, and 
stop at the first minimally generically rigid subgraph. This naive 
algorithm can not be used in practice, as it has exponential time 

requirement. An earlier result of ours is a proof that the problem 
of finding the rigid core of a node in a minimally generically 
rigid graph has polynomial time complexity [5]. Our proof pro-
vides a polynomial time algorithm, which is based on the mini-
misation of an appropriate submodular target function similar 
to that used in rigidity checking [10]. A more efficient, simple 
algorithm [13] applies the arc reorientation algorithm [3] to find 
cycles in the rigidity matroid of G(V, E). With a different defini-
tion of rigid cores for non-minimally generically rigid graphs, 
Theorem 1 holds for non-minimally rigid trusses. Taking advan-
tage of this, the matroid-based method can be extended to enable 
finding rigid cores in non-minimally rigid trusses as well [13].

As a scalar measure of how sensitive a truss is, we can use 
the joint sensitivity index: the average ratio of the number of 
joints in the influenced zone to the total number of joints [20]:

where J is the set of all joints and Z(j) is the set of joints in the 
influenced zone of j. For an n × m grid truss, we get

The index equals or is close to 1 for “very sensitive’’ trusses 
where the influenced zones of most or all joints equal or almost 
equal the whole truss. To obtain this index, we need to calcu-
late the sizes of the influenced zones of all joints. According to 
the discussion above, for typical geometries this can be done 
by applying the most practical rigid core finding algorithm |V | 
times.

6 Parallelisation approaches
In case of computing problems involving heavy calculation 

or processing large data, speedup can be gained by using paral-
lel computing techniques. Our analysis of trusses, being com-
putationally intensive, can also benefit from parallel execution.

To design parallel applications, one can choose among sev-
eral parallel machine models. One such model is the parallel 
random-access machine (PRAM) [7], which assumes an unlim-
ited number of processors and unlimited shared memory with 
uniform access time. A more realistic model, the multicomputer 
[8] consists of a finite number of autonomous von Neumann 
machines interconnected by a network. Exchange of data is 
done by sending messages instead of using a shared memory. 
Communication is considered expensive, and data access times 
are taken into account in performance analysis. This model is 
closer to most actual general-purpose supercomputers, such as 
those used for our research, described in Section 8.

The three problems mentioned in Section 2 - counting rigid 
cases, finding the least/most sensitive grids and getting the dis-
tributions of sensitivities - are closely related. Each involves 
the rigidity check of a huge number of trusses, and the two 

r
J

Z j
Jj J

=
| |

| |
| |∈

∑1 ( )

r
Z j

n m
j J=
| |

+ +
∈∑ ( )

( ) ( )1 12 2

(1)

(2)



60 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

sensitivity-related problems also require calculating the geo-
metric sensitivities of the rigid ones. Therefore, to develop a 
parallel application, similar considerations are needed for all 
three problems.

When considering parallelising the problem of analysing 
the rigidity or sensitivity of several trusses, one immediately 
sees that different trusses can be processed independently. 
Such embarrassingly parallel problems [8] are frequently 
encountered in science and engineering. For these problems, 
the parameter study (or parameter sweep) approach can give a 
simple parallelised solution.

A parameter study algorithm on a multicomputer can be 
described as follows. An input task partitions the input domain 
of the problem into subdomains. There are several worker 
tasks, each of which requests the parameters of a subdomain 
from the input task via message passing. A worker task pro-
cesses a subdomain, and sends the result to an output task, then 
it requests the parameters of another subdomain to process. 
The output task is responsible for aggregating the subresults 
received from the workers into the final result of the problem. 
Each of these tasks can be assigned (mapped) to a separate 
abstract machine in the multicomputer for maximum perfor-
mance if possible.

In our case, the input domain is the set of topologies of 
quadrilateral grid trusses to be examined. In Section 4 we 
explained how we map this set to an interval of integers, which 
is straightforward to partition into non-overlapping subinter-
vals. The operation carried out by the worker tasks includes the 
rigidity analysis of the trusses corresponding to each integer in 
the subinterval. For the two more complicated problems, the 
sensitivity index of each rigid truss needs to be calculated, too. 
Depending on the problem, the output of the workers is the 
number of rigid cases within the subdomain, the partial top/
bottom lists or the partial distributions. After all workers are 
done, the final aggregating step is performed. When count-
ing rigid cases or calculating the distributions of sensitivity 
indexes, aggregating means simply adding up the counts for the 
subintervals. When seeking the most and least sensitive trusses, 
overall top and bottom lists can be assembled by ranking the 
sensitivity values in the lists for the subintervals.

In a parameter study application, the worker tasks can run 
simultaneously and independently, with no communication 
or synchronisation required. Communication is only needed 
between the input task and worker tasks, and between worker 
tasks and the output task. These applications are therefore well 
suited for widely used general-purpose HPC systems such 
as computing clusters, computing grids or supercomputers. 
In these infrastructures, a job scheduler (or batch system) is 
responsible for the coordination of computation jobs. Software 
development tools such as Saleve [6] exist to aid the creation 
of parameter study applications and their deployment in vari-
ous HPC systems.

In our parallel application design, the role of the input task 
is played by the combination of a simple program and the 
job scheduler. The program splits the interval representing 
the whole input domain into subintervals. Jobs performing 
the actual analysis of trusses are enqueued in the scheduler, 
each one getting the start and end of a subinterval as input. 
The worker tasks are represented by the processors of the 
distributed system that are available for executing the analy-
sis of a subdomain. When a processor is available, the sched-
uler launches a new job doing the truss analysis. This is how 
the communication between the input task and the workers is 
implemented. The output of the worker tasks is written to files 
on a shared file system. A simple aggregating program running 
offline (i.e. without involvement of the scheduler) acts as the 
output task, reading and processing the contents of these files. 
Communication is done by disk operations here.

There can be alternative approaches to consider in addition 
to our chosen design. It should be noted for example that when 
analysing the sensitivity of a truss, the influenced zones can 
also be determined independently without communication. If 
our input domain is the set of topology nodes instead of the set 
of topologies, then we can make a much finer-grained partition-
ing for sensitivity-related problems, having more subdomains 
than trusses. However, this level of granularity is not reason-
able here for several reasons. We deal with a very large number 
of relatively small trusses, so the high demand for computation 
power is due to the quantity of trusses. The analysis of a small 
truss takes only a short time even on a single medium-perfor-
mance CPU core, so there is no use decomposing it into sub-
tasks. Refining the granularity of a parameter study beyond a 
certain point reduces efficiency, as we will show in the next sec-
tion. Also, a domain partitioning like that would require more 
complicated input and output tasks for our problems. Such fine-
grained decomposition would be justified in other problems of 
research, for example when analysing the sensitivity of a few 
very complex trusses having several thousand nodes.

There are other ways to parallelise the analysis of a truss in 
a non parameter study manner. For example, both the rigid-
ity checking and the rigid core finding algorithms include a 
breadth-first search step [3], which can be replaced by a par-
allel search algorithm [8]. We discarded this idea as it would 
have led to an unacceptable amount of communication and 
unnecessarily fine granularity.

The input task can be parallelised as well. The sequential 
algorithm for splitting the interval {0 ,..., N − 1} representing 
the input domain into J subintervals requires a division and 
J − 1 other operations (additions or multiplications) in order to 
calculate interval boundaries. In theory, this could be acceler-
ated with a divide and conquer strategy. One can show using a 
PRAM model of J − 1 processors that the interval splitting can 
be done in just two steps: first we calculate l N

J=  , then each 
processor with identifier i (where i J∈ −{ }1 1, , ) calculates il.
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Similarly, we can provide a theoretical acceleration of the 
aggregation stage as well. If the aggregation means summing, 
then a PRAM with a sufficient number of processors can do this 
in O(log J) time [7]. If the aggregation means merging top or 
bottom lists into a single list of k values, then a naive PRAM 
algorithm can perform this in O(k) time by finding a minimum or 
maximum k times.

In reality, there is no speedup due to the communication 
overhead brought in. This is not a problem, as the splitting and 
the aggregation take only a very short time on a single core 
even in case of several thousand subdomains. For the same rea-
son, we chose not to overlap the operation of the output task 
with the worker tasks, and instead start the aggregation in an 
offline, separate step only when all the subresults are produced.

7 A performance model for parameter study
In this section we provide a performance analysis for our 

parameter study algorithm. The goal is to tune parameters of 
the parallelisation for optimal performance. What we can decide 
in our parameter study design is how to split the input domain. 
To make splitting simple, we choose equal-sized subdomains. 
Specifying the size of a subdomain is then equivalent with spec-
ifying the number of subdomains (J). An important question is 
how the choice of J affects the speedup of parallel execution.

We make further simplifications in the performance model. 
Execution times of the domain splitting and aggregation are 
safe to omit, as they are negligible compared to the time 
required for the actual truss analysis. We also use average esti-
mates for some varying parameters.

The execution time or wall-clock time of our parallel applica-
tion is the time elapsed between the submission of jobs into the 
scheduler and the completion of the last job. Without taking into 
account the time required by the domain splitting and aggrega-
tion, the execution time can be calculated as the total time all 
processors spend communicating, computing and doing nothing 
during this period divided by the number of processors [8]:

Here P is the number of momentarily available processor 
cores in the distributed system that are utilisable for worker 
tasks. As mentioned before, the analysis of a single truss is 
done sequentially, so our application cannot benefit from hav-
ing more processors than the number of trusses, N. Thus our 
calculations apply only for P ≤ N, which is the case in practice.

It is also important that the exact value of P is not known 
in advance, because it depends on other scientific applications 
occupying resources of the system. It even changes dynami-
cally during execution. We can only make a rough prediction 
of an average value taking this into account.

Communication time Tcomm means most importantly the sched-
uler overhead of launching a new job. To a lesser degree, it also 

includes disk I/O operations on the shared file system. The aver-
age communication time per job, here denoted by ts, is considered 
independent of other parameters. For J jobs, the total time spent 
communicating is:

The computation time Tcomp is the time spent analysing trusses. 
To check the rigidity of trusses of the same size, approximately 
the same amount of time is required for each one. This also 
means close to equal run times for all jobs. When sensitivity 
analysis is involved as well, the required time has a high varia-
tion: it is very small if the truss is not rigid.

We denote the average computation time per truss with tc. 
This can be measured by choosing a small sample subinterval 
from the input interval, measuring the run time of the analy-
sis on this subinterval, and dividing it by the sample size. For 
sensitivity-related problems, the sample should be chosen from 
around the middle of the input interval. Otherwise, most or all 
of the trusses in the sample may be non-rigid, resulting in a 
misleadingly small estimate for tc.

If the whole input set contains N trusses, then the total com-
putation time is:

Idle time Tidle is the period during which a processor is free, 
but does not get a subdomain to process. In our parameter study 
application, execution of a new job can start as soon as another 
one is complete, as long as there are unprocessed subdomains. 
If J ≥ P, then processors become idle only when running out of 
subdomains.

To estimate idle time for P < J ≤ N, we consider a worst case 
scenario, where all worker tasks complete work on their subdo-
mains simultaneously, and there is only one subdomain left. If 
this happens, then a single processor computes on the remain-
ing subdomain, while the other P − 1 processors are idle. The 
length of a subinterval is approximately N

J
, so the estimated 

worst case total idle time is:

This worst case cannot be prevented, because as stated, P 
changes dynamically. Also, despite our best efforts to create 
jobs with equal run time, there will inevitably be variances. In 
addition, ts may not be constant as assumed. This makes job 
completion times impossible to predict.

For the total execution time, we therefore get

The efficiency of a parallel algorithm is defined as the fraction 
of time that processors spend doing useful work [8]. If T1 is the 
execution time of a sequential application of the same purpose, 

T
P
T T TP = + +

1 ( )comm comp idle (3)

T Ntcomp c= (5)

T Jtcomm s= (4)

T P N
J
tidle c= −( )1 (6)

T
P
Jt Nt P N

J
tP = + + −

















1 1s c c( ) (7)



62 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

then the efficiency of our parameter study application is:

The speedup describes how many times faster the parallel 
application is compared to a sequential implementation [8]:

A truss is analysed with our application in a sequential man-
ner, therefore according to Amdahl’s law [1], its speedup for N 
trusses is not greater than N.

Speedup increases with the number of processor cores, up to 
the point where P = N. The maximal speedup could be achieved 
with N jobs on N processors, each job analysing one truss:

where ′tc  is the longest duration of the analysis of a single 
truss, which is significantly greater than the average duration tc, 
because non-rigid trusses take only a short time to process. Due 
to this fact and the scheduler overhead, η < 1 i.e. the limit of the 
speedup is somewhat less than the problem size N.

Having a limited number P N of processor cores, we aim 
for maximum efficiency, which leads to the maximum speedup 
for the given P value. An optimal number of jobs maximises E:

If we provide sufficiently accurate estimates for P, tc and ts, 
then with the correct number of jobs we can attain an efficiency 
close to the theoretical maximum, which is:

A parallel algorithm is scalable if its efficiency does not dete-
riorate much as the size of the input domain and/or the com-
puting infrastructure increases. Scalability-wise our parameter 
study performs well: the maximum efficiency actually increases 
with increasing N. With constant N, the decline in efficiency is 
roughly proportional to the square root of the number of avail-
able processors.

So far we have considered the effects the domain splitting 
and aggregation have on the execution time as insignificant. 
If we wish to take these sequential stages into account as well, 
then Formula 7 for the execution time of the parallel algorithm 
should be modified as follows:

As stated in Section 6, the essence of splitting the input 
domain is J − 1 operations, and in case of counting rigid trusses, 

the aggregation means adding up J numbers. Therefore, we 
may use Tsplit ≈ c1J and Taggr ≈ c2J  as estimates. Assembling top 
and bottom lists from partial lists of k elements each has time 
requirement O ( J k log k ) . However, we have set k to a small 
constant, 20, so we may estimate the time needed by the aggre-
gation as T c Jaggr ≈ ′2 .

When calculating distributions of sensitivity indexes, it 
might be desirable to have more detailed distribution data for 
larger trusses. This also requires more values to add up in the 
aggregation stage as we increase the height n and width m 
of the grid. However, even if we decide to produce the most 
detailed distributions possible (as explained in the next sec-
tion), the number of additions is only O(Jn2m2). At the same 
time, the problem size N increases exponentially with n and 
m. Therefore, the estimated time required to aggregate partial 
distributions is T c J Naggr ≈ ′′2

2log .
Accordingly, in order to consider the effects of splitting and 

aggregation when determining the optimal number of jobs, a 
modified version of Formula 11 should be used:

where α = +c c1 2 for counting rigid cases, α = + ′c c1 2 for listing 
the least/most sensitive trusses, and α = + ′′c c N1 2

2log  for the 
sensitivity distribution problem. The maximal efficiency will 
then be

In practical cases where J N , the influence of the domain 
splitting and aggregation stages on the time requirement or effi-
ciency is not noticeable, so it is safe to use Formula 11 instead, 
in order to keep the model simple. These two stages are only 
significant when calculating the theoretical maximum of the 
speedup, where J = P = N. Formula 10 shall here be modified as

This means that in case of the rigid counting and listing prob-
lems, maximal speedup has an upper bound independent of N:

It should also be noted that for the distribution problem, α is 
a function of J, thus also of N. As a consequence, it can be seen 
from Formula 16 that with increasing N, the speedup will actu-
ally decrease beyond a certain point.

8 Execution on supercomputers
To process all potentially minimally rigid grids of size n × m 

for small n and m values, we had two supercomputers at our 
disposal. We began with using Hercules, the supercomputer at 
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Miskolc University, and later tasks were carried out on Super-
man, the supercomputer of Budapest University of Technol-
ogy and Economics. These two computers have similar con-
figurations: each consists of 30 nodes, with 12 CPU cores 
per node. A fast interconnect network makes communication 
possible among nodes. Each node has access to a distributed 
file system for convenient data sharing. The Condor scheduler 
[19] is installed, providing fair share of computing resources 
among various research projects.

We implemented the parameter study design presented in 
Section 6, and deployed it on the supercomputers. The truss 
analysis relies almost exclusively on integer arithmetic, so the 
CPU performance was the most important parameter of the 
system. Other factors such as communication bandwidth, stor-
age space and disk access speed are less relevant for us. For 
trivially small trusses where n and m are not over 4, we used 
a single-core desktop machine instead of the supercomputers, 
without splitting the input domain.

First, we wished to count the minimally rigid n × m generic 
grid trusses. For this, a fast C++ program was developed, 
which got the start and end of an integer interval as command 
line arguments. This interval specified a set of n × m grids, 
each having n + m − 1 diagonals. The program performed Tibor 
Jordán’s rigidity matroid algorithm [3] for checking rigidity. 
The number of minimally rigid cases in the input set was writ-
ten to the standard output.

Second, we wanted to see the most and least sensitive grid 
trusses. A modified version of the program mentioned above, 
after verifying rigidity, calculated the rigid cores and joint 
sensitivity index as well, using an algorithm also based on 
the rigidity matroid [13]. It produced as output the list of the 
twenty least and most sensitive grids in the input set.

After this, we were interested in the distribution of sensi-
tivity index values. We can observe from Formula 2 in Sec-
tion 5 that the joint sensitivity index r cannot take more than
(n + 1)2(m + 1)2 possible values. We are discussing small grids, 
therefore this is not a considerably large number, allowing us 
to count trusses having index r for each occurring r value. We 
can make a distribution plot from the result, which is detailed 
and illustrative at the same time, without the need of creat-
ing a histogram with manually adjusted histogram bins. We 
once again modified our program to perform this counting on 
a subdomain.

For a given n and m, instances of these programs were launched 

as jobs, each getting a subinterval of 0
1

1, ,
nm

n m+ −








 −









 to 

process. A simple auxiliary program performed the interval 
splitting, and generated a submit description file for the Con-
dor scheduler.

To determine the optimal number of jobs, we did not use 
Formula 11, as we did not have appropriate estimates for the 
parameters within yet. Instead, we heuristically tuned the 

number of jobs so that each one took a couple of hours to fin-
ish, resulting in a few thousand jobs.

After all jobs finished, a separate program aggregated the sub-
results to obtain the final results. This program read in the out-
put files of all jobs from the shared file system, and performed 
the summing or list merging, depending on the problem type.

9 Results
Using the supercomputer Hercules, first we determined the 

number of topologies corresponding to minimally rigid generic 
grid trusses or various n × m grid sizes. Table 1 summarises these 
results in increasing order of the number of diagonals (denoted 
by d). In the table, rows for grids with equal height and width 
are highlighted. Results above the horizontal line were obtained 
with a single-core computer, before using supercomputers.

Column 4 shows the total number of topologies checked 
for minimal generic rigidity. This is the number of all possible 
placements of d = n + m − 1 diagonals. Column 5 shows the 
number of cases found to be minimally generically rigid. For 
this value, no formula is currently known, but it obviously can-
not be less than the number of topologies for minimally rigid 
degenerate square grids (shown in Column 6), which can be 
calculated as described in Section 3.

We can see in Row 2 that among 2 × 3 grids, there are exactly 
two topologies for non-rigid generic grids, and three topologies 
(which include the former two) for non-rigid degenerate grids. 
These are represented by the generic grid trusses in Figures 4d 
and 4e, and by the degenerate grid trusses in Figures 4a, 4b and 4c.

The calculations on the supercomputer proceeded up to 
d = 13, sweeping through several hundred billion cases within a 
few days. Afterwards, we launched further tasks on Hercules to 
find the twenty least and most sensitive grid trusses among the 
minimally rigid ones, for n × n grid sizes up to n = 6. We found 
that in the least sensitive grids, the diagonals were placed in row

i, column j so that either  i ≈ 
n
2





 + 1 or j ≈ n
2





 + 1. This means 

that the diagonals formed a “+’’-like shape in the middle of the 
truss. For example, the topology of the least sensitive 5 × 5 grid, 
having joint sensitivity index 0.280864, can be seen in Figure 
3c. Among the most sensitive ones, there appeared to be a large 
number of cases (although no more than twenty were recorded) 
all having the same joint sensitivity index, many of them having 
no particular pattern in the distribution of diagonals.

These results have been summarised in a downloadable 
appendix1. In the appendix, topologies of the twenty most 
and least sensitive trusses are shown for different grid sizes, 
grouped by joint sensitivity index value. For improved visibil-
ity, diagonal bars are represented by squares filled with red. The 
rank of the diagonal combination is given below each diagram.

1 http://sirkan.iit.bme.hu/~dobe/truss/sens-appendix.pdf
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d n m
Total
nm
d











Rigid generic
?

Rigid degenerate
n mm n− −1 1

3 2 2 4 4 4

4 2 3 15 13 12

5 2 4 56 40 32

5 3 3 126 98 81

6 2 5 210 121 80

6 3 4 924 623 432

7 2 6 792 364 192

7 3 5 6 435 3 685 2 025

7 4 4 11 440 7 116 4 096

8 2 7 3 003 1 093 448

8 3 6 43 758 21 048 8 748

8 4 5 125 970 70 584 32 000

9 2 8 11 440 3 280 1 024

9 3 7 293 930 118 053 35 721

9 4 6 1 307 504 649 776 221 184

9 5 5 2 042 975 1 087 992 390 625

10 2 9 43 758 9 841 2 304

10 3 8 1 961 256 655 625 139 968

10 4 7 13 123 110 5 729 556 1 404 928

10 5 6 30 045 015 14 888 525 4 050 000

11 2 10 167 960 29 524 5 120

11 3 9 13 037 895 3 621 234 531 441

11 4 8 129 024 480 49 211 996 8 388 608

11 5 7 417 225 900 189 681 461 37 515 625

11 6 6 600 805 296 288 906 180 60 466 176

12 2 11 646 646 88 573 11 264

12 3 10 86 493 225 19 939 899 1 968 300

12 4 9 1 251 677 700 415 712 461 47 775 744

12 5 8 5 586 853 480 2 308 746 354 320 000 000

12 6 7 11 058 116 888 5 063 020 974 784 147 392

13 2 12 2 496 144 265 720 24 576

13 3 11 573 166 440 109 606 097 7 144 929

13 4 10 12 033 222 880 3 473 854 720 262 144 000

13 5 9 73 006 209 045 27 259 652 307 2 562 890 625

13 6 8 192 928 249 296 83 016 541 716 9 172 942 848

13 7 7 262 596 783 764 118 247 295 490 13 841 287 201

Tab. 1. Number of topologies of minimally rigid n × m grid trusses with d diagonals in case of generic and degenerate geometry

An upper bound on the joint sensitivity index can be calcu-
lated based on the maximal possible sizes of influenced zones. 
Joints in the four corners of the grid always have small influenced 
zones. Other joints can have very large influenced zones, but they 
exclude one or both of the top-left and bottom-right corner joints. 
Our experiments show that the joint sensitivity indexes of the 
most sensitive grid trusses reach this theoretical maximum.

Due to the abundance of such maximal sensitivity trusses, 
one can experimentally find combinations of diagonals cor-
responding to some of these cases for larger grids as well.

7 × 7 examples, having joint sensitivity index 0.911621, can be 
seen in Figure 6. Some of these, such as 6a, 6b and 6c, show a 
pattern in the placement of the diagonals, while others, such as 
6d appear to be random.

We used the supercomputer Superman to get the distributions 
of joint sensitivity index values of n × n grids. The complete anal-
ysis could be done within reasonable time only for sizes up to
6 × 6. However, we created distribution plots for larger grids 
based on a small subset of the input domain, with the assump-
tion that the characteristic shape of the plot is similar to that 
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of the whole domain. Here we picked every kth subdomain to 
process, where k = 500 for 7 × 7, k = 250000 for 8 × 8, and
k = 500000000 for 9 × 9 grids. The distribution plots can be 
seen in Figure 7.

Experiences regarding run times of the hardest tasks are 
summarised in Table 2. Here, “Wall clock time’’ is the time 
elapsed between submitting the jobs and the completion of the 
last job. From the column labelled “Total CPU time’’, it is clear 
that our analysis would have taken several years using a single 
processor core dedicated exclusively to these tasks.

Compared to other types of tasks, counting minimally generi-
cally rigid truss topologies is relatively fast, so we could exam-
ine several different grid sizes, up to 7 × 7. Row 1 of Table 2 
shows the time requirement for the latter.

Not surprisingly, making the top/bottom sensitivity lists is 
much slower, since the sensitivity analysis involves finding the 
rigid cores of all (n + 1)(m + 1) nodes in the truss, each having a 

time requirement roughly equivalent to that of the rigidity check. 
Therefore, the size limit of our examinations was 6 × 6 here, for 
which the time requirement can be seen in Row 2 of Table 2.

It is more interesting that compared to making the lists, get-
ting the joint sensitivity index distribution for 6 × 6 grids took 
considerably more time (see Row 3 of Table 2). In both tasks, 
calculating the sensitivity value is expected to be the major part 
of the computation. The difference might be caused either by 
unoptimised code for gathering distribution data, or by differ-
ent build environments on the two supercomputers.

We generated distribution data for 9 × 9 grids as well. The 
duration of this task was similar (see Row 4 of Table 2). How-
ever, as noted before, in this case we took into account only 
1/500000000 part of the complete domain.

One may also notice that wall-clock time values relative to 
total CPU times are somewhat higher on Superman than on 
Hercules. The reason for this is that Superman is used by many 

(a) (b)

(c) (d)

Fig. 6. Four examples of maximal sensitivity 7 × 7 grid truss topologies

Computer used Task purpose Grid size #jobs
Average CPU 

time per job
Total CPU time Wall clock time

Hercules rigid count 7 × 7 4377 05:08:16 937d 00:42:15 3d 08:00:00

Hercules
top/bottom
sensitivities

6 × 6 301 03:09:33 39d 14:58:42 05:40:19

Superman
r distribution
(complete)

6 × 6 301 1d 00:31:13 307d 12:37:15 3d 06:31:27

Superman
r distribution 

(partial)
9 × 9 12845 01:20:56 722d 01:18:16 4d 21:27:54

Tab. 2. Run time statistics of the most demanding task types.
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other research projects, thus it often has higher load. Also, our 
partial distribution task was launched in two stages, with two 
days difference.

10 Validation of the performance model
After getting the desired results for our problems, we con-

ducted simple experiments to measure parameters of the per-
formance model presented in Section 7, and to validate this 
model. We took advantage of a period of time when a constant, 
larger number of processors of the Hercules supercomputer 
was available exclusively for us to use.

For the experiment, we selected the problem of top/bot-
tom sensitivity lists for 6 × 6 grids - a problem of medium 
complexity (see Row 2 of Table 2) - to execute with various 
numbers of jobs. Initially we chose J = 312, the previously 
expected number of free processors as the number of jobs, and 
doubled it for each subsequent execution, up to J = 4992. For 
each execution, the number of processors running our jobs was 
P = 299.

As we had expected, on this scale of the number of jobs the 
domain splitting time Tsplit and the aggregation time Taggr turned 
out to be very small, which even made them impossible to 
measure accurately. Therefore we excluded the time require-
ment of these stages from our experiments, and used the sim-
pler model instead.

In Section 7 we suggested a sampling approach to measure 
tc, the average computation time per job. As we already had 
had knowledge of the total CPU time T1 = Ntc = 3423522s (see 
Row2, Column 6 of Table 2), we instead simply divided this 
value by N = 600805296 (see Column 4 of the row correspond-
ing to n = 6, m = 6 in Table 1), to get tc = 0.005698s.

We measured ts, the scheduler overhead time per job sepa-
rately for each execution. Average and maximum values were 
gathered after the executions, although the information avail-
able from logs only allowed us to make accurate measure-
ments for the averages. Interestingly, contrary to our expecta-
tions, the overhead seemed non-constant: it increased with J, 
as seen in Figure 8. A possible explanation for this is that the 
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(d) 7 × 7, partial
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(e) 8 × 8, partial
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(f) 9 × 9, partial
Fig. 7. Distributions of joint sensitivity indexes of grid trusses. Only plots a, b and c represent the complete domain.
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matchmaking mechanism of the scheduler slows down in case 
of a large amount of jobs waiting in the queue.

To check the validity of the performance model, we com-
pared values calculated using Formula 7 as a function of J 
with actual measured wall-clock times. The measured times 
are represented by the solid black line in Figure 9. Based on 
this, it can be concluded that the wall-clock time has in fact a 
minimum around J = 2496. To calculate theoretical wall-clock 
times using the model, we had all necessary parameters at our 
disposal except ts, which is non-constant according to our expe-
rience. We chose to compare the measurements with calcula-
tions using several different ts parameter values, shown as grey 
dashed curves in Figure 9. The minima of these curves can be 
obtained using Formula 11.

It should not be forgotten that we built a very simple 
model, with heavy simplifications. For example, the worst 
case approach for calculating the idle time is an overestima-
tion, which is likely the cause of the calculated values being 
significantly greater than measured times at smaller J values. 
Additionally, the wall-clock time in practice increases more 
steeply than the calculated curves, due to ts increasing with the 
number of jobs. We can also observe that the measurements are 
closer to those calculations that correspond to somewhat higher 
ts values than what we had experienced in practice. Using a 
maximum instead of an average for ts may result in a better fit.

11 Summary
Using algorithms based on combinatorics, graph theory and 

matroid theory, and taking advantage of the power of a HPC 
infrastructure, we analysed rigidity and sensitivity attributes of 
plane trusses having a square grid topology with diagonal bars. 
The problem we faced had no analytic solution, and the input 
domain grew exponentially large as the grid increased in size. 
In spite of that, a supercomputer proved powerful enough for 
us to examine a large number of simple yet non-trivial cases, 
allowing us to get an overview of their properties. We designed 
a parallel algorithm and proved its scalability in order to take 
advantage of the power of a supercomputer. A model has been 
set up for the performance of this parallel algorithm, and tested 
with experiments.

One of our achievements is the identification of diagonal bar 
location patterns of the minimal and maximal sensitivity grid 
trusses. Although our method was a numerical analysis of small 
grids, we were able to provide plausible arguments to those for 
arbitrary grid sizes.

We have also shed light on an unexpected phenomenon of 
the distributions of joint sensitivity indexes: they appear to 
converge, at least partially, to a continuous distribution. This 
phenomenon is clearly visible even though we did not perform 
any summing or averaging over sections of the index.
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