
55Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

Computer-Aided Geometric Sensitivity
Analysis of Plane Trusses with a
Square Grid Topology

Péter Dóbé / Gábor Domokos

received 17 July 2013; accepted 10 February 2014

Abstract
A recent theory assigns a single scalar 0 ≤ r ≤ 1 to pin-jointed
plane trusses, characterising their geometric sensitivity with
respect to small displacements of individual joints. Here we
investigate how r is varying in n × m minimally rigid quadran-
gulations and find that nontrivial patterns correspond both to
maximal and minimal values of r.

Keywords
truss · square grid · rigidity · geometric sensitivity · parallel

algorithm · supercomputer

1 Introduction
In structural engineering, a truss is a structure consisting of

rigid bars connected by pinned joints to each other at endpoints.
Trusses are broadly applied as bridges, roofs, transmission tow-
ers and other large-scale structures.
The theoretical model of a physical truss consists of one-dimen-
sional rigid bars and point-like pinned joints. Two or more bars
can be connected to each other at endpoints by joints, which
allow relative rotation of bars around the axis of the joint.
Forces are considered to act on joints only [18].
Realisations of trusses are in most cases supported, i.e. fixed to
the ground or a wall. If external loads and equilibria of forces
are to be taken into consideration, then the theoretical model
must reflect the supports. In this case additional joints acting
as unmovable support points are introduced. The nature of our
current analysis makes it more convenient to have unsupported
trusses as input. If necessary, however, it is easy to convert a sup-
ported truss into an unsupported one with similar properties [5].

The topology of the truss is described by the undirected topol-
ogy graph G(V, E). The vertex set V of the topology graph is in
one-to-one correspondence with the set of joints in the truss.
Likewise, the edge set E is in one-to-one correspondence with
the set of bars. A given vertex is incident with a given edge if
and only if the corresponding joint and bar are connected. Geo-
metric information such as coordinates of joints and lengths of
bars are excluded from the topology graph.

A truss is rigid if the distance of any two joints is constant.
A truss is said to be minimally rigid if it is rigid, and by remov-
ing any bar, it becomes non-rigid. These concepts are illus-
trated in Figure 1. Minimally rigid trusses are often considered
more desirable than non-minimally rigid ones, not only because
they require less building material, but also to avoid self-stress
caused by kinematic load. For checking the rigidity of a truss,
the most straightforward way is the direct mechanical analysis.
A statical approach - which is applicable to supported trusses -
writes constraints on external forces in equilibrium [18], while a
kinematical one writes constraints on the first-order derivatives
of the position vectors (i.e. the speed vectors) of joints [21].

58(2), pp. 55-68 (2014)
DOI:10.3311/PPee.2207

Creative Commons Attribution b

research article

Péter Dóbé

Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics,
Magyar tudósok krt 2., H-1117 Budapest, Hungary
e-mail: dobe@iit.bme.hu

Gábor Domokos

Department of Mechanics, Materials and Structures, Faculty of Architecture,
Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary

PPPeriodica Polytechnica
Electrical Engineering and Computer Science

http://dx.doi.org/10.3311/PPee.2207

56 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

An important feature of rigidity and minimal rigidity is that
in almost all cases they can be checked by observing only the
topology graph G, without regard to geometric data. Topology
graphs of rigid trusses are called generically rigid graphs, and
those of minimally rigid trusses are called minimally generically
rigid graphs [21]. Based on a theorem by Laman [15], several
polynomial-time algorithms have been designed for checking the
two-dimensional minimal generic rigidity of a topology graph
[16,10]. A more recent one is capable of checking non-minimal
generic rigidity as well [3]. These algorithms are suitable for
determining the rigidity or minimal rigidity of all plane trusses
with the exception of those with a degenerate geometry. Exam-
ples for such degenerate geometries can be seen in Figure 2b.

A concept recently introduced is geometric sensitivity [20].
A truss is said to be geometrically sensitive if a small relocation
of a joint with no external forces applied causes a change in the
internal forces in a large part of the truss. The influenced zone
of an unloaded joint is the subset of bars in which the internal
forces change when the given joint is slightly moved. The geo-
metric sensitivity of a truss can be measured by the average
size of its influenced zones. Bars of an influenced zone along
with joints connected to their ends constitute a rigid truss in its
own right [20].

Similarly to rigidity, influenced zones in a non-degenerate
truss are a function of the topology graph only: finding them
can be reduced to finding minimally generically rigid sub-
graphs of the topology graph [20]. This has led to algorithms
for finding the influenced zones by topology, including the first

polynomial-time algorithm for minimally rigid trusses [5] and
a more efficient algorithm applicable to non-minimally rigid
trusses as well [13]. Section 5 discusses geometric sensitivity
analysis in detail.

Our main target of examination is a specific class of unsup-
ported plane trusses: those having a square grid topology with
added diagonals in some of the squares (see Figure 3 and Fig-
ure 4 for examples). The rigidity and geometric sensitivity of
such trusses depend on the number and location of the diagonal
bars. We wish to count and select all minimally rigid cases and
find the connection between their diagonal bar locations and
the geometric sensitivity. The main steps of our analysis are
detailed in Section 2.

It is important to note that regarding rigidity, a regular square
grid truss (see Figures 4a, 4b and 4c) may have different prop-
erties than a grid having the same topology but consisting of
non-regular quadrilaterals (see Figures 4d, 4e and 4f). The
explanation for this is that concerning geometry, irregular grids
are generic, while regular ones are degenerate. Figures 4c and
4f show an example for two trusses with the same topology but
different geometries, where only the irregular one is rigid.

Fig. 3. Four examples out of the 1 087 992 minimally generically rigid
5 × 5 grid truss topologies

Fig. 1. Simple examples for a non-rigid, a minimally rigid and a non-minimally rigid truss. For the non-rigid truss, a deformed version is shown in grey.

(a) not rigid (b) rigid, minimally (b) rigid, not minimally

Fig. 2. Pairs of trusses having the same topology but differing in rigidity. In
the non-rigid cases, arrows represent possible infinitesimal motions of joints.

(a) non-degenerate, rigid (b) degenerate, not rigid

(a) (b)

(c) (d)

57Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

Degenerate trusses are non-existent in reality, as actual con-
structed trusses always have small errors, making their geom-
etries generic. As a mathematical model however, degenerate
cases are easier to handle. Consequently, the rigidity analysis
of degenerate grid trusses is a highly researched topic: results
include a method for checking rigidity specialised for such
trusses [4]. Based on this, we can even count and directly enu-
merate all minimally rigid cases, as explained in Section 3.

In this paper, we primarily study generic grid trusses, which
are more interesting from an engineering point of view. Being
a more difficult problem, the rigidity analysis of such trusses
boasts fewer scientific results. No specialised methods for
selecting rigid cases are known, so we must resort to numeri-
cal solutions, as explained in Section 4. It is clear though that
the number of topologies of rigid generic grids is not less than
the number of topologies of rigid degenerate ones, since if a
degenerate truss is rigid, then all generic trusses having the
same topology are rigid as well.

To calculate the geometric sensitivity of generic grids, we
use a general-purpose topology-based method, which assumes
genericity of the input truss. The geometric sensitivity of degen-
erate grids is out of the scope of this paper, but it is known that
a degenerate truss is never more sensitive than a generic truss
with the same topology [20].

Due to the large number of trusses to be processed, the analy-
sis is highly compute-intensive. This computational requirement
will be served by a high performance computing system, detailed
in Section 8.

2 Goal and steps of examination
We intend to analyse minimal rigidity and sensitivity proper-

ties of trusses constrained to a two-dimensional plane, having
a square grid topology, with diagonal bars placed in some of

the squares. Only the topology of the truss is at our disposal
as input data, no geometric information is used. Examples for
such topologies can be seen in Figure 3.

The first stage of our examination is to find the diagonal bar
combinations that yield minimally rigid trusses for different
grid sizes. A direct enumeration of all such cases would be the
most suitable solution to this. If that is not possible, enumera-
tion of a larger superset of cases and filtering out the minimally
rigid cases is also an option. Sections 3 and 4 discuss how to do
it for degenerate and generic grids, respectively. For the latter,
less researched type of grids, the number of minimally rigid
cases of a given size is an additional result of interest.

The second stage is to calculate the geometric sensitivity of
each minimally rigid non-degenerate case, observing how sen-
sitivity depends on the locations of diagonal bars. Two specific
outcomes of this sensitivity analysis are most interesting for us.
First, we wish to find the configurations of diagonal bars result-
ing in the least and most sensitive grids. Second, we would like
to obtain distribution plots of the geometric sensitivity values
of all trusses analysed.

We take into account only trusses with diagonals slanted in
a single direction, for example where each one is aligned along
a “southwest-northeast’’ line, as illustrated in Figure 3. How-
ever, it can be easily seen that changing the orientation of the
diagonals does not affect rigidity, and the difference in sensitiv-
ity becomes infinitely small as the size of the grid approaches
infinity, so this is not a significant limitation.

The topology of the grid truss can be described by the height
and width of the grid along with the identifiers of squares con-
taining a diagonal bar. This form of input leads to redundant
cases as some of the topologies are isomorphic (e.g. Figures 3a
and 3b, or Figures 4a and 4b). Nevertheless, such isomorphy
classes within the whole input domain contain no more than

Fig. 4. 2 × 3 degenerate (top) and generic (bottom) quadrilateral grid trusses with matching topologies. For non-rigid trusses, a deformed version is shown in grey.
The twelve other possible diagonal bar placements yield rigid trusses in both the degenerate and the generic case.

(a) (b) (c)

(d) (e) (f)

58 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

four topology graphs, regardless of the size of the grid. Such a
small level of redundancy does not necessitate an algorithm or
any other means for filtering the isomorphic topologies.

Due to the lack of known analytical solutions for the prob-
lem, we follow a numerical approach, checking rigidity and
calculating geometric sensitivity with software implementa-
tions of efficient algorithms. As the number of rigid square
grids of a given size is an exponential function of the height
and width of the grid, our analysis is limited to small trusses.
Even for small trusses the number of cases is too large to be
handled on a single processor core, therefore we also aim to
parallelise the problem formally and use a distributed system in
order to gain speed. Distributed high performance computing
(HPC) infrastructures that can suit our goals include a com-
puting cluster or supercomputer with a job scheduler (such as
Condor [19]) installed, or a computing grid [9] with a modern
middleware (such as ARC [2]) deployed. In Section 6, we give
an overview of parallelisation possibilities, and in Section 7 we
formulate performance metrics for the chosen approach.

3 Counting and enumerating
minimally rigid degenerate grids
Regular square grids have degenerate geometries, so the

minimal generic rigidity of their topology graphs does not nec-
essarily mean that such trusses are rigid (see Figure 4c for a
counterexample). Therefore the algorithms for checking mini-
mal generic rigidity cannot be applied to these cases.

Instead, we can use a result by Bolker and Crapo [4] to test
the minimal rigidity of degenerate grids by topology. For this,
we construct an auxiliary bipartite graph H(A, B, F). The ver-
tices in set A and set B correspond to rows and columns of the
grid respectively. We place an edge ()i j F, ∈ for i A j B∈ , ∈ if
and only if there is a diagonal bar in the intersection of the row
matching i and the column matching j. According to observa-
tions by Bolker and Crapo, the square grid truss is rigid if and
only if H(A, B, F) is connected, and minimally rigid if and only
if H(A, B, F) is a tree. This can be easily checked for example
with a breadth-first search. Figure 5 demonstrates that using
this technique we can make sure that a square grid truss with
the topology shown in Figure 3d is in fact minimally rigid.

This connection between minimally rigid cases and bipartite
graphs forming trees leads to further information. For example,
since the number of spanning trees of the complete bipartite
graph Kn,m is nm-1 mn-1, this is also the number of minimally rigid
degenerate n × m square grids.

Hurlbert provides an encoding of spanning trees in a com-
plete k-partite graph [12], which is similar to Prüfer’s encod-
ing of spanning trees in the complete graph [17]. This encoding
is a one-to-one mapping between the spanning trees and tuples
of integers. The mapping can be efficiently performed in both
directions, and each tuple can be easily converted to a unique
integer. Utilising this encoding for k = 2 we can map the set of

all H(A, B, F), |A| = n, |B| = m bipartite trees - and thus the set
of all n × m minimally rigid square grid trusses - to an interval of
integers. This allows us to enumerate all minimally rigid cases,
and also to partition the input domain of the sensitivity analysis
to disjoint subdomains, which is invaluable aid in distributed
execution, as explained in Section 6.

As mentioned in the Introduction, instead of degenerate
square grids we focus on grids consisting of irregular quadri-
laterals, which have non-degenerate, generic geometries. For
enumerating all rigid cases among them, the method presented
above would provide incomplete results: although all generic
grids having the enumerated topologies are rigid, cases such as
Figure 4f are excluded. Consequently, we need different tech-
niques, detailed in the next section.

4 Filtering minimally rigid generic grids
A quadrilateral grid truss where joints are randomly placed

on the plane with algebraically independent position vectors
has a non-degenerate geometry. Therefore, in order to test
whether such a truss is minimally rigid, we can check the mini-
mal generic rigidity of its topology graph with one of the poly-
nomial-time generic rigidity checking algorithms.

However, there is presently no known way to enumerate all
minimally generically rigid grid topologies, or even to calcu-
late their number with a closed-form expression. Nor is there
a known algorithm for checking minimal generic rigidity spe-
cialised for square grid topologies that is more efficient than
the general purpose ones. The following was the only specific
connection we found:

Statement 1. An n × m square grid topology graph with d diag-
onal edges is minimally generically rigid if and only if

1. d = n + m − 1, and
2. for all n′ × m′ rectangular areas of the grid where d′ is

the number of diagonal edges, d′ ≤ n′ + m′ − 1.

This can be proven using Laman’s theorem [15] and Hen-
neberg’s “vertex addition’’ step [11]. Since even these two rules
were insufficient to establish a way for enumeration, the only
possibility is to filter the minimally generically rigid graphs out

1

2

3

4

5

a b c d e

(a)

1

2

3

4

5

a

b

c

d

e

(b)

Fig. 5. A minimally rigid square grid (a) and its corresponding auxiliary
bipartite graph (b)

59Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

of a larger set of cases. To do this, we traverse all potentially
minimally generically rigid cases, test the rigidity of each with
a fast algorithm, and only if the test is passed do we proceed
with the sensitivity analysis.

The total number of possible diagonal placements in an n × m
grid is 2nm, as for each square we can decide whether to place a
diagonal bar or not. On the other hand, by taking advantage of
Rule 1 in Statement 1, the input domain of the rigidity test can be

reduced to nm
n m+ −

1
 cases, which are all possible placements

of n + m − 1 diagonals in the grid. To enumerate all such com-
binations of diagonals, we can use the combinatorial number
system [14], which assigns a unique integer between 0 and

nm
n m+ −

1 − 1, called rank, to each combination. From the

rank, the truss topology can be easily recreated. This mapping
to a contiguous interval of integers also helps in the distributed
execution of the rigidity testing.

5 Sensitivity analysis
To get a picture on the geometric sensitivity of a truss con-

firmed to be rigid, the influenced zones of all joints have to be
determined. For this, we can take advantage of the following
connection [20]:

Theorem 1. For non-degenerate geometries, the bars in the
influenced zone of a selected joint correspond to the edges in
the rigid core of the vertex in the topology graph matching the
joint.

The rigid core of a vertex v V∈ in a minimally generically
rigid topology graph G(V, E) is defined as

• the empty graph or the graph ({v}, Ø) if d(v) < 3 (the
trivial case);

• the smallest minimally generically rigid induced sub-
graph of G(V, E) that contains v and all its neighbour
nodes if d(v) ≥ 3.

where d(v) denotes the degree i.e. the number of neighbour
nodes of v. It should be noted that we have provided two alter-
native definitions for the trivial case. According to the original
definition formulated in [20], the trivial rigid core is the empty
graph. However, during our calculations, we included the sin-
gle node v in the rigid cores of 2-degree nodes. In our cur-
rent case, the choice of definition does not affect the sensitivity
measurement significantly, since a quadrilateral grid never has
more than four trivial rigid cores.

A naive way to find a rigid core of a vertex with at least 3
neighbours is to exhaustively seek through all induced subgraphs
containing v and its neighbours in increasing order of the num-
ber of additional nodes, check its minimal generic rigidity, and
stop at the first minimally generically rigid subgraph. This naive
algorithm can not be used in practice, as it has exponential time

requirement. An earlier result of ours is a proof that the problem
of finding the rigid core of a node in a minimally generically
rigid graph has polynomial time complexity [5]. Our proof pro-
vides a polynomial time algorithm, which is based on the mini-
misation of an appropriate submodular target function similar
to that used in rigidity checking [10]. A more efficient, simple
algorithm [13] applies the arc reorientation algorithm [3] to find
cycles in the rigidity matroid of G(V, E). With a different defini-
tion of rigid cores for non-minimally generically rigid graphs,
Theorem 1 holds for non-minimally rigid trusses. Taking advan-
tage of this, the matroid-based method can be extended to enable
finding rigid cores in non-minimally rigid trusses as well [13].

As a scalar measure of how sensitive a truss is, we can use
the joint sensitivity index: the average ratio of the number of
joints in the influenced zone to the total number of joints [20]:

where J is the set of all joints and Z(j) is the set of joints in the
influenced zone of j. For an n × m grid truss, we get

The index equals or is close to 1 for “very sensitive’’ trusses
where the influenced zones of most or all joints equal or almost
equal the whole truss. To obtain this index, we need to calcu-
late the sizes of the influenced zones of all joints. According to
the discussion above, for typical geometries this can be done
by applying the most practical rigid core finding algorithm |V |
times.

6 Parallelisation approaches
In case of computing problems involving heavy calculation

or processing large data, speedup can be gained by using paral-
lel computing techniques. Our analysis of trusses, being com-
putationally intensive, can also benefit from parallel execution.

To design parallel applications, one can choose among sev-
eral parallel machine models. One such model is the parallel
random-access machine (PRAM) [7], which assumes an unlim-
ited number of processors and unlimited shared memory with
uniform access time. A more realistic model, the multicomputer
[8] consists of a finite number of autonomous von Neumann
machines interconnected by a network. Exchange of data is
done by sending messages instead of using a shared memory.
Communication is considered expensive, and data access times
are taken into account in performance analysis. This model is
closer to most actual general-purpose supercomputers, such as
those used for our research, described in Section 8.

The three problems mentioned in Section 2 - counting rigid
cases, finding the least/most sensitive grids and getting the dis-
tributions of sensitivities - are closely related. Each involves
the rigidity check of a huge number of trusses, and the two

r
J

Z j
Jj J

=
| |

| |
| |∈

∑1 ()

r
Z j

n m
j J=
| |

+ +
∈∑ ()

() ()1 12 2

(1)

(2)

60 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

sensitivity-related problems also require calculating the geo-
metric sensitivities of the rigid ones. Therefore, to develop a
parallel application, similar considerations are needed for all
three problems.

When considering parallelising the problem of analysing
the rigidity or sensitivity of several trusses, one immediately
sees that different trusses can be processed independently.
Such embarrassingly parallel problems [8] are frequently
encountered in science and engineering. For these problems,
the parameter study (or parameter sweep) approach can give a
simple parallelised solution.

A parameter study algorithm on a multicomputer can be
described as follows. An input task partitions the input domain
of the problem into subdomains. There are several worker
tasks, each of which requests the parameters of a subdomain
from the input task via message passing. A worker task pro-
cesses a subdomain, and sends the result to an output task, then
it requests the parameters of another subdomain to process.
The output task is responsible for aggregating the subresults
received from the workers into the final result of the problem.
Each of these tasks can be assigned (mapped) to a separate
abstract machine in the multicomputer for maximum perfor-
mance if possible.

In our case, the input domain is the set of topologies of
quadrilateral grid trusses to be examined. In Section 4 we
explained how we map this set to an interval of integers, which
is straightforward to partition into non-overlapping subinter-
vals. The operation carried out by the worker tasks includes the
rigidity analysis of the trusses corresponding to each integer in
the subinterval. For the two more complicated problems, the
sensitivity index of each rigid truss needs to be calculated, too.
Depending on the problem, the output of the workers is the
number of rigid cases within the subdomain, the partial top/
bottom lists or the partial distributions. After all workers are
done, the final aggregating step is performed. When count-
ing rigid cases or calculating the distributions of sensitivity
indexes, aggregating means simply adding up the counts for the
subintervals. When seeking the most and least sensitive trusses,
overall top and bottom lists can be assembled by ranking the
sensitivity values in the lists for the subintervals.

In a parameter study application, the worker tasks can run
simultaneously and independently, with no communication
or synchronisation required. Communication is only needed
between the input task and worker tasks, and between worker
tasks and the output task. These applications are therefore well
suited for widely used general-purpose HPC systems such
as computing clusters, computing grids or supercomputers.
In these infrastructures, a job scheduler (or batch system) is
responsible for the coordination of computation jobs. Software
development tools such as Saleve [6] exist to aid the creation
of parameter study applications and their deployment in vari-
ous HPC systems.

In our parallel application design, the role of the input task
is played by the combination of a simple program and the
job scheduler. The program splits the interval representing
the whole input domain into subintervals. Jobs performing
the actual analysis of trusses are enqueued in the scheduler,
each one getting the start and end of a subinterval as input.
The worker tasks are represented by the processors of the
distributed system that are available for executing the analy-
sis of a subdomain. When a processor is available, the sched-
uler launches a new job doing the truss analysis. This is how
the communication between the input task and the workers is
implemented. The output of the worker tasks is written to files
on a shared file system. A simple aggregating program running
offline (i.e. without involvement of the scheduler) acts as the
output task, reading and processing the contents of these files.
Communication is done by disk operations here.

There can be alternative approaches to consider in addition
to our chosen design. It should be noted for example that when
analysing the sensitivity of a truss, the influenced zones can
also be determined independently without communication. If
our input domain is the set of topology nodes instead of the set
of topologies, then we can make a much finer-grained partition-
ing for sensitivity-related problems, having more subdomains
than trusses. However, this level of granularity is not reason-
able here for several reasons. We deal with a very large number
of relatively small trusses, so the high demand for computation
power is due to the quantity of trusses. The analysis of a small
truss takes only a short time even on a single medium-perfor-
mance CPU core, so there is no use decomposing it into sub-
tasks. Refining the granularity of a parameter study beyond a
certain point reduces efficiency, as we will show in the next sec-
tion. Also, a domain partitioning like that would require more
complicated input and output tasks for our problems. Such fine-
grained decomposition would be justified in other problems of
research, for example when analysing the sensitivity of a few
very complex trusses having several thousand nodes.

There are other ways to parallelise the analysis of a truss in
a non parameter study manner. For example, both the rigid-
ity checking and the rigid core finding algorithms include a
breadth-first search step [3], which can be replaced by a par-
allel search algorithm [8]. We discarded this idea as it would
have led to an unacceptable amount of communication and
unnecessarily fine granularity.

The input task can be parallelised as well. The sequential
algorithm for splitting the interval {0 ,..., N − 1} representing
the input domain into J subintervals requires a division and
J − 1 other operations (additions or multiplications) in order to
calculate interval boundaries. In theory, this could be acceler-
ated with a divide and conquer strategy. One can show using a
PRAM model of J − 1 processors that the interval splitting can
be done in just two steps: first we calculate l N

J= , then each
processor with identifier i (where i J∈ −{ }1 1, ,) calculates il.

61Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

Similarly, we can provide a theoretical acceleration of the
aggregation stage as well. If the aggregation means summing,
then a PRAM with a sufficient number of processors can do this
in O(log J) time [7]. If the aggregation means merging top or
bottom lists into a single list of k values, then a naive PRAM
algorithm can perform this in O(k) time by finding a minimum or
maximum k times.

In reality, there is no speedup due to the communication
overhead brought in. This is not a problem, as the splitting and
the aggregation take only a very short time on a single core
even in case of several thousand subdomains. For the same rea-
son, we chose not to overlap the operation of the output task
with the worker tasks, and instead start the aggregation in an
offline, separate step only when all the subresults are produced.

7 A performance model for parameter study
In this section we provide a performance analysis for our

parameter study algorithm. The goal is to tune parameters of
the parallelisation for optimal performance. What we can decide
in our parameter study design is how to split the input domain.
To make splitting simple, we choose equal-sized subdomains.
Specifying the size of a subdomain is then equivalent with spec-
ifying the number of subdomains (J). An important question is
how the choice of J affects the speedup of parallel execution.

We make further simplifications in the performance model.
Execution times of the domain splitting and aggregation are
safe to omit, as they are negligible compared to the time
required for the actual truss analysis. We also use average esti-
mates for some varying parameters.

The execution time or wall-clock time of our parallel applica-
tion is the time elapsed between the submission of jobs into the
scheduler and the completion of the last job. Without taking into
account the time required by the domain splitting and aggrega-
tion, the execution time can be calculated as the total time all
processors spend communicating, computing and doing nothing
during this period divided by the number of processors [8]:

Here P is the number of momentarily available processor
cores in the distributed system that are utilisable for worker
tasks. As mentioned before, the analysis of a single truss is
done sequentially, so our application cannot benefit from hav-
ing more processors than the number of trusses, N. Thus our
calculations apply only for P ≤ N, which is the case in practice.

It is also important that the exact value of P is not known
in advance, because it depends on other scientific applications
occupying resources of the system. It even changes dynami-
cally during execution. We can only make a rough prediction
of an average value taking this into account.

Communication time Tcomm means most importantly the sched-
uler overhead of launching a new job. To a lesser degree, it also

includes disk I/O operations on the shared file system. The aver-
age communication time per job, here denoted by ts, is considered
independent of other parameters. For J jobs, the total time spent
communicating is:

The computation time Tcomp is the time spent analysing trusses.
To check the rigidity of trusses of the same size, approximately
the same amount of time is required for each one. This also
means close to equal run times for all jobs. When sensitivity
analysis is involved as well, the required time has a high varia-
tion: it is very small if the truss is not rigid.

We denote the average computation time per truss with tc.
This can be measured by choosing a small sample subinterval
from the input interval, measuring the run time of the analy-
sis on this subinterval, and dividing it by the sample size. For
sensitivity-related problems, the sample should be chosen from
around the middle of the input interval. Otherwise, most or all
of the trusses in the sample may be non-rigid, resulting in a
misleadingly small estimate for tc.

If the whole input set contains N trusses, then the total com-
putation time is:

Idle time Tidle is the period during which a processor is free,
but does not get a subdomain to process. In our parameter study
application, execution of a new job can start as soon as another
one is complete, as long as there are unprocessed subdomains.
If J ≥ P, then processors become idle only when running out of
subdomains.

To estimate idle time for P < J ≤ N, we consider a worst case
scenario, where all worker tasks complete work on their subdo-
mains simultaneously, and there is only one subdomain left. If
this happens, then a single processor computes on the remain-
ing subdomain, while the other P − 1 processors are idle. The
length of a subinterval is approximately N

J
, so the estimated

worst case total idle time is:

This worst case cannot be prevented, because as stated, P
changes dynamically. Also, despite our best efforts to create
jobs with equal run time, there will inevitably be variances. In
addition, ts may not be constant as assumed. This makes job
completion times impossible to predict.

For the total execution time, we therefore get

The efficiency of a parallel algorithm is defined as the fraction
of time that processors spend doing useful work [8]. If T1 is the
execution time of a sequential application of the same purpose,

T
P
T T TP = + +

1 ()comm comp idle (3)

T Ntcomp c= (5)

T Jtcomm s= (4)

T P N
J
tidle c= −()1 (6)

T
P
Jt Nt P N

J
tP = + + −

1 1s c c() (7)

62 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

then the efficiency of our parameter study application is:

The speedup describes how many times faster the parallel
application is compared to a sequential implementation [8]:

A truss is analysed with our application in a sequential man-
ner, therefore according to Amdahl’s law [1], its speedup for N
trusses is not greater than N.

Speedup increases with the number of processor cores, up to
the point where P = N. The maximal speedup could be achieved
with N jobs on N processors, each job analysing one truss:

where ′tc is the longest duration of the analysis of a single
truss, which is significantly greater than the average duration tc,
because non-rigid trusses take only a short time to process. Due
to this fact and the scheduler overhead, η < 1 i.e. the limit of the
speedup is somewhat less than the problem size N.

Having a limited number P N of processor cores, we aim
for maximum efficiency, which leads to the maximum speedup
for the given P value. An optimal number of jobs maximises E:

If we provide sufficiently accurate estimates for P, tc and ts,
then with the correct number of jobs we can attain an efficiency
close to the theoretical maximum, which is:

A parallel algorithm is scalable if its efficiency does not dete-
riorate much as the size of the input domain and/or the com-
puting infrastructure increases. Scalability-wise our parameter
study performs well: the maximum efficiency actually increases
with increasing N. With constant N, the decline in efficiency is
roughly proportional to the square root of the number of avail-
able processors.

So far we have considered the effects the domain splitting
and aggregation have on the execution time as insignificant.
If we wish to take these sequential stages into account as well,
then Formula 7 for the execution time of the parallel algorithm
should be modified as follows:

As stated in Section 6, the essence of splitting the input
domain is J − 1 operations, and in case of counting rigid trusses,

the aggregation means adding up J numbers. Therefore, we
may use Tsplit ≈ c1J and Taggr ≈ c2J as estimates. Assembling top
and bottom lists from partial lists of k elements each has time
requirement O (J k log k) . However, we have set k to a small
constant, 20, so we may estimate the time needed by the aggre-
gation as T c Jaggr ≈ ′2 .

When calculating distributions of sensitivity indexes, it
might be desirable to have more detailed distribution data for
larger trusses. This also requires more values to add up in the
aggregation stage as we increase the height n and width m
of the grid. However, even if we decide to produce the most
detailed distributions possible (as explained in the next sec-
tion), the number of additions is only O(Jn2m2). At the same
time, the problem size N increases exponentially with n and
m. Therefore, the estimated time required to aggregate partial
distributions is T c J Naggr ≈ ′′2

2log .
Accordingly, in order to consider the effects of splitting and

aggregation when determining the optimal number of jobs, a
modified version of Formula 11 should be used:

where α = +c c1 2 for counting rigid cases, α = + ′c c1 2 for listing
the least/most sensitive trusses, and α = + ′′c c N1 2

2log for the
sensitivity distribution problem. The maximal efficiency will
then be

In practical cases where J N , the influence of the domain
splitting and aggregation stages on the time requirement or effi-
ciency is not noticeable, so it is safe to use Formula 11 instead,
in order to keep the model simple. These two stages are only
significant when calculating the theoretical maximum of the
speedup, where J = P = N. Formula 10 shall here be modified as

This means that in case of the rigid counting and listing prob-
lems, maximal speedup has an upper bound independent of N:

It should also be noted that for the distribution problem, α is
a function of J, thus also of N. As a consequence, it can be seen
from Formula 16 that with increasing N, the speedup will actu-
ally decrease beyond a certain point.

8 Execution on supercomputers
To process all potentially minimally rigid grids of size n × m

for small n and m values, we had two supercomputers at our
disposal. We began with using Hercules, the supercomputer at

S T
T

PE
P

= =1 (9)

S T
T

Nt
t t

N
N c

max = =
+ ′

=1 c

s

η (10)

E Nt
Nt P Nt tmax

c

c c s

=
+ −2 1()

(12)

J E T P Nt
tJ J Popt

c

s

= = =
−argmax argmin ()1

(11)

T T T
P
Jt Nt P N

J
tP

∗

= + + + + −split aggr s c c
1 1() (13)

J P Nt
t Popt

c

s

∗ =
−
+

()1
α

(14)

E Nt
Nt P Nt t Pmax

c

c c s

∗ =
+ − +2 1() ()α (15)

S Nt
N t t

t t t
t t Nc

c

c
max
∗ =

+ + ′
= −

+ ′
+ ′ +

c

s

c s

sα α α
1 (16)

S S t
Nmax maxlim∗

→∞

∗< = c

α
(17)

E T
PT

Nt
Jt Nt P tP

N
J

= =
+ + −

1

1
c

s c c()
(8)

63Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

Miskolc University, and later tasks were carried out on Super-
man, the supercomputer of Budapest University of Technol-
ogy and Economics. These two computers have similar con-
figurations: each consists of 30 nodes, with 12 CPU cores
per node. A fast interconnect network makes communication
possible among nodes. Each node has access to a distributed
file system for convenient data sharing. The Condor scheduler
[19] is installed, providing fair share of computing resources
among various research projects.

We implemented the parameter study design presented in
Section 6, and deployed it on the supercomputers. The truss
analysis relies almost exclusively on integer arithmetic, so the
CPU performance was the most important parameter of the
system. Other factors such as communication bandwidth, stor-
age space and disk access speed are less relevant for us. For
trivially small trusses where n and m are not over 4, we used
a single-core desktop machine instead of the supercomputers,
without splitting the input domain.

First, we wished to count the minimally rigid n × m generic
grid trusses. For this, a fast C++ program was developed,
which got the start and end of an integer interval as command
line arguments. This interval specified a set of n × m grids,
each having n + m − 1 diagonals. The program performed Tibor
Jordán’s rigidity matroid algorithm [3] for checking rigidity.
The number of minimally rigid cases in the input set was writ-
ten to the standard output.

Second, we wanted to see the most and least sensitive grid
trusses. A modified version of the program mentioned above,
after verifying rigidity, calculated the rigid cores and joint
sensitivity index as well, using an algorithm also based on
the rigidity matroid [13]. It produced as output the list of the
twenty least and most sensitive grids in the input set.

After this, we were interested in the distribution of sensi-
tivity index values. We can observe from Formula 2 in Sec-
tion 5 that the joint sensitivity index r cannot take more than
(n + 1)2(m + 1)2 possible values. We are discussing small grids,
therefore this is not a considerably large number, allowing us
to count trusses having index r for each occurring r value. We
can make a distribution plot from the result, which is detailed
and illustrative at the same time, without the need of creat-
ing a histogram with manually adjusted histogram bins. We
once again modified our program to perform this counting on
a subdomain.

For a given n and m, instances of these programs were launched

as jobs, each getting a subinterval of 0
1

1, ,
nm

n m+ −

 −

 to

process. A simple auxiliary program performed the interval
splitting, and generated a submit description file for the Con-
dor scheduler.

To determine the optimal number of jobs, we did not use
Formula 11, as we did not have appropriate estimates for the
parameters within yet. Instead, we heuristically tuned the

number of jobs so that each one took a couple of hours to fin-
ish, resulting in a few thousand jobs.

After all jobs finished, a separate program aggregated the sub-
results to obtain the final results. This program read in the out-
put files of all jobs from the shared file system, and performed
the summing or list merging, depending on the problem type.

9 Results
Using the supercomputer Hercules, first we determined the

number of topologies corresponding to minimally rigid generic
grid trusses or various n × m grid sizes. Table 1 summarises these
results in increasing order of the number of diagonals (denoted
by d). In the table, rows for grids with equal height and width
are highlighted. Results above the horizontal line were obtained
with a single-core computer, before using supercomputers.

Column 4 shows the total number of topologies checked
for minimal generic rigidity. This is the number of all possible
placements of d = n + m − 1 diagonals. Column 5 shows the
number of cases found to be minimally generically rigid. For
this value, no formula is currently known, but it obviously can-
not be less than the number of topologies for minimally rigid
degenerate square grids (shown in Column 6), which can be
calculated as described in Section 3.

We can see in Row 2 that among 2 × 3 grids, there are exactly
two topologies for non-rigid generic grids, and three topologies
(which include the former two) for non-rigid degenerate grids.
These are represented by the generic grid trusses in Figures 4d
and 4e, and by the degenerate grid trusses in Figures 4a, 4b and 4c.

The calculations on the supercomputer proceeded up to
d = 13, sweeping through several hundred billion cases within a
few days. Afterwards, we launched further tasks on Hercules to
find the twenty least and most sensitive grid trusses among the
minimally rigid ones, for n × n grid sizes up to n = 6. We found
that in the least sensitive grids, the diagonals were placed in row

i, column j so that either i ≈
n
2

 + 1 or j ≈ n
2

 + 1. This means

that the diagonals formed a “+’’-like shape in the middle of the
truss. For example, the topology of the least sensitive 5 × 5 grid,
having joint sensitivity index 0.280864, can be seen in Figure
3c. Among the most sensitive ones, there appeared to be a large
number of cases (although no more than twenty were recorded)
all having the same joint sensitivity index, many of them having
no particular pattern in the distribution of diagonals.

These results have been summarised in a downloadable
appendix1. In the appendix, topologies of the twenty most
and least sensitive trusses are shown for different grid sizes,
grouped by joint sensitivity index value. For improved visibil-
ity, diagonal bars are represented by squares filled with red. The
rank of the diagonal combination is given below each diagram.

1 http://sirkan.iit.bme.hu/~dobe/truss/sens-appendix.pdf

64 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

d n m
Total
nm
d

Rigid generic
?

Rigid degenerate
n mm n− −1 1

3 2 2 4 4 4

4 2 3 15 13 12

5 2 4 56 40 32

5 3 3 126 98 81

6 2 5 210 121 80

6 3 4 924 623 432

7 2 6 792 364 192

7 3 5 6 435 3 685 2 025

7 4 4 11 440 7 116 4 096

8 2 7 3 003 1 093 448

8 3 6 43 758 21 048 8 748

8 4 5 125 970 70 584 32 000

9 2 8 11 440 3 280 1 024

9 3 7 293 930 118 053 35 721

9 4 6 1 307 504 649 776 221 184

9 5 5 2 042 975 1 087 992 390 625

10 2 9 43 758 9 841 2 304

10 3 8 1 961 256 655 625 139 968

10 4 7 13 123 110 5 729 556 1 404 928

10 5 6 30 045 015 14 888 525 4 050 000

11 2 10 167 960 29 524 5 120

11 3 9 13 037 895 3 621 234 531 441

11 4 8 129 024 480 49 211 996 8 388 608

11 5 7 417 225 900 189 681 461 37 515 625

11 6 6 600 805 296 288 906 180 60 466 176

12 2 11 646 646 88 573 11 264

12 3 10 86 493 225 19 939 899 1 968 300

12 4 9 1 251 677 700 415 712 461 47 775 744

12 5 8 5 586 853 480 2 308 746 354 320 000 000

12 6 7 11 058 116 888 5 063 020 974 784 147 392

13 2 12 2 496 144 265 720 24 576

13 3 11 573 166 440 109 606 097 7 144 929

13 4 10 12 033 222 880 3 473 854 720 262 144 000

13 5 9 73 006 209 045 27 259 652 307 2 562 890 625

13 6 8 192 928 249 296 83 016 541 716 9 172 942 848

13 7 7 262 596 783 764 118 247 295 490 13 841 287 201

Tab. 1. Number of topologies of minimally rigid n × m grid trusses with d diagonals in case of generic and degenerate geometry

An upper bound on the joint sensitivity index can be calcu-
lated based on the maximal possible sizes of influenced zones.
Joints in the four corners of the grid always have small influenced
zones. Other joints can have very large influenced zones, but they
exclude one or both of the top-left and bottom-right corner joints.
Our experiments show that the joint sensitivity indexes of the
most sensitive grid trusses reach this theoretical maximum.

Due to the abundance of such maximal sensitivity trusses,
one can experimentally find combinations of diagonals cor-
responding to some of these cases for larger grids as well.

7 × 7 examples, having joint sensitivity index 0.911621, can be
seen in Figure 6. Some of these, such as 6a, 6b and 6c, show a
pattern in the placement of the diagonals, while others, such as
6d appear to be random.

We used the supercomputer Superman to get the distributions
of joint sensitivity index values of n × n grids. The complete anal-
ysis could be done within reasonable time only for sizes up to
6 × 6. However, we created distribution plots for larger grids
based on a small subset of the input domain, with the assump-
tion that the characteristic shape of the plot is similar to that

65Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

of the whole domain. Here we picked every kth subdomain to
process, where k = 500 for 7 × 7, k = 250000 for 8 × 8, and
k = 500000000 for 9 × 9 grids. The distribution plots can be
seen in Figure 7.

Experiences regarding run times of the hardest tasks are
summarised in Table 2. Here, “Wall clock time’’ is the time
elapsed between submitting the jobs and the completion of the
last job. From the column labelled “Total CPU time’’, it is clear
that our analysis would have taken several years using a single
processor core dedicated exclusively to these tasks.

Compared to other types of tasks, counting minimally generi-
cally rigid truss topologies is relatively fast, so we could exam-
ine several different grid sizes, up to 7 × 7. Row 1 of Table 2
shows the time requirement for the latter.

Not surprisingly, making the top/bottom sensitivity lists is
much slower, since the sensitivity analysis involves finding the
rigid cores of all (n + 1)(m + 1) nodes in the truss, each having a

time requirement roughly equivalent to that of the rigidity check.
Therefore, the size limit of our examinations was 6 × 6 here, for
which the time requirement can be seen in Row 2 of Table 2.

It is more interesting that compared to making the lists, get-
ting the joint sensitivity index distribution for 6 × 6 grids took
considerably more time (see Row 3 of Table 2). In both tasks,
calculating the sensitivity value is expected to be the major part
of the computation. The difference might be caused either by
unoptimised code for gathering distribution data, or by differ-
ent build environments on the two supercomputers.

We generated distribution data for 9 × 9 grids as well. The
duration of this task was similar (see Row 4 of Table 2). How-
ever, as noted before, in this case we took into account only
1/500000000 part of the complete domain.

One may also notice that wall-clock time values relative to
total CPU times are somewhat higher on Superman than on
Hercules. The reason for this is that Superman is used by many

(a) (b)

(c) (d)

Fig. 6. Four examples of maximal sensitivity 7 × 7 grid truss topologies

Computer used Task purpose Grid size #jobs
Average CPU

time per job
Total CPU time Wall clock time

Hercules rigid count 7 × 7 4377 05:08:16 937d 00:42:15 3d 08:00:00

Hercules
top/bottom
sensitivities

6 × 6 301 03:09:33 39d 14:58:42 05:40:19

Superman
r distribution
(complete)

6 × 6 301 1d 00:31:13 307d 12:37:15 3d 06:31:27

Superman
r distribution

(partial)
9 × 9 12845 01:20:56 722d 01:18:16 4d 21:27:54

Tab. 2. Run time statistics of the most demanding task types.

66 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

other research projects, thus it often has higher load. Also, our
partial distribution task was launched in two stages, with two
days difference.

10 Validation of the performance model
After getting the desired results for our problems, we con-

ducted simple experiments to measure parameters of the per-
formance model presented in Section 7, and to validate this
model. We took advantage of a period of time when a constant,
larger number of processors of the Hercules supercomputer
was available exclusively for us to use.

For the experiment, we selected the problem of top/bot-
tom sensitivity lists for 6 × 6 grids - a problem of medium
complexity (see Row 2 of Table 2) - to execute with various
numbers of jobs. Initially we chose J = 312, the previously
expected number of free processors as the number of jobs, and
doubled it for each subsequent execution, up to J = 4992. For
each execution, the number of processors running our jobs was
P = 299.

As we had expected, on this scale of the number of jobs the
domain splitting time Tsplit and the aggregation time Taggr turned
out to be very small, which even made them impossible to
measure accurately. Therefore we excluded the time require-
ment of these stages from our experiments, and used the sim-
pler model instead.

In Section 7 we suggested a sampling approach to measure
tc, the average computation time per job. As we already had
had knowledge of the total CPU time T1 = Ntc = 3423522s (see
Row2, Column 6 of Table 2), we instead simply divided this
value by N = 600805296 (see Column 4 of the row correspond-
ing to n = 6, m = 6 in Table 1), to get tc = 0.005698s.

We measured ts, the scheduler overhead time per job sepa-
rately for each execution. Average and maximum values were
gathered after the executions, although the information avail-
able from logs only allowed us to make accurate measure-
ments for the averages. Interestingly, contrary to our expecta-
tions, the overhead seemed non-constant: it increased with J,
as seen in Figure 8. A possible explanation for this is that the

0

10

20

30

40

50

60

70

80

90

100

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

co
un

t

r

(a) 4 × 4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

co
un

t

r

(b) 5 × 5

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

co
un

t

r

(c) 6 × 6

0

50000

100000

150000

200000

250000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
un

t

r

(d) 7 × 7, partial

0

20000

40000

60000

80000

100000

120000

140000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
un

t

r

(e) 8 × 8, partial

0

5000

10000

15000

20000

25000

30000

35000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
un

t

r

(f) 9 × 9, partial
Fig. 7. Distributions of joint sensitivity indexes of grid trusses. Only plots a, b and c represent the complete domain.

67Computer-Aided Geometric Sensitivity Analysis of Trusses 2014 58 2

matchmaking mechanism of the scheduler slows down in case
of a large amount of jobs waiting in the queue.

To check the validity of the performance model, we com-
pared values calculated using Formula 7 as a function of J
with actual measured wall-clock times. The measured times
are represented by the solid black line in Figure 9. Based on
this, it can be concluded that the wall-clock time has in fact a
minimum around J = 2496. To calculate theoretical wall-clock
times using the model, we had all necessary parameters at our
disposal except ts, which is non-constant according to our expe-
rience. We chose to compare the measurements with calcula-
tions using several different ts parameter values, shown as grey
dashed curves in Figure 9. The minima of these curves can be
obtained using Formula 11.

It should not be forgotten that we built a very simple
model, with heavy simplifications. For example, the worst
case approach for calculating the idle time is an overestima-
tion, which is likely the cause of the calculated values being
significantly greater than measured times at smaller J values.
Additionally, the wall-clock time in practice increases more
steeply than the calculated curves, due to ts increasing with the
number of jobs. We can also observe that the measurements are
closer to those calculations that correspond to somewhat higher
ts values than what we had experienced in practice. Using a
maximum instead of an average for ts may result in a better fit.

11 Summary
Using algorithms based on combinatorics, graph theory and

matroid theory, and taking advantage of the power of a HPC
infrastructure, we analysed rigidity and sensitivity attributes of
plane trusses having a square grid topology with diagonal bars.
The problem we faced had no analytic solution, and the input
domain grew exponentially large as the grid increased in size.
In spite of that, a supercomputer proved powerful enough for
us to examine a large number of simple yet non-trivial cases,
allowing us to get an overview of their properties. We designed
a parallel algorithm and proved its scalability in order to take
advantage of the power of a supercomputer. A model has been
set up for the performance of this parallel algorithm, and tested
with experiments.

One of our achievements is the identification of diagonal bar
location patterns of the minimal and maximal sensitivity grid
trusses. Although our method was a numerical analysis of small
grids, we were able to provide plausible arguments to those for
arbitrary grid sizes.

We have also shed light on an unexpected phenomenon of
the distributions of joint sensitivity indexes: they appear to
converge, at least partially, to a continuous distribution. This
phenomenon is clearly visible even though we did not perform
any summing or averaging over sections of the index.

Acknowledgement
The work reported in the paper has been developed in the framework of the project “Talent care and cultivation in the scientific

workshops of BME’’ project. This project is supported by the grant TÁMOP-4.2.2.B-10/1--2010-0009.

0

50

100

150

200

250

300

350

000010001

t s
[s
ec
on

ds
]

J

average
maximum

Fig. 8. Measured scheduler overhead times for executions of the same input
with different numbers of jobs.

10000

15000

20000

25000

30000

35000

000010001

T 2
99

[s
ec
on

ds
]

J

ts = 20
ts = 40
ts = 80
ts = 160
ts = 320
ts = 640

measured

Fig. 9. Execution time on 299 cores, as a function of the number of jobs.The
graph shows calculations using Formula 7 for various scheduler overhead times,
and the measured data.

68 Per. Pol. Elec. Eng. and Comp. Sci. Péter Dóbé / Gábor Domokos

1 Amdahl Gene M., Validity of the single processor approach to
achieving large scale computing capabilities. AFIPS ‘67 (Spring),
Proceedings of the April 18-20, 1967, spring joint computer confer-
ence. New York. pp. 483-485, (1967).

 DOI: 10.1145/1465482.1465560
2 Appleton O. et al., The next-generation ARC middleware. Annales

des Telecommunications/Annals of Telecommunications, 65 (11-12),
pp. 771-776, (2010).

3 Berg A. R., Jordán T., Algorithms for Graph Rigidity and Scene
Analysis. Lecture Notes in Computer Science, pp. 78-79, (2003).

 DOI: 10.1007/978-3-540-39658-1_10
4 Bolker E. D., Crapo H., How to brace a one-story building. Environ-

ment and Planning B: Planning and Design, 4 (2), pp. 125-152, (1977).
 DOI: 10.1068/b040125
5 Dóbé P., Domokos G., Combinatorial Measurement of the Geometric

Sensitivity of Plane Trusses. The 7th Hungarian-Japanese Symposium on
Discrete Mathematics and Its Applications. Kyoto. pp. 29-36, (2011).

6 Dóbé P., Kápolnai R., Szeberényi I., Saleve: toolkit for develop-
ing parallel Grid applications. Híradástechnika, LXIII (1), pp. 60-64
(2008).

7 Eppstein D., Galil Z., Parallel Algorithmic Techniques for Combina-
torial Computation. Annual Review Computer Science, 3, pp. 233-283,
(1988).

8 Foster I., Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Boston: Addison-Wesley,
(1995).

9 Foster I., Kesselman C., The Grid 2: Blueprint for a New Comput-
ing Infrastructure. Elsevier Science, (2003).

10 Graver J. E., Servatius H., Servatius B., Combinatorial Rigidity.
Graduate Studies in Mathematics. American Mathematical Society,
(1993).

11 Henneberg L., Die graphische Statik der starren Systeme. B. G. Teu-
bner, (1911).

12 Hurlbert G. H., On encodings of spanning trees. Discrete Applied
Mathematics, 155 (18), pp. 2594-2600, (2007).

 DOI: 10.1016/j.dam.2007.07.014
13 Jordán T., Domokos G., Tóth K., Geometric Sensitivity of Rigid

Graphs. In 7th Hungarian-Japanese Symposium on Discrete Math-
ematics and Its Applications. Kyoto, June 2011. pp. 133-142, (2011).

14 Knuth D. E., The Art of Computer Programming: Generating All
Combinations and Partitions. Art of Computer Programming Series,
Volume 4, (2005). ISBN 0201853949

15 Laman G., On graphs and rigidity of plane skeletal structures. Jour-
nal of Engineering Mathematics, 4 (4), pp. 331-340, (1970).

 DOI: 10.1007/bf01534980
16 Lovász L., Yemini Y., On Generic Rigidity in the Plane. SIAM Jour-

nal on Algebraic Discrete Methods, 3 (1), pp. 91-98, (1982).
 DOI: 10.1137/0603009
17 Prüfer H., Neuer Beweis eines Satzes über Permutationen. Archiv für

Mathematik und Physik, 27, pp. 742-744, (1918).
18 Szabó J., Roller B., Rúdszerkezetek elmélete és számítása. Buda-

pest: Műszaki Könyvkiadó, (1971).
19 Thain D., Tannenbaum T., Livny M., Distributed computing in

practice: the Condor experience. Concurrency and Computation:
Practice and Experience, 17 (2-4), pp. 323-356, (2005).

 DOI: 10.1002/cpe.938
20 Tóth K., Domokos G., Gáspár Zs., Statikailag határozott rácsos

tartók geometriai érzékenysége. Építés- Építészettudomány, 37 (3-4),
pp. 225-240, (2009).

 DOI: 10.1556/eptud.37.2009.3-4.2
21 Whiteley W., Rigidity and scene analysis. In Goodmanand, J. E.,

O’Rourke, J. (eds). Handbook of discrete and computational geom-
etry. USA: CRC Press, Inc., BocaRaton, FL, pp. 893-916, (1997).

References

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1007/978-3-540-39658-1_10
http://dx.doi.org/10.1068/b040125
http://dx.doi.org/10.1016/j.dam.2007.07.014
http://dx.doi.org/10.1007/bf01534980
http://dx.doi.org/10.1137/0603009
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1556/eptud.37.2009.3-4.2

	1 Introduction
	2 Goal and steps of examination
	3 Counting and enumerating minimally rigid degenerate grids
	4 Filtering minimally rigid generic grids
	5 Sensitivity analysis
	6 Parallelisation approaches
	7 A performance model for parameter study
	8 Execution on supercomputers
	9 Results
	10 Validation of the performance model
	11 Summary
	Acknowledgement
	References

