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Abstract

In this paper, an adaptive hierarchical fractional-order sliding mode controller (AHFSMC) for a multi-terminal Voltage Source Converter 

(VSC) based High Voltage Direct Current (HVDC) Integrated with a wind farm (WF) system is designed. Multi-terminal VSC-HVDC (MtVDC) 

connected to wind farms has received several attentions in the power sector because of its numerous benefits. The effectiveness of 

MtVDC, on the other hand, is dependent on the control scheme used. To achieve this goal, a hierarchical sliding mode control method 

by fractional-order calculus is used. The controller parameters are adjusted according to a suitable adaptation method to enhance 

the proposed controller's robustness compared to the system uncertainties coefficient. An appropriate Lyapunov-based approach 

is used to achieve the adaptation rule. This paper discusses a scheme to design additional controllers in MtVDC systems to damp 

electromechanical oscillations, one of several features of HVDC presently under active study. Numerical simulations validate the 

proposed control strategy's feasibility and efficiency. This novel approach is employed for the upgrading of system stability with the 

dynamic properties of the MtVDC in a variety of operative conditions.
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1 Introduction
The world is in transition, and energy is at the heart of it. 
Since 2000, India has been responsible for nearly 10% of the 
increase in global energy demand [1]. Therefore, currently, 
the country intends to significantly increase the proportion 
of renewable energy sources (ReS) used to provide its elec-
tricity consumption. According to studies in India, wind 
power is achieving popularity among other types of ReSs.

According to the MNRE, Government of India, out of 
7 windy states Madhya Pradesh has a lower wind potential 
rate. Madhya Pradesh Power Management Company Ltd 
has shown consistent growth in terms of renewable capac-
ity addition in its efforts to contribute to the achievement of 
national renewable targets [2]. There are many wind farms 
(WF) in MP among which Mamatkheda WF is an onshore 
wind power project with a capacity of 100.5  MW. 
The project consists of 67 1.5 MW WTGs which generates 
180 GWh of clean electricity per year, enough to power 
42.000 households [3]. The use of HVDC technology to 

upgrade the Mamatkheda power grid [4] will allow for an 
enormous perception of renewable energy without jeopar-
dizing the power system stability. Voltage source convert-
er-based High Voltage Direct Current (VSC-HVDC) tech-
nology are currently associated to green energy to include 
wide range renewable energy plants.VSC-HVDC systems 
allows for the system interconnectedness operating at dis-
similar frequencies, and the system has no problems with 
angular stability. There are numerous advantages to con-
structing a multi-terminal VSC-HVDC (MtVDC) system 
rather than other transmission systems [5]. 

The use of MtVDC technology in India's electric power 
grid will allow for high integration of wind power without 
jeopardizing the power system and voltage stability, active 
and reactive power flow, and power quality. However, 
intrinsic nonlinearity of the MtVDC system with WF can-
not be disregarded when transient disturbances occur. 
The operation and control of an MtVDC system remains 
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an open and challenging problem. As  a result, a  nonlin-
ear, adaptive, and robust controller design is required to 
improve the transient stability of MtVDC.

Therefore, this study explores further its control strat-
egy formulation. Among the various nonlinear control 
schemes, SMC is a sophisticated technique with elegant 
features such as better stability, faster response, and sig-
nificant robustness [6]. This control technique is notable 
for its ease and high accuracy, making it appropriate for 
wind power generation systems. The chattering problem 
and high-frequency switching close to the sliding surface 
generated by the discontinuous control law in SMC design 
and parasitic dynamics interactions are the key drawbacks 
of SMC techniques.Based on SMC, for each state variable, 
hierarchical sliding mode control (HSMC) may create the 
first layer sliding surfaces, which are then combined to 
create the second layer sliding surface. In recent times, 
researchers have focused on using fractional calculus [7]. 
The usage of fractional calculus can aid in the elimination 
of external interference and steady-state error. Adding 
fractional order in hierarchical SMC results in an SMC 
structure with fractional-order operators improve control 
performance. Furthermore, Fractional Lyapunov or adap-
tive FHSMC (AFHSMC) results can be used to calculate 
the asymptotic stability of fractional-order systems and 
also deal with model system uncertainties and external 
disturbances better [8]. In this study, proposed AFHSMC 
has been used to control the parameters of an MtVDC 
links on the dynamics of the Mamatkheda system.

The remainder of the paper's presentation is structured 
as follows: Section 2 introduces the test system model of 
the proposed approach with the VSC-HVDC mathematical 
model. Section 3, describes the proposed control strategy's 
design process based on the adaptive FHSMC control con-
cept concerning MtVDC dynamics. Simultaneously, the 
controller's stability is examined. Section 4 demonstrates, 
the controller's feasibility through the simulation results 
and compares it with the other approaches. Section 5 con-
tains the conclusions.

2 Modeling of the simulated test system
An MtVDC system has four terminals; each converter sta-
tion are connected via transport cables for the DC portion. 
A WF is linked to the collector line by a generator, and 
then to the MtVDC system. VSC-1 controls the amplitude 
and frequency of the alternating current (AC) voltage as 
shown in Fig. 1 VSC-3 controls a steady DC voltage.

The system parameters' values are presented in 
Appendix.

2.1 VSC-HVDC dynamics mathematical modelling
The mathematical representation referring to the dynam-
ics and operation in the time domain of synchronous gen-
erators, both of the stations are given in the paper [9].

Dynamic modeling of VSC-1:
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Eq. (1) becomes Eq. (2) when uncertainty components are 
included:

dI
dt

F I I V V zm

dI
dt

F I I V

rD
d rD rQ D rD d d

rQ
q rD rQ

1

1 1 1 1

1

1 1

� � � � �

�

, , ,

, ,

�

DD rD q qV zm
1 1
,

,

� � � �

�

�
��

�
�
� �

	 (2)

dV
dt

P
C V

V
C R

V
C R

dc dc

dc dc
dc

dc dc
dc

dc dc

1 1

1

1 2

1 1
� � �

�
�

�

�
� �

�

�
�

�

�
�. 	 (3)

The AC bus voltage at both of the station end in terms of 
d–q axis decomposition is denoted as VD1 and VQ1 respec-
tively. The AC-DC output voltages and currents at VSC-1 
in terms of d–q axis decomposition are denoted as VrD1, 
VrQ1, IrD1 and IrQ1 respectively. The equivalent resistance 
and inductance at VSC-1 are denoted as Rr1 and Lr1 respec-
tively. The m is the modulation index and z = (Vdc1/2 Lr1). 
The DC-link capacitance is denoted as Cdc. The DC trans-
mission line resistance is denoted as Rdc. The σd and σq 
are the model uncertainties. The DC bus voltages across 
the DC link capacitors at both of the station regions are 
denoted as Vdc1 and Vdc2 respectively. The active and reac-
tive power transferred at rectifier station ends of VSC-1 
from the generator are denoted as P1 and Q1 respectively. 
The flow of active and reactive power from the generator 
to the VSC-1 of the rectifier station end can be expressed 
as in Eq. (4): 

P V I Q V Iq d1 1 1 1 1 1
= =and . 	 (4)

Fig. 1 The power system model under study
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The reactive and active powers can be represented for 
the converter station as follows:

P V I V I Q V I V Ir rD rD rQ rQ r rD rQ rQ rD� � � � �
1 1 1 1 1 1 1 1

, . 	 (5)

In this simulation, the positive power flow direction is 
chosen as the direction from the wind farm towards the 
VSC-1 of the rectifier.

3 Design of controller
This section provides a brief description of all the control-
lers used in this study. By providing a comparative study 
of the results, the sliding mode controller (SMC), frac-
tional SMC (FSMC), and hierarchical FSMC (HFSMC) 
controllers are considered to explain the efficacy of the 
proposed approach.

3.1 Sliding Mode Controller (SMC)
Sliding mode control is a variable structure control scheme 
renowned for its resistance to instabilities and parame-
ter changes. Because power electronic converters intrin-
sically involve switching devices, this is a perfect solu-
tion for implementing a control that takes advantage of the 
power electronic converter's nonlinear nature. However, 
the chattering effect, which is caused by the contact of 
high-frequency switching and the parasitic dynamics of 
the system, limits its application in systems demanding 
high dynamic performance. Furthermore, standard SMC 
cannot guarantee finite-time convergence. The sliding 
mode asymptotic stability is ensured by the linear sliding 
surface in Eq. (6) with the rate of convergence based on 
the value of c. The classical linear sliding surfaces have 
been shown to perform poorly regarding convergence rate 
and settling time. The disadvantages of linear SMC were 
overcome through hybridization to create or by modifying 
the reaching law. The use of nonlinear sliding surfaces can 
improve the dynamic response of a closed-loop system:

s cx x c� � �
1 2

0, . 	 (6)

An integrator is added to the control loop to remove the 
steady-state inaccuracy of sliding mode control. In the dq 
frame, the positive system sliding surfaces s + d and s + q 
are chosen according to Eq. (6):

s k e t k e td pd d id d� � � � � � �� 	 (7)

s k e t k e tq pq q iq q� � � � � � �� , 	 (8)

where the sliding faces' control parameters are kpd, kid, 
kpq, and kiq. In this study, a controller is utilized for the 

rectifier station i.e.VSC-1. The corresponding errors sig-
nifying the disturbance and change of system parameters 
are as follows:
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Traditional sliding mode controls exhibit a high-fre-
quency chattering problem that can be cracked by using 
the exponential reaching law through saturated function 
sat (.). The gain parameters of SMC controllers are needed 
to be tuned under the change in conditions and are com-
plex. So, it is necessary to design with a balanced setup 
as each parameter influences the performance differently.

3.2 Fractional Sliding Mode Controller (FSMC)
The fractional-order sliding surface is one more nonlinear 
sliding surface strategy that employs fractional calculus 
in the construction of its sliding surface. Fractional-order 
terms are more stable because they attenuate old data 
while storing new data. These controllers have the poten-
tial to produce an open-loop transfer function through 
a fractional-order integrator, resulting in a controlled sys-
tem that is resistant to changes in process gain and also 
have a higher degree of freedom than integral order con-
trollers, resulting in superior dynamic performance and 
more robust control designs.

3.2.1 Fractional calculus prefaces
Conventional controllers created with the help of fractional 
order calculus result in a design that is more robust and 
adaptable that meets the system requirements. Fractional 
calculus has three common definitions among which the 
Riemann-Liouville (RL) type calculus definition is used 
in this study.

Definition-1: The fractional integral of α order of a con-
tinuous function f(t) defined by Riemann–Liouville (RL) 
expressions is as follows:
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where Lα(t) is fractional-order integral operator. 
Definition-2: The fractional differential of α order of 

a continuous function f(t) defined by Riemann–Liouville 
(RL) expressions is as follows:
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where rDt
α is fractional-order differential operator, 

0 < α < 1 and ζ = n − α, n is the first integer that is greater 
than α. Ґ(.) is the Euler's Gamma function:

� a x e dxx� � � � �
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� � 1
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. 	 (12)

Theorem 1: The Laplace transform is a widely used tool 
in the analysis and design of control systems. The RL frac-
tional calculus Laplace transform is:
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where Laplace operator is s and n − 1 < α < n and n ∈ Z.
Theorem 2: Consider the Prabhakar fractional inte-

gral's Laplace transform with t0 = 0. Prabhakar's operator 
for cracking a specific particular integral equation has also 
been adjusted as a fractional differential integral operator, 
and its characteristics and utilization have been examined 
in research work such as [10]. The fractional integral of 
Prabhakar is defined as:

x y E x y f y dy

e e
a

x

�� � �� �� � � �

� � � � � � � �

�

�
�

� �
� ��

� �

1

0 0

,
,

, ,

	 (14)

where integration constant is a and µ, η, ν, ρ ∈ C is the 
constant parameters. The Mittag-leffler function is:
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For a full description of the Mittag-Leffler function fea-
tures, generalisations, and applications the reader should 
see [11]. Non-linear processes have already found applica-
tions for Prabhakar operators. Prabhakar function, as well 
as several of its extensions, been numerically computed in 
the full complex plane. The Prabhakar function's Laplace 
transform is
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3.2.2 Design of FSMC
As shown in Section 2, the MtVDC system is a composite 
nonlinear system whose parameters differ depending on a 
variety of factors. To ensure optimal performance, a robust 
controller is essential to cope with these ambiguities and 
variances. The dynamics of the sliding mode are, never-
theless, regulated by integer-order differential equations 
in those approaches. Integer calculus is extended to frac-
tional calculus or Fractional based differential equations 

(FDEs) and is more accurate than integer-based differen-
tial equations in describing system dynamics. Motivated 
by this fact, the MtVDC system proposes a SMC with a 
sliding surface of fractional integer order (PIα). In theory, 
when compared to sliding surfaces that decay exponen-
tially towards zero, fractional-order sliding surfaces have 
steady energy transfer during switching, resulting in less 
chattering. Fig. 2 depicts the FSMC principle model.

The fractional PI sliding surface is given in Eq. (17), 
where 0Dt

-α (.) is a fractional integration of order α. A clas-
sical integer-order PI sliding surface for VSC-1 in d and q 
control is obtained by setting α: 
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where the sliding faces' gain parameters are kpd, kid, kpq, 
and kiq. Equations (7) and (8) can be rewritten as:
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By taking the derivative of Eq. (18) and substituting the 
ed and eq from Eq.  (9) into Eq.  (18), the equations of the 
sliding of the surface can be written as:
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Fig. 2 The principle model of FSMC
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Here İrD1ref and İrQ1ref are expected to remain constant and 
have a very low value. As a result, they might be over-
looked. Equation (20) becomes


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Now replacing the value of İrD1f from Eq. (2) into Eq. (20) 
and considering kpd modest and easily overlooked.
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The control rule made sure that the reference current 
tracking signal was on the sliding surface for PWM to cre-
ate the gate signal employing the FOSMC condition.
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The terms kd and kq denote sliding gains:
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More importantly, the FSMC approach's stability is then 
theoretically examined using the Lyapunov theory [12]. 
The Lyapunov candidate function for FSMC stability in 
grid-connected means is defined as:
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Differentiating V(t) with regard to time t in Eq. (12) and 
replacing Eq. (21) into Eq. (24), Eq. (25) becomes:
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Considering sign(Sd) = |Sd|/Sd. Equation (25) becomes
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Considering (kd = |ϭd| + ζd) and (kq = |ϭq| + ζq), where ζd 
and ζq are positive parameters.
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The minimum (ζd, ζq) represents the ζd and ζq minimum 
values. Equation (22) establishes the stability condition and 
shows the convergence of a sliding surface in finite time.

3.3 Adaptive Hierarchical Fractional Sliding Mode 
Controller (AHFSMC)
In this study, an adaptive hierarchical sliding mode con-
troller is developed. This method divides an unresponsive 
system into several subsystems based on its physical struc-
ture. Then, as the first layer sliding surface, the sliding sur-
face of one HSMC for the converter side MtVDC system 
is chosen. It is used to connect the sliding surface of the 
second layer to the sliding surface of alternative subsys-
tem. This process is repeated until all of the subsystem 
sliding surfaces have been included. The total control law 
is given as:

u t u t u t u tsl sw cc� � � � � � � � � � � , 	 (28)

where the sliding control law is usl(t) which is obtained 
from the system's first layer sliding surface, the approach 
control law is usw(t) and the corrective control law is ucc(t). 
The AHFSMC's first layer sliding surfaces are designed 
for the test system under total control law is defined as:
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Two derivatives of Eq. (15) have been computed about 
time using fractional calculus and second-order SMC the-
ory. Equation (30) shows how to obtain s̈ 1(t) and s̈ 2(t):
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Using the expression ed = IrD1 and eq = IrQ1 (as IrD1ref and 
IrQ1ref are very small) and then substituting the value of IrD1 
and IrQ1 and ed = sign(ed)

γ in Eq. (30) with Eq. (21), we get 
the Eq. (31):
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The SMC is second-order if its first and second deriv-
atives with the sliding surface are zero. As a result, if 
s̈ 1(t) = s̈ 2(t) = 0, then the control laws for two subsystems 
becomes Eq. (32):
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Control rules for each subsystem mei shown in Eq. (32) 
can only cause the subsystem to get to the sliding sur-
face of the first layer, according to the HFSMC principle. 
The stable control law mei-s is added as a feedback element 
of the subsystem control law to increase the resilience 
against unknown disturbance and chattering in the test 
system at the subsystem level. The subsystem mei's control 
law has been revised in Eq. (33):
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The following statement for the stable control law has 
been chosen in the subsystem control law mei-s(t).

m z t s sei s t i i i i i� � �
�� � � � � � � � �� �1 � �sign  , 	 (34)

where µi and ηi are stable gain values.
The subsystem control law can be represented as 

Eq. (33) and Eq. (34). The controller exhibits considerable 
robustness when the stable gain of the subsystem control 
law is bigger than the top bound of unknown disturbances. 
The flaws of the subsystems in the control process will be 
overlaid and linked with the system's overall control law 
when confronted with HSMC and is particularly destruc-
tive to the MtVDC system. As a consequence, an adaptive 
estimation of its 1st derivative is presented and given in 
Eq. (35) based on the stable gain parameters µi and ηi of 
the subsystem stable control law mei-s(t):
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where μ۬̂  and λ۬̂  are the stable gain parameters' adaptive 
constants and both are positive numbers. As a result, the 
AHFSMC's adaptive subsystem control laws are depicted 
in Eq. (36):
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The s(t) is the second layer sliding surface:

s t c s t c s t� � � � � � � �1 1 2 2
  , 	 (37)

where c1 > 0 and c2 > 0. Using the adaptive subsystem con-
trol principles, ṡ(t) can be computed as:
  

  

s t s t c s t

s t s t c s t
d d d

q q q

� � � � � � � �
� � � � � � � �

�
�
�

��

1 2 2

1 2 2

. 	 (38)

To design the AHFSMC (Fig.  3), the exponential 
approach law has been used, as shown in Eq. (36), to make 
the second sliding variable s(t) rapidly converge to 0:

s t s s� � � � � � �� �
1 2
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Swain et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(2), pp. 157–167, 2024 |163

where ε1, ε2 are greater-than-zero constants. The approach 
control law usw(t) can be calculated using Eq.  (38) and 
Eq. (39). The following theorems from the AHFSMC can 
be derived:
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By bringing Eq.  (40) into Eq.  (22), the control law of 
AHFSMC can be derived as:
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Theorem 1: Assume that the desired control action of 
the test system is a continuous and bounded function. 
If Eq.  (36) is taken as the control law of the subsystems 
and Eq. (41) is taken as the control law of the total system, 
then lim D = 0 can be realized for the test system with the 
dynamic model shown in Eq. (22).

Lemma 1: Consider the following Lyapunov candidate 
function
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The time derivative of the Lyapunov candidate function 
becomes
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where V̇ is a positive definite derivative function with a 
negative semi-definite derivative. By bringing Eq.  (41) 
into Eq. (42) results
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Lemma 2: Consider the following Lyapunov candidate 
function

V
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In the first section, we will show that s1, s2 ∈ L2, i.e.
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Integrating both sides of Eq. (45) yields,
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According to Eq. (20) and Eq. (47), we have
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Fig. 3 The structure of the AHFSMC
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Equation (45) states that αβs1(t)s2(t)>0. This means that 
the inequality Eq. (49) has three positive terms on the left 
side. As a result, all of these terms should be constrained. 
As a result, condition Eq. (46) should be met. In the second 
part of the proof, we will demonstrate that s1, s2 ∈ Lꝏ, s1, 
s2 ∈ Lꝏ. According to Eq. (46), s ∈ Lꝏ. Moreover, based on 
Eq. (44), s ∈ Lꝏ. On the other hand, taking into account , 
since s ∈ Lꝏ s1, s2 ∈ Lꝏ. Since the terms in s1 and s2's right-
hand parts are finite, so,

Sup s s Sup s s   

1 1 2 2
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� �
, . 	 (51)

Finally, the asymptotic stability of the system Eq. (51) is 
guaranteed by Lemma 2.

4 Result analysis
In the proposed approach instead of the WF, the constant 
voltage source is studied. The performance of the proposed 
approach AHFSMC is justified under various conditions 
and the performance is justified with the comparative sim-
ulative result with analyzing the performance based on 
time-domain analysis and percentage of improvement.

4.1 Load step change at VSC-1 (Case 1)
To see how well AHFSMC performs in the face of system 
uncertainty, VSC-1 is subjected to a 10% load increase in 

a short period (0.75 sec). The impact of this fluctuation on 
system performance is depicted in Fig. 4. The control of 
AHFSMC results in a satisfactory dynamic response.

4.2 Active and reactive power variation (Case 1)
Under the same operating conditions as discussed above, 
a step-change in the active power reference is presented. 
The proposed controller restores the system to its origi-
nal state faster than the other controllers which is visible 
in Fig. 5. 

To present a quantified value, Table 1 summarises the 
efficiency of the suggested controller in comparison to the 
other controllers.

4.3 Voltage ride through ability (Case 2)
As shown in Fig.  6, VSC-1 short-circuit faults cause a 
large voltage deviation on the dc side. 

4.4 Active and reactive power variation (Case 2)
Under the same operating conditions as discussed above, 
a step-change in the active power reference is presented, 
and the response is measured. The proposed controller 
restores the system to its original state faster than the 
other controllers which has been clearly demonstrated 
in Fig. 7. 

Fig. 4 Controller's performance of the MtVDC systems
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Fig. 5 The active and reactive power outputs of VSC-1

Table 1 The test system's time domain analysis for Case 1

Performance Characteristics FSMC HFSMC AHFSMC

Peak value (pu) Vdc 1.12 1.107 1.09

Idc 0.687 0.685 0.68

Pdc 0.6816 0.6814 0.6811

P1 0.638 0.636 0.625

Q1 0.265 0.255 0.225

Settling time (sec) Vdc 2.9 2.78 2.62

Idc 2.32 1.5 0.82

Pdc 2.79 2.43 1.16

P1 2.72 1.48 0.76

Q1 2.57 1.82 1.57

Fig. 6 Controller's performance of MtVDC systems during voltage ride through
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Table 2 shows that the transient stability conditions for 
peak and settling time are relatively low in the proposed 
AHFSMC than the other controllers, implying that the 
transient period is shorter and the oscillations decay faster. 

5 Conclusion
In this paper, the proposed Lyapunov-based control 
strategy solves the problem of enormous voltage angle 

and equency deviation, ensuring the system's stability 
and working performance. In particular, the proposed 
approach with great precision and prompt reaction con-
sider and estimates uncertainties such as external distur-
bances, measurable errors, and modeling errors, which 
aids in minimizing the effect of complexities in the con-
troller design stage. 

Fig. 7 The active and reactive power outputs of VSC-1

Table 2 The test system's time domain analysis for Case 2

Performance Characteristics FSMC HFSMC AHFSMC

Peak value (pu) Vdc 0.933 0.932 0.93

Idc 0.685 0.684 0.682

Pdc 0.634 0.633 0.632

P1 0.235 0.235 0.236

Q1 0.12 0.14 0.147

Settling time (sec) Vdc 2.43 1.61 1.35

Idc 2.31 1.47 0.81

Pdc 2.47 1.24 1.18

P1 3.21 1.54 0.51

Q1 2.72 1.57 1.53
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eters for transmission-line: 0.05 Ω/km, line resistance of the 

transmission link: Rdc = 0.01 Ω/km (50 km Capacitance of 
DC-Link capacitor: Cdc =5000 µF, AC-filters: Cac = 10 µF.
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