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Abstract

In this paper, a global average pooling convolutional neural network based on CNN is proposed for mechanical fault sound detection, 

which called as GCMD. To solve the data scarcity of mechanical fault sound data, a spectrum frame selection augmented method based 

on log Mel spectrum feature is proposed to augment the original data, that aim is to train GCMD and generate counter networks. 

In order to solve the unbalance problem of data set and further improve the generalization ability of GCMD, an augmented neural 

network model based on CapsuleGAN was proposed, which called MFS-CapsuleGAN. The model was evaluated on the augmented 

data set by training GCMD neural network. Compared with the original data set, the accurate recognition rate of the model was 

improved by 23.7%. The performance of this method is improved significantly, which proves the feasibility and effectiveness of MFS-

CapsuleGAN data augmented. In addition, the data set with background noise was used to test the generalization ability of GCMD 

network. The fluctuation range was within 0.117, indicating the good robustness of GCMD network.
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1 Introduction
In industry, traditional and intelligent detection are two 
common detection methods to preliminarily determine 
whether a machine is malfunctioned. Among them, the 
auscultation method is the maintenance or testing per-
sonnel to analyze the noise frequency band of 20  Hz to 
20  kHz audible sound signal. According to the general 
characteristics of the fault sound of different mechanical 
parts, the running state of the machine is judged according 
to the sound of the machine in the running process, the air 
path is unobstructed, etc., the existence of the fault and the 
source of the diagnosis of the detection method. However, 
the traditional artificial experience detection method not 
only has a serious dependence on people, but also has low 
efficiency, low accuracy, high cost, which has not met the 
needs of modern production automation. 

At present, the machine intelligent fault detection 
method generally needs multiple sensors when it detects 
the fault of the machine. These sensors often need to be in 
contact with the machine, whether they are connected to 

the inside or outside of the machine, which may affect the 
operating conditions of the machine. To improve detection 
efficiency and reduce the interference of sensor detection, 
many intelligent detection methods based on neural net-
work have been proposed.

Natural language processing has been widely used in 
RNN [1], while CNN has less application in sound recog-
nition and classification. However, recent research finds 
that the development of CNN can be used for reference and 
help in the sounds field [2]. The effect of CNN on machine 
learning of sounds type is also quite remarkable.

Many applications of voice recognition are getting 
closer to people's daily life, which is mainly reflected 
in modern home intelligent devices. Many applications of 
voice recognition are getting closer and closer to people's 
daily life, which is mainly reflected in modern household 
intelligent devices, such as washing machine noise recog-
nition. Sound detection has been applied in many aspects, 
including sounds security monitoring  [3], urban sound 
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analysis  [4], machine intelligent fault diagnosis  [5] and 
the bird sound detection challenges which is organized 
by Queen Mary University of London [6]. 

However, with the development of technology, the deep 
learning method has proved to be more effective than the 
artificial neural network. The intelligent sounds signal 
fault diagnosis system based on deep learning is a fault 
diagnosis method based on neural network, which relies 
heavily on the training data to improve the performance 
of the model. The small amount of data and the imbalance 
of positive and negative samples will lead to the phenom-
enon of network training overfitting or network crash, 
resulting in the unqualified training model. Usually, the 
fault sound of different mechanical equipment is only 
suitable for the training of this kind of sound fault diag-
nosis deep learning model. The non-general applicability 
of fault sounds, the number of data species and the diver-
sity of data within the class limit the improvement of neu-
ral network classification performance in the application 
of mechanical sounds fault diagnosis. 

There are two problems in data acquisition as follows. 
First of all, for a class of machinery, the probability of fail-
ure is small, and the amount of data that can be collected 
is far from the amount required by the neural network. 
Secondly, the efficiency of manual data collection and 
annotation is very low, which makes it difficult to com-
plete data collection in a short time.

This paper focuses on the fact that the data labels are 
invariant. In order to solve the data set imbalance and fur-
ther improve the generalization ability of GCMD, through 
the comparison of the theoretical performance of GANs, 
this paper proposes a mechanical fault sound data aug-
mentation neural network model MFS-CapsuleGAN 
based on CapsuleGAN [7]. CapsuleGAN has the unique 
learning ability of features and features, as well as the 
connection between features and the whole, and can ana-
lyze the spatial location of the feature data distribution of 
fault sounds. Compared with DCGAN, CapsuleGAN has 
the advantage of generating more regular spectrum data, 
reducing the clutter of synthesized sounds signal charac-
teristics, and improving the complexity of data synthe-
sized data. In addition, small data requirements are also 
one of the characteristics that distinguish it from DCGAN. 
Compared with DCGAN, it is easier to satisfy the train-
ing conditions. Based on the theory of CapsuleGAN, this 
model tries to apply CapsuleGAN to the data reinforce-
ment of the original log Mel frequency spectrum of the 
mechanical fault tone, and synthesize the fault sounds data 

with the diversity of the original data samples by generat-
ing the semi-supervised learning method generated by the 
confrontation network. MFS-CapsuleGAN can synthesize 
multi-second sounds log Mel frequency spectrum frag-
ments with global coherence for mechanical fault sounds, 
and produce log Mel frequency spectrum features similar 
to the real mechanical fault sound, thus producing appro-
priate and similar sound effects and better adapting to the 
generation of mechanical fault sounds. This paper takes 
the data augmented study of the faulty sound data set of 
washing machine  [8], ToyADMOS  [9] and MIMII  [10] 
data set as an example and USES MFS-CapsuleGAN to 
enhance the original data. The experiment generated the 
augmented datasets of three kinds of disclosed mechanical 
fault audio datasets, and the accuracy of the augmented 
datasets was evaluated by training GCMD neural net-
work. In addition, the data set with background noise was 
used to test the generalization ability of GCMD network 
and verify the robustness of GCMD network.

Our contributions are summarized as follows:
1.	 We propose a method of feature data sampling based 

on the spectrum feature of log Mel. This method 
operates on the spectrum of log Mel of a 10 min fault 
tone. By randomly or orderly selecting the spectrum 
segment for sampling, we can make the most of the 
features at the joint of the sample and the sample, and 
repeat sampling while avoiding feature omission.

2.	We proposed MFS-CapsuleGAN. After the improve-
ment of CapsuleGAN network, the log Mel spectrum 
characteristics of mechanical fault sound signal were 
enhanced. The end-to-end fault audio synthesis is 
realized by combining Griffin-Lim algorithm with 
MFS-CapsuleGAN.

2 Related work
2.1 Data augmentation
To solve the problems about data acquisition, the solu-
tion we adopt is data augmentation. That is, the method of 
expanding the number and diversity of samples by mak-
ing moderate changes to the in-class sample data while 
keeping the same label. In the aspect of intelligent fault 
sound diagnosis and recognition based on deep learning, 
most of the projects generally have the problem of insuf-
ficient training data or unbalanced training set, and the 
traditional data augmentation methods cannot fully meet 
the data demand of intelligent fault sound diagnosis and 
recognition. The generative antagonistic neural network 
proposed by Ian Goodfellow has been studied by scholars 
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in different fields around the world [11–13]. It is currently 
an internationally recognized data-augmented deep learn-
ing method. This technology is an unsupervised machine 
learning artificial intelligence algorithm, which can be 
used to generate unknown new data close to the real data 
distribution. The framework consists of two neural net-
works composed of discriminator and generator, which 
are similar to counterfeiters and truth experts. The gen-
erator generates a series of false data, and the discrimi-
nator identifies the degree of authenticity of the data and 
returns the results to the generator. The generator learns 
in the direction of getting closer to the real data distribu-
tion, iteratively updates the parameters and optimizes the 
model algorithm until the discriminator fails to identify 
the criterion of authenticity of the data be generated.

In the field of image, many research works of data 
augmentation technology based on GAN in computer 
vision have been greatly recognized. GAN is a data aug-
mentation method of supervised learning proposed by 
Goodfellow et al.  [14]. These models take the generative 
adversarial networks as the framework, obtain the data 
distribution through discriminator and generator game 
learning, and generalize it to generate new data in the 
class. This generation process does not depend on the class 
itself, but can be applied to unknown new data classes. 
The generated data not only increases the overall number, 
but also combines or erases some characteristics of some 
samples, which makes the generated samples more diverse 
and more suitable for the learning improvement of model 
generalization ability.

Based on the network architecture of GAN, Sun et al. [15] 
proposed a data augmentation method of AC-WGAN-GP 
to expand the training set and achieve better classifica-
tion accuracy with a small number of labeled samples. 
Radford et al. [16] proposed a deep convolution generation 
countermeasure network DCGAN. By constructing discrim-
inators and generators based on convolution and deconvolu-
tion neural networks, the data augmentation performance of 
GAN is greatly improved. To increase the accuracy of speech 
recognition, Zhou and Sun  [17] suggest a dual data aug-
mentation strategy for voice recognition. To begin, use the 
vocal tract length perturbation (VTLP) technique to enhance 
the data set, and then use noise perturbation technology 
based on genetic algorithms to enhance the data set again. 
To accomplish the objective of speech recognition, they pro-
posed the DeepSpeech2 model, and the performance of the 
model is shown good. Donahue et al. [18] first used GAN to 
generate sounds data by analyzing sounds data in time and 

frequency domain. Since the loss function of GAN can only 
be used as a measure of the similarity between the gener-
ated data and the real data distribution. Arjovsky et al. [19] 
proposed a new GAN variant, Wasserstein GAN, to solve 
this problem. Based on this study, a new gradient function 
for Wasserstein GAN loss is introduced in  [20]. Recently, 
based on the theory of WaveGAN, a new kind of WaveGAN 
network variant parallel WaveGAN is proposed in  [21]. 
This method can effectively capture the time-frequency dis-
tribution of the real speech waveform by training a non- 
autoregressive wave network through joint optimization of 
multi-resolution spectrum and anti-loss function.

Therefore, based on the theory of traditional sounds 
data augmentation technology, this paper tries to find 
a way to generate reliable and near real log Mel spectrum 
on GAN. DCGAN and CapsuleGAN are tested and ana-
lyzed. Because Capsulenet can recognize the relationship 
between the features of data distribution and the relation-
ship between the features and the whole, combining with 
Griffin Lim algorithm, an end-to-end fault sound gen-
eration system, Mechanical failure sound CapsuleGAN 
(MFS-CapsuleGAN), based on CapsuleGAN is proposed 
to augment the data.

2.2 Generative Adversarial Network (GAN)
GAN consists of a generator and discriminator. In GAN, 
in the beginning, the generator receives random numbers 
generated from the Gaussian distribution and generates 
false data after the deconvolution operation of up-sam-
pling. The fake data and the real data are labeled and sent 
to the discriminator. The discriminator learns real and 
false data samples and obtains the network model with 
strong discrimination ability after continuous training. 
The trained discriminator has a better ability to identify 
whether the sample is from real data or fake data gener-
ated by the generator. In the discriminator network, when 
the input is real data, the output of the discriminator net-
work is close to 1. When the input is false data, and the out-
put of the discriminator network is close to 0. That proves 
the discriminator has good performance and achieves the 
ideal goal of identification. When the performance of the 
generator is poor, the discriminator can easily identify 
the fake data. The discriminator feeds back to the gener-
ator the difference values between the data generated by 
the generator and the real data. The generator constantly 
updates the parameters to optimize the network, so that 
the generator network learns towards the direction of 
decreasing the D-value, to produce more real false data. 
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To effectively distinguish the true data from the false data, 
the discriminator needs to train itself to improve its dis-
crimination ability through the real data to prevent the 
generator from mixing the false data with the true data. 
Through this mutual antagonism, the discriminator and 
the generator carry on the reverse training to each other. 
Finally, as the fake data gets closer and closer to the real 
data, the discriminator can’t distinguish whether the data 
generated by the transmitted generator is from the real 
data distribution or the false data distribution so that the 
generator can achieve good performance.

In GAN, the discriminator and generator are respec-
tively composed of convolutional neural network and 
deconvolution neural network. The operation of tradi-
tional CNN forward propagation is to compress the size 
of feature graph and make it smaller and smaller, while 
deconvolution is to make the initial input data (noise) big-
ger and bigger. After several layers of convolution, false 
data with the same dimension size as the original data is 
obtained. DCGAN defines a noise Pz (z) as a prior, which 
is used to learn the probability distribution Pg of the gen-
erator network model G on the training data x, and G(z) 
represents the mapping of the input noise z into the data 
space. D(x) represents the probability that x comes from 
the real data distribution Pdata instead of Pg . We trained 
D to maximize the probability of correctly distinguishing 
real samples from generated samples, so we can train G 
by minimizing log(1 − D(G(z))) at the same time. In other 
words, discriminator D and generator G play minimax 
game on value function V(G,  D). Accordingly, the opti-
mized objective function is defined as follows: 

minmax , log
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If the parameters of the discriminant model D are 
updated, then for sample x from real distribution Pdata , 
we hope that the output of D(x) is as close to 1 as pos-
sible, that is, the greater F is, the better the discriminant 
ability of D is. For the data G(z) generated by noise z, we 
want D(G(z)) to be as close to 0 as possible, so the larger 
log(1 − D(G(Z))) is, the stronger the discrimination ability 
of D is, so we need to maximize D.

If the parameters of the discriminant model G are 
updated, then we want G(z) to be as real as possible, which is 
Pg = Pdata . Therefore, we want D(G(z)) to be as close as pos-
sible to 1, that is, the smaller log(1 − D(G(Z))) is, the better 
the performance of generator is, so we need to minimize G.

In theory, if the fixed G value updates D, then the opti-
mal solution is: 
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However, when updating G, the target function takes 
the global minimum if and only if Pg = Pdata . Ideally, after 
constant parameter updates and network optimization, the 
final result of the game between the two models is that G 
can generate G(z) that can be regarded as the real data. 
Therefore, it is difficult for D to judge whether the data 
generated by G is true, that is, D(G(z)) = 0.5.

The principle of GAN is to let D and G play games, and 
the two models can be simultaneously augmented by com-
peting with each other in the training process. Due to the 
supervision effect of the discriminant model D, G can pro-
duce false data close to the truth without a large amount of 
prior knowledge and prior distribution.

3 Data augmented method
In Section  3, we focus on the spectrum data aug-
mented method based on MFS-CapsuleGAN, improved 
CapsuleGAN, and apply it to the characteristic data 
augmented method for log Mel spectrum of mechanical 
fault sounds.

3.1 Spectrum Box Selection Data Augmentation 
(SBSDA)
Usually for processing data, waveform audio is converted 
into a spectrogram and then fed into a neural network to 
generate output. The traditional way of performing data 
augmented is usually applied to waveforms. Seeking 
another method is to manipulate the spectrogram, based 
on a priori algorithm in the field of image, they make 
image to flip, rotate, scale, crop, shift, add Gaussian noise, 
color augmented and so on. These operations also apply to 
the spectrogram. Park et al. [22] proposed SpecAugment 
for data augmented in speech recognition. There are three 
basic ways of expanding data, namely time warping, fre-
quency masking and time masking:

Time warping: A random point will be selected and 
bent to the left or right along the distance w, and the dis-
tance w will be selected along the line from 0 to the uni-
form distribution of the time warping parameter W.

Frequency masking: The channel is masked. It is selected 
from 0 to a uniform distribution of the frequency template 
parameter F, and is selected from among them, where is the 
number of frequency channels.
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Time masking: t consecutive time steps [t0 ,  t0 +  t) are 
masked. The t is selected from the uniform distribution of 
the time mask parameter T from 0, but t0 is selected from 
[0, τ − t).

Compared with data augmented on sound signal wave-
form, data augmented on frequency spectrograms can 
improve training speed, because there is no need to per-
form data conversion between audio signal data and spec-
trogram data, while spectrogram data can be increased. 
However, this method still cannot completely solve the 
remaining problems by the aforementioned audio signal 
data augmented.

The log Mel spectrum based on the input audio proposed 
by Park et al. [22] instead of the augmented method of the 
original audio itself [23]. The theoretical basis provided is 
based on the transformation of the spectrum. The theoret-
ical basis provided by this method can compare the spec-
trum to the image, perform frame-selecting data on the 
spectrogram, and avoid multiple conversions from audio 
signals to spectrogram signals, as shown in Fig. 1. 

The fixed matrix data input settings of CNN and DNN 
will often miss the feature connection between two adja-
cent signal frequency spectrums when training CNN with 
frequency spectrum, which will cause when the neural 
network to train according to the pre-segmented signal 

data, the features in the fixed spectrum will be consid-
ered only, and the spectral features of missing features or 
incomplete signals will be misclassified or even not recog-
nized. As shown in Fig. 2 (a), this kind of problem often 
appears in the training set. The probability of occurrence 
in the verification data set during actual field detection is 
greater, resulting in a higher probability of underfitting the 
neural network in the case of data scarcity.

To solve the above problems, this study proposes 
a  log  Mel feature augmented method for feature refine-
ment and enlargement of the unrestricted spectral window 
size based on the frequency spectrum data augmented 
method. This method is dedicated to solving single-fault 
signal features.

As shown in the schematic diagram of the log  Mel 
random frame selection in Fig.  2, we select a continu-
ous stream of fault audio for up to 30 s instead of a 3–5 s 
pre-segment fault audio segment.

For example, as seen in Fig. 2 (a), if we use the duration 
of the frame with the length to cut the pre-segmented audio 
at this position, although it contains the sound features 
between the complete fault signal and the signal, most of 
the signal features of the log Mel spectrum of this segment 
do not contain the fault signal features, only a small part 
contains the fault signal. The disadvantages of segment 
features are that there is still a difference in the distribu-
tion of two-dimensional feature data of the same type of 
fault signal. The duration of the fault audio set in advance 
cannot completely contain all the features of at least a sin-
gle fault signal, which leads to the learning of the neural 
network may be an incomplete fault signal feature. On the Fig. 1 Schematic diagram of waveform audio to spectrum diagram

Fig. 2 Schematic diagram of log Mel random frame selection, (a) the same length of the pre-segmented audio, (b) the smaller segmented audio

(a)

(b)
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contrary, although the smaller segment in Fig. 2  (b) can 
contain the complete spectrum characteristics of the fault 
signal, there may also be frequency bands that do not con-
tain the characteristics of the fault signal, and they cannot 
reflect the spectrum characteristics between signals.

In order to solve the above problems, under the condi-
tion that the number of features is the same, that is, the 
number of rows of the spectrogram matrix is the same, 
the frame length in the region of the selection is randomly 
and not repeatedly. We set the total frame length F of the 
spectrogram, and the distance between the two fault sig-
nals within the range of [N,  M]. The maximum period 
of the signal, which can be regarded as the frame length 
within the range of [T1,  T2], and the randomly framed 
spectrum frame length is F', then its definition domain 
is: [N + 2T1, M + 2T2]. Among the selected spectrogram 
features, there is at least one complete fault signal spec-
trogram feature and non-fault signal feature including 
at least one with an approximate maximum probability. 
The schematic diagram on the time domain diagram can 
be expressed as shown in Fig. 3.

In addition, in order to refine the features, the minimum 
frame number Fmin is set as the minimum selectable frame 
number, the step size is L, and the randomly framed spec-
trum frame length is ( Fmin , F − F0 ). It will maximize the 
creation of a frequency spectrum in an L step, as much as 
possible while increasing the number of features, but also 
play a role in refining features.

3.2 MFS-DCGAN for data augmentation
The main component of MFS-DCGAN is the generator 
and discriminator. The generator consists mainly of three 
deconvolution layers.

The purpose of the generator is to map from the poten-
tial space to a specific distribution close to the real data 
distribution. The network architecture of the generator is 
described in detail below.

The first layer is the input layer, which receives the noise 
sample data. Take the size of the HAASD sample data for 
example. The noisy sample z is the Gaussian distribution 
data generated randomly from −1 to 1 with dimensions of 
64 × 432, then the data was batch normalized.

The second layer is the deconvolution layer, consisting 
of 256 kernels with each size of 5 × 5, and we stride the fil-
ter by 5 × 5. The pooling layer is eliminated in the decon-
volution layer, the pooling method is replaced by deconvo-
lution method to up-sampling for the sample.

The third layer is also deconvolution one, whose struc-
ture is consistent with the second layer. The input of this 
layer is the output of the second layer, and 128 convolution 
kernels are used for deconvolution. After batch normaliza-
tion and activation, a dropout function with a probability 
of 0.5 is added to the output to prevent over-fitting.

The fourth layer is the last layer of the deconvolution 
layers, where the input is the output of the third layer. 
The  parameters of kernel and stride are consistent with 
the second and third layers, and the deconvolution result 
will be output after the activated by Leaky ReLU function.

The purpose of the discriminator is to try to distinguish 
between the data fed to it, which is the real data distri-
bution, and which is the fake data distribution generated 
by the generator. Here is the detailed architecture of the 
discriminator.

The first layer is the convolution layer, with the real 
data and the data generated by the generator as input. 
128 convolution kernels with each size of 4 × 4 were used 
to downsample the feature map, and the stride size of con-
volution is 4 × 4. After that, Leaky ReLU activation func-
tion will be used to activate this layer before output.

Both the second and third layers are convolution layers, 
the second layer uses 256  kernels, while the third layer 
uses 512 kernels, and the other architectures are consistent 
with the first layer. The difference is that batch normal-
ization should be carried out after the convolution in the 
second layer, and the dropout with a probability coefficient 
of 0.5 should be added after the activation function in the 
third layer to prevent over-fitting.

The fourth layer is the output layer, and the sigmoid 
function is used for the probability distribution. The maxi-
mum probability of the final output represents whether the 
input into the discriminator is from real data or fake data 
generated by the generator. More details of MFS-DCGAN 
architectures are shown in Fig. 4.

3.3 MFS-CapsuleGAN for data augmentation
MFS-DCGAN, which is based on convolution and decon-
volution networks, relies on the characteristics of CNN 
architecture, resulting in the omission of some data. 
The  convoluted feature spectrum may not contain some 
feature information of the previous layer. The decrease Fig. 3 Schematic diagram of random frame selection
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in visual field information extraction ability leads to 
a  decrease in spatial resolution, which cannot deal with 
fine features well. The result of the characteristic spec-
trum for small changes in input is often almost constant. 
It is not sensitive to the position relation between fea-
tures, but the characteristic relation between frames in 
the spectrum. The problem can now be solved by build-
ing capsule neurons, training the data in vector form, and 
iteratively updating the parameters through routing algo-
rithms. In CapsuleNet, the position information of spec-
tral features, rotation, thickness, inclination, and size of 
feature representation is learned by the capsule network 
as images, so that the pooling operation will not be lost 
first and then recovered. The small changes of low fre-
quency and weak signals generated by mechanical vibra-
tion can also be learned by the network, which is called 
"equivariant". That is, CapsuleNet can use a simple and 
unified architecture to handle the task of feature spectrum 
recognition. The discriminator of MFS-CapsuleGAN is 
similar to the CapsuleNet model in structure. In general, 
CapsuleNet has a large number of parameters. Because 
first, each capsule generates a vector output rather than 
a single scalar, and second, each capsule has additional 
parameters associated with all the capsules in the layer 
above it to predict its output. We use the marginal loss LM 
instead of the traditional binary cross entropy loss to train 
our MFS-CapsuleGAN because LM is more suitable for 
training the CapsuleNet discriminator.

MFS-CapsuleGAN composed of CapsuleNet, which can 
get feature connection, has better feature generation abil-
ity than DCGAN constructed by CNN. CNN architecture 

can't analyze feature location relationships well, while 
CapsuleNet can also perform well in complicated fea-
ture data. To assess the generation effect of the MFS-
CapsuleGAN model, an end-to-end fault audio spectrum 
data augmented experimental system is built. The system 
obtains the characteristic data of the log  Mel spectrum 
from the audio signal through preprocessing. Based on 
these original sample data, the random spectrum box selec-
tion algorithm is used to enhance the data and obtain the 
original augmented data without changing the characteris-
tics. These original data augmentation sets are augmented 
by MFS-CapsuleGAN, and CGAD (CapsuleGAN aug-
mented data) is generated. To visually verify the authen-
ticity of CGAD, the fast Griffin-Lim algorithm [24] is used 
to reconstruct the audio signal of randomly selected data 
when MFS-CapsuleGAN data is output. When each batch 
of data is augmented, the randomly generated audio signal 
sample data is output for the human ear and spectrum anal-
ysis verification. The system is shown in Fig. 5.

The MFS-CapsuleGAN generated confrontation net-
work model based on spectral graph characteristics as 
input and output are similar to image recognition. In this 
paper, single-channel data training is adopted, and the 
input and output are all two-dimensional matrix data of 
spectral graphs. The network consists of a generator net-
work composed of a deconvolution layer and a discrimina-
tor composed of a capsule neural network. Fig. 6 shows the 
capsule generation antagonistic network model.

The network consists of a deconvolution generator and 
a Capsule discriminator. Taking washing machine sample 
data as an example, the input is two-dimensional matrix, 

Fig. 4 MFS-DCGAN network diagram: 1 and 0 are tags of normal and abnormal sound, respectively, indicating that the discriminator can distinguish 
the input sound samples from real data or fake data generated by MFS-DCGAN
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and the output is n × 1 probability vector, where n is the 
fault type. The first layer of the discriminator is the con-
volutional layer. Compared with the most advanced con-
volutional neural network variants in the industry, it is 
a very shallow network with only four convolutional lay-
ers and a fully connected layer in the middle. 256 convo-
lution Windows of size 9 × 9 are used, and get an output of 
20 × 20 × 256. 32 filters with size of 9 × 9 × 256, stride is 2, 
be used in primary capsule layer to obtain the output with 
dimension of 6 × 6 × 32. This is equivalent to eight convo-
lution operations with 32 filters of step 2. And in Capsule 
layer, each element in the dimension of 6 × 6 × 8 × 32 is 
a 1 × 8 vector. The next layer is to store vectors of high-
level features. The PrimaryCaps layer and DigitCaps 
layer are fully connected, but unlike the traditional neural 

network scalar and scalar, they are connected with vec-
tors, and finally output the maximum probability of dis-
crimination. MFS-CapsuleGAN has a certain robustness, 
and the model obtains losses by reconstructing the differ-
ence between the log Mel image and the real image. In this 
paper, the reconstruction loss is the subtraction and square 
summation of the pixel values on the 6,487 neural units of 
the final output and the initial input, which is defined as: 

T G Mloss loss loss� � �� .	 (3)

In the above α = 0.01, is the reconstruction loss, Tloss is 
the interval loss, and Mloss occupies a dominant position.

4 GCMD network
The GCMD network can be regarded as a variant of the 
traditional artificial neural network structure. It no longer 
uses the fully connected hidden layer but consists of the 
convolutional layer, the pooling layer, and the fully con-
nected layer [25].

We used the structure of a convolution neural network 
for model training. This network uses four layers of con-
volution and two layers of full connectivity.

Take 5  s long fault sample training as an example. 
The first layer is the convolution layer, the size of the input 
single sample is 64 × 432, and this convolutional layer has 
32 filters with the size of 5 × 5 we stride the filter by 1. 
After the convolution, it was activated by the Leaky ReLU 
function, and then the outputs data were normalized by 
batch normalization. The traditional neural network only 

Fig. 5 End-to-end log Mel spectrum data capsule generation 
countermeasure augmentation system

Fig. 6 MFS-CapsuleGAN model
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conducts data normalization processing before inputting 
sample data was fed into the input layer to reduce the dif-
ference between samples. However, on this basis, batch 
standardization not only standardizes the input data of the 
input layer, but also standardizes the data of each hidden 
layer to achieve the purpose of preventing gradient dif-
fusion and accelerating convergence. After standardized 
processing, the data will be fed to pooling layer. The pool-
ing window size was 5 × 5 with stride of 5 × 5 and it was 
selected to output 32 feature maps.

The second layer is the convolution layer. The output 
of the second layer is used as input for the third layer, and 
64 filters are used for convolution with a size of 3 × 3 and 
we choose to stride the filter by 3 × 3. It was first activated 
by Leaky ReLU activation function, then normalized, and 
finally pooled by pooling layer with a pool size of 2 × 2, 
stride size of 2 × 2, and output 64 feature maps.

The third and fourth layers are also convolution layers, 
and the output of the second and third layers are respec-
tively used as the input of those two layers. Activation 
and batch normalization parameters are consistent with 
layer 2. Convolution kernel size, strides, pooled window 
size and the padding method are all the same as the second 
layer. The difference is that the third layer uses 128 kernels 
for convolution, and outputs 128 feature maps, the fourth 
layer uses 256 kernels and outputs 256 feature maps.

After last convolutional operations, outputs will be fed 
to the GAP layer. Inputs will be reshaped to one-dimension, 
and multiply it by the weight, add the bias, then activate 

it through Leaky ReLU activation function. To overcome 
over-fitting problem, we use dropout regularization tech-
nique to fix it. At the end of fully connected layer. Dropout 
discards certain neurons in the fully connected layer with 
a probability of p. After that, it is then fed into the output 
layer. In output layer, inputs of this layer will be mapped 
into n output class, and the Softmax function is used to 
assign probabilities to each of these samples. More details 
of GCMD architectures are shown in Fig. 7.

The traditional convolutional neural network performs 
convolution on the hidden layer of the network. For clas-
sification, the feature map of the last convolutional layer 
is vectorized and input into the fully connected layer and 
finally passes through the Softmax or logistic regression 
layer. This structure connects the convolution structure 
with the traditional neural network classifier. It uses the 
convolutional layer as a feature extractor and classifies the 
obtained features using traditional methods.

However, the fully connected layer is prone to overfit-
ting, which affects the generalization ability of the entire 
network. Dropout was proposed by Gomez  et  al.  [26]. 
As a regularizer, half of the activations of fully connected 
layers are randomly set to zero during training. It improves 
the generalization ability and largely prevents overfitting.

In this paper, the CNN convolution layer is added to 
the global average pool layer in the experiment to replace 
the traditional fully connected layer. The idea is to gener-
ate a feature map for each corresponding category of the 
classification task in the last convolutional layer. We do 

(a) (b)

Fig. 7 CNN model architecture for Abnormal Sound Detection of Machines. (a) The detailed composition of each CNN layer structure,  
(b) CNN's tensor flow diagram and the modes of activation added to each layer
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not need to add a fully connected layer on top of the fea-
ture map, but take the average of each feature map, and 
the resulting vector is directly input to the Softmax layer 
to convert from a high-dimensional space. As shown in 
Fig. 7, we suppose that the final output of the convolutional 
layer h × w× d is a three-dimensional feature map and the 
specific size is 6 × 6× 3. After GAP conversion, it becomes 
an output value of size 1 × 1× 3, that is, each layer will be 
averaged to a value h × w.

As shown in Fig. 8. Compared with the fully connected 
layer, an advantage of the global average pool is that it 
is more suitable for convolutional structures by enhanc-
ing the correspondence between feature maps and cate-
gories. Therefore, feature maps can be easily interpreted 
as category confidence maps. Another advantage is that 
there are no parameters to optimize in the global average 
pool, so overfitting is avoided at this level. In addition, 
the global average pool merges the feature space infor-
mation to make the input space translation more robust. 
You can think of the global average pool as a structural 
regularizer, forcing feature maps to be confidence maps 
of concepts (categories). This is achieved by multiple con-
volutional layers because they are easier to classify than 
GLMs. In short, after the convolutional layer, replacing 
the FC fully connected layer with GAP. There are two 
advantages: one is that GAP is simpler and more natu-
ral to convert between the feature map and the final 

classification; the second is that, unlike the FC layer that 
requires a lot of training and tuning parameters, reducing 
the spatial parameters will make the model more robust 
and resist overfitting effects better.

As shown in Fig.  9, the last fully connected layer is 
removed and replaced by the GAP layer, which extracts 
the final feature map information in the form of a fixed 
output, and each feature map outputs a value. In this way, 
when the size of the convolution window is allowed, no 
matter what the size of the input log Mel spectrum win-
dow is, there is no need to continue to adjust the convo-
lution parameters, which solves the inconvenience of the 
time limit for the actual detection on site. It also provides 
a theoretical basis for the feasibility of the design of ran-
dom frame selection data augmentation algorithms.

5 Experiments
Firstly, SBSDA was used for the GCMD network training 
experiment, and then CGAD was used for MFS-DCGAN 
and MFS-CapsuleGAN training experiment and its data 
generation effect analysis. Finally, a comparative analysis 
of the fault speech recognition network model is carried 
out to verify the performance of GCMD and its robustness.

To effectively and efficiently verify the fault source 
of sound source characteristics, the fault characteristics 
are highlighted by spectral envelope analysis after noise 
reduction filtering. As we can see from Fig. 10, the wash-
ing machine drum failure was obtained in a frequency 
range of 250 Hz, where the signal showed a higher mod-
ulation effect. The basic frequency is 76.02 Hz, and the 
second and third harmonics are 146  Hz and 211  Hz. 
The amplitude of the fault frequency and its harmonics 
are clear, in which case the second harmonic offset is 
small. In the spectral envelope signals of ToyADMOS and 
MIMII datasets, the amplitude of external fault frequency 
and its harmonics are clearly visible. Compared with the 
MIMII datasets, the harmonic frequencies of 200, 400, 
600, and 800 Hz are more accurate.

Fig. 9 Schematic diagram of GCMD

Fig. 8 Schematic diagram of GAP conversion
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5.1 Data preparation
Log Mel spectrum graph was selected in a random box, 
and the data was augmented based on 1000  different 
fault audio signal data samples, and the training set was 
extracted in the form of the spectrum data cache. During 
data extraction, wav audio files that have been filtered and 
validated by envelope analysis after fault signals are used 
as datasets, and each sample lasts for the 30 s. After fea-
ture extraction, the box selection algorithm is used for 
data augmentation. Each window of the random box was 
selected as the new spectrum size, and the augmented data 
of different sizes were used as a batch of data. 50 random 
points were set in the experiment, and the random value 
was selected as an integer value, without repeated random 
selection within the optional range of frame F.

5.2 MFS-CapsuleGAN
We use the Gradient Descent Optimization to replace the 
Adam Optimization in MFS-CapsuleGAN. It was found 
that Gradient Descent Optimization converges better 
than Adam Optimizer in the optimization process. Cross 

entropy is used to define generator loss and discriminator 
loss. Based on MFS-CapsuleGAN, we added the smooth-
ing parameter of labels, to alleviate the problem that the 
label is not soft enough and can easily lead to overfitting 
so that the model is less confident in predicting. Through 
tests, it was determined that smooth = 0.25 and the gen-
erator and discriminator performed best. The smoothing 
parameter is added so that the discriminator is not over-
confident, and the generator loss value is much larger than 
the discriminator. 

We set the parameters and get the loss of the current gen-
erator and discriminator once every 100 iterations of train-
ing. As shown in Fig. 11, as the times of training increase, 
changing the smooth value will affect the D-value between 
the loss value of the discriminator and the generator.

One notable drawback of MFS-CapsuleGAN is that it 
is prone to gradient explosions. In network training, batch 
normalization can be added to the layer to solve the prob-
lem of slow convergence speed or gradient explosion. 
In addition, batch normalization can also be added to speed 
up training and improve model accuracy. By comparison, 

Fig. 10 Spectrum envelope analysis diagram of fault signal

Fig. 11 The difference between the loss values of the generator and the discriminator network
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Leaky ReLU activation function performed better than 
Tanh activation function or ReLU activation function. 
Since most negative values exist in the original data, if 
Tanh or ReLU activation function is adopted, this part of 
value will be weakened, while Leaky ReLU can solve this 
problem. It can correct the data distribution and retain 
valid values, so that all negative values will not be lost. 
Therefore, we used the Leaky ReLU activation function to 
activate each layer before output.

The experiment was conducted for 140,000  iterations 
of training. The networks are trained on a workstation 
equipped with an E5 6230 CPU with 32  GB RAM and 
4 NVIDIA Tesla K40t GPUs with 12 GB RAM of each.

Training parameters and experimental equipment for 
MFS-CapsuleGAN in Table 1.

Advantages of adding label smoothing: 
1.	 First, to ensure the generalization ability of the 

model and prevent over-fitting. 
2.	 Secondly, it can be known from the gradient bound-

ness that minimizing the total probability and the zero 
probability encourages the difference between the cat-
egory and other categories, which can effectively pre-
vent the phenomenon that the loss value of generator 
is much larger than that of discriminator caused by the 
model's over-belief in the predicted category. 

We set the parameters and get the loss of the current 
generator and discriminator once every 30  iterations of 
training. The loss value of the MFS-DCGAN model is 
shown in Fig. 12. It can be seen from Fig. 12 that when the 
loss value is between 0.1 and 0.2, the loss value of genera-
tor and discriminator is greatly different. While the value 
is set as 0.25, the difference is very small, close to 0. After 
training, the output of the generator and discriminator are 
relatively stable, and the loss value is close to 1. At this 
point, the discriminator cannot distinguish the real sample 
from the fake sample.

The loss value of the MFS-CapsuleGAN model is 
shown in Fig. 13. We can see that after 150,000 iterations, 
the generator and discriminator losses are close to zero, 
and the network tends to stabilize. It can be seen that the 
loss of the generator and discriminator increases nega-
tively at the beginning of training. With the increase in the 
number of iterations, the loss value of both approaches to 
0, which is close to the ideal state, indicating that the train-
ing process is very smooth, and the performance of the 
generator and discriminator is close to the balance.

To visualize what happens to the spectrum. We will pro-
duce part of the spectrum from reshape as 64 × 64 dimen-
sion, to observe the diversity of the generated data change. 
As we see from the spectrum diagram in Fig. 14, each row 
represents 6 kinds of varieties of a fault spectrogram.

In order to verify the improvement of model perfor-
mance by data augmentation. In the training experiment 
of GCMD network, the cross-entropy function is used to 
calculate the loss in the training network. The Adam opti-
mizer, whose vertical learning rate η is 0.0001, is used to 
update the parameters (w,  b), and the Dropout probabil-
ity p is set as 0.5. Although the use of Dropout resulted 
in increased training time, it improved the performance of 
neural networks in supervising learning tasks. The equal 

Table 1 Training parameters and experimental equipment

Learning rate η = 0.0001 

Dropout probability p = 0.5

Smooth 0.25

Batch size 1000

Epochs 140000

CPU E5 6230

RAM 32 GB

GPU Tesla K40t

Fig. 12 Different loss values for the discriminator and the generator
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function compares the prediction value with the true value, 
returns true or false, is converted into a 1 or 0 format using 
the cast function, and then averages the calculation, thereby 
calculating the accuracy. GCMD network is trained using 
a  batch size of 1000 with 400,000  epochs in this work. 
Each iteration outputs training accuracy, and finally tests 
and then outputs test accuracy. CNN classifier is trained on 
a workstation equipped with an AMD r7-3900X CPU with 
64  GB RAM and 4 RTX 2080TI GPU with 11 GB RAM.

Training parameters and experimental equipment for 
GCMD in Table 2.

Network parameter tuning is carried out during net-
work training. Digital audio signals can be collected at 
different sampling rates. However, it is not certain which 
sampling rate is most suitable for the acquisition of fault 

sound, so the experiment carries out an empirical study on 
different sampling rates and classification accuracy. In the 
experiment, the idling sound of the washing machine was 
sampled at the usual sampling frequencies of 8000  Hz, 
11025 Hz, 16000 Hz, 32000 Hz, 44100 Hz, and 64000 Hz. 
In this experiment, the machine idling sound was collected 
at different sampling rates on the production line, and then 
the GCMD network was trained with this data set.

Fig.  15  (a) shows the average classification test accu-
racy of the augmented data set obtained from the original 
data set after training and testing of the laundry fault tone 
network under different sampling rates, which are 0.673, 
0.946, 0.963, 0.971, 0.987, and 0.972, respectively. As can 
be seen from Fig. 15, the data set produced at the sampling 
frequency of 44.1 KHz is more suitable for the training of 
the GCMD network.

Different activation functions have different effects on 
different data and different networks. In order to deter-
mine the optimal activation function among several com-
monly used activation functions, the augmented data set 
was used in the experiment, and Tanh, ReLU, Sigmoid 
and Leaky ReLU activation functions were respectively 
used for training in the convolutional layer of the wash-
ing machine's heterogeneous sound recognition network. 
As  the voice data of washing machine contains most 

Table 2 Training parameters and experimental equipment

Learning rate η = 0.0001

Dropout probability p = 0.5

Batch size 1000

Epochs 400000

CPU AMD r7-3900X

RAM 8 GB

GPU RTX 2080TI

Fig. 14 Spectrum generated for 6 machine faults

Fig. 13 Loss values of the discriminator and generator approach equilibrium
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negative data, the network test accuracy using 4  activa-
tion functions is 0.716, 0.943, 0.877 and 0.972 respectively 
through comparative test analysis. The network tests using 

the Leaky ReLU activation function were the most accu-
rate. The average network test accuracy of the four activa-
tion functions is shown in Fig. 15 (b).

To verify the promotion effect of the augmented data 
set on the training network, the experiment used the 
GCMD network to conduct 400,000  iterations of train-
ing. The confusion matrix is used to verify the training 
results of the augmented dataset for GCMD. The classi-
fication accuracy of the obfuscation matrix is shown in 
Fig. 16. The data set of washing machine fault sound is 
augmented by SBSDA, DCGAN, and MFS CapsuleGAN. 
The scores of GCMD were 0.764, 0.835, and 0.987, 
respectively. Compared with SBSDA, the accuracy of the 
GCMD model of CGAD training was improved by 0.223. 
The MFS CapsuleGAN data augmentation method is sig-
nificant in the washing machine failure sound data set, 
and the accuracy of the single batch data set test and eval-
uation of the model is close to 0.99.

In this paper, under the same training conditions, the 
AUC precision evaluation method is adopted to evaluate 
the augmented datasets of SBSDA and MFS-CapsuleGAN 
methods of ToyADMOS datasets and MIMII datasets. 
The classification effect of the GCMD network model is 
shown in Tables 3–6.

Evaluation and validation of GCMD network using 
SBSDA and MFS CapsuleGAN augmented dataset. AUC 
value is a probability value. When a positive sample and 
a negative sample are randomly selected, the probability 
that the current classification algorithm ranks the positive 
sample in front of the negative sample according to the 
calculated score value is the AUC value. The larger the 
AUC value is, the more likely the current classification 
algorithm is to rank the positive samples in front of the 
negative ones to better classify them.

Fig. 16 GCMD evaluates validation accuracy (augmented dataset)

(a)

(b)

Fig. 15 (a) Accuracy of GCMD model after training with datasets of 
different sampling frequencies, (b) Influence of different activation 

functions on GCMD network
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This task is evaluated with the area under the receiver 
operating characteristic (ROC) curve (AUC) and the par-
tial-AUC (pAUC). The pAUC is an AUC calculated from 
a portion of the ROC curve over the pre-specified range of 
interest. In our metric, the pAUC is calculated as the AUC 
over a low false-positive rate (FPR).

From the experimental results in Tables 3–6, it is not 
difficult to see that for the ToyADMOS dataset, the recog-
nition accuracy of the MFS CapsuleGAN method is 0.123 
higher than that of SBSDA in model performance, and that 
of the MIMII data set is 0.237 higher.

For the generator generation effect of MFS-CapsuleGAN, 
it is a problem to verify whether the sample data generated 
by data augmentation is qualified. Sound is not as intuitive 
as the image and video. In the actual analysis, the wave-
form and spectrum can be shown. It  is difficult to detect 
the small change in that waveform or the spectrum by our 
vision. In addition to subjective analysis of human hearing, 
this paper builds an end-to-end CapsuleGAN data augmen-
tation system, synthesizes waveform signals through the 
inverse estimation algorithm of audio signals, and judges 
the existence of fault signals through spectral envelope 
analysis. Compared with the intuition of the image, the 
augmented data generated in the form of log Mel spectro-
gram is difficult to visually verify the proximity between 
the data and the spectral features of the real fault signal 
during the verification, as shown in Fig. 17.

At the same time, through comparative analysis with 
the original data, the similarity of envelope spectrum fail-
ure frequency was analyzed intuitively, and the genera-
tion effect of MFS-CapsuleGAN was judged subjectively, 
as shown in Fig. 18.

In addition, this paper proposes an indirect detection 
method to test the similarity between the false data gener-
ated by MFS-CapsuleGAN and the real data. To solve this 
problem, we tested the similarity between fake data and 
real data by indirect detection. The normal or abnormal 
sound data of the washing machine-generated by MFS-
CapsuleGAN is made into a training set, while the orig-
inal data is used as the testing set. Using this data set to 
train the CNN network, the average test accuracy was 0.83. 
This indicates that the fake sample data generated by MFS-
CapsuleGAN has obtained most features of the real sample 
data, and is very similar to the real sample to a large extent, 
but somewhat different. These differences are just a reflec-
tion of the diversity of data, with unknown samples.

The effectiveness of the MFS-CapsuleGANs audio data 
augmentation proposed in this paper is verified by the data 
augmentation experiment of the generation countermeasure 
network. Through the analysis of the experimental results, 
MFS-CapsuleGAN can improve the generalization ability 
of the GCMD model much more than the original data set.

5.3 Analysis and results
To verify the superiority of the selected convolutional 
neural network model in the classification performance of 
abnormal sound data of washing machines, we compared 
several representative neural network classifiers to con-
firm the classification performance of the convolutional 
neural network.

Table 3 ToyADMOS: The AUC and pAUC on the evaluated dataset 
(SBSDA augmented)

Machine 
ID AUC (Ave.) AUC (Std.) pAUC (Ave.) pAUC (Std.)

1 81.46% 1.03% 66.30% 0.94%

2 84.67% 0.59% 76.72% 0.92%

3 66.60% 1.09% 56.32% 0.38%

4 84.93% 1.88% 68.86% 2.44%

Average 79.42% 1.15% 67.05% 1.17%

Table 4 ToyADMOS: The AUC and pAUC on the evaluated dataset 
(MFS-CapsuleGAN augmented)

Machine 
ID AUC (Ave.) AUC (Std.) Pauc (Ave.) pAUC (Std.)

1 89.93% 1.05% 65.15% 1.02%

2 92.22% 1.77% 79.72% 1.41%

3 94.30% 1.02% 86.21% 0.97%

4 90.45% 0.99% 98.97% 2.33%

Average 91.73% 1.21% 82.51% 1.43%

Table 5 MIMII: The AUC and pAUC on the evaluated dataset 
(SBSDA augmented)

Machine 
ID AUC (Ave.) AUC (Std.) pAUC (Ave.) pAUC (Std.)

0 55.31% 0.56% 65.33% 1.02%

2 72.30% 0.65% 58.81% 0.44%

4 60.98% 1.01% 60.33% 0.61%

6 72.21% 0.62% 52.47% 0.43%

Average 65.20% 0.71% 59.24% 0.63%

Table 6 MIMII: The AUC and pAUC on the evaluated dataset  
(MFS-CapsuleGAN augmented)

Machine 
ID AUC (Ave.) AUC (Std.) pAUC (Ave.) pAUC (Std.)

0 90.24% 0.53% 84.44% 1.72%

2 83.43% 0.29% 70.30% 0.84%

4 94.55% 0.62% 76.89% 0.67%

6 87.59% 1.44% 99.01% 1.03%

Average 88.95% 0.72% 82.66% 1.07%
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To obtain a relatively accurate classification accuracy, 
we adopted a ten-fold cross-validation method. All data-
sets were divided into 10  small blocks, 9 of which were 
randomly selected as training sets and the remaining small 
blocks as test sets. After ten times training and testing for 
GCMD, the average test accuracy is obtained, so that the 
model can obtain the best model parameters.

Six models were trained using the augmented dataset: 
GCMD, RNN, DNN, SVM, LSTM, and MLP. All six mod-
els are trained with the ten-fold cross-validation method. 
The purpose of using this method for verification is to 
reduce the contingency caused by the single division of the 
training set and the verification set. We make full use of the 
existing data sets to make multiple partitions, to avoid the 
selection of accidental hyperparameters and models that 

do not have generalization ability due to special partitions. 
Therefore, we use cross-validation to reduce contingency 
and improve generalization ability. We divide all the data 
into ten copies, and then use each copy as a validation set 
and the other as a training set for training and validation. 
In this process, the hyperparameters are kept consistent, 
and then the average training loss and average verification 
loss of 10 models are taken to measure the quality of the 
hyperparameters. Finally, after obtaining a satisfactory 
hyperparameter, all the data are used as the training set, 
and the model is obtained by training with the hyperpa-
rameter. The results of test accuracy are shown in Table 7. 
As can be seen, among all trained neural networks, the 
classification performance of GCMD is the best, and the 
classification accuracy of deep neural networks is above 

Fig. 18 Comparative analysis of envelope spectrum between the original data and the generated data

Fig. 17 Comparison of log Mel spectrum between the original data and the generated data



90|Yang et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(1), pp. 74–93, 2024

0.9. RNN and SVM have the worst classification perfor-
mance. The classification performance of DNN, LSTM, 
and MLP is quite consistent. Based on the test results, we 
determined to use GCMD as the binary classifier for the 
abnormal sound detection of washing machines.

As can be seen from Table 7, among all trained neu-
ral networks, convolutional neural networks have the best 
classification performance, and the classification accu-
racy of most neural networks is above 90%. This indi-
cates that the neural network method of deep learning has 
a significant effect on the recognition of foreign sounds in 
washing machines.

5.4 Verification of robustness
The model that is trained by the data set collected and pro-
duced from the production line has a general generaliza-
tion capability. The ambient noise is sometimes stronger 
when the actual detection is carried out on the produc-
tion line, which will affect the discrimination ability of 
the model. To detect the generalization ability of abnor-
mal sound recognition of home appliances in a real noisy 
environment for our training model, we added white noise 

to the sample signal before training. Adding noise to 
datasets can be used to improve the learning difficulty of 
neural networks and verify the robustness of the GCMD 
network [27]. It was found by experiment that the recog-
nition capability of the GCMD network decreased only by 
2.53 dB when the signal-to-noise ratio was around 10 dB, 
which indicates that the GCMD model still had a strong 
ability to generalize when added noise signals were strong.

Fig. 19 and Fig. 20 are sonograms obtained by adding 
a 10  dB signal-to-noise signal to a single normal sound 
sample and an abnormal sound sample. The blue wave-
form in the sonogram represents the time domain signal of 
the original data, and the orange waveform represents the 
time domain signal with noise.

As it can be seen that the noise signal has preserved the 
basic characteristics of the original data, but the local fea-
tures changed greatly, which result in the training difficulty 
of the network. This is done to allow the training set data 
to be closer to the sound data of a real scene, thereby train-
ing the network model with a better generalization ability.

We use the original data set, the data set with a sig-
nal-to-noise ratio of 10, and the augmented training set to 
train the GCMD. Table 8 shows the training results of the 
GCMD model for these several datasets. It can be seen that 
the test accuracy is 0.872 of GCMD trained by the origi-
nal dataset with noise. It is shown that the GCMD model 
has good noise robustness and overall classification per-
formance. The model trained by an augmented training set 
has a higher generalization ability, which is close to 1. This 
shows that an augmented dataset of the abnormal sound of 
washing machines helps improve GCMD's performance.

Table 7 Cross-validation accuracy of each models

Models Accuracy

GCMD 0.989

RNN 0.687

DNN 0.992

SVM 0.681

LSTM 0.995

MLP 0.994

Fig. 19 Comparison of waveforms of normal data with and without noise
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6 Conclusions
In this paper, aiming at the phenomenon of low model 
accuracy and poor generalization ability in the mechani-
cal fault detection technology based on the deep learning 
method in the industrial field, we find that the mechani-
cal fault audio data shortage problem commonly exists in 
the neural network. In this paper, the problem of how to 
improve the performance of neural networks in mechan-
ical audio fault diagnosis is studied. In this paper, based 
on data augmentation technology, a model of mechanical 
fault sound diagnosis and recognition is proposed, which 
is a global average convolutional neural network GCMD 
applied to mechanical fault sound recognition. According 
to the remarkable feature extraction ability and translation 
invariance of CNN network architecture, we can learn the 
abnormal sound features of mechanical equipment in case 
of failure, to realize the purpose of equipment failure diag-
nosis. To solve the problem of data scarcity, the SBSDA 
data augmentation method is proposed. Based on the spec-
trum characteristics of log Mel and the theory of spectrum 
data augmentation technology, the original data is prelim-
inarily augmented by frame selection and repeated sam-
pling of the audio spectrum with constant or transform 
window size. The original log Mel spectrum of mechanical 
fault sound is applied to CapsuleGAN, and the fault audio 
data with the diversity of original data sample types are 
synthesized by generating the supervised learning mode 

of the confrontation generation of the confrontation net-
work. A kind of artificial neural network model MFS-
CapsuleGAN based on capsule generation countermeasure 
network (CapsuleGAN) is proposed to solve the imbalance 
of the data set and further improve the generalization abil-
ity of GCMD. Three kinds of augmented datasets of open 
mechanical fault audio data sets are generated in the exper-
iment, and the accuracy is evaluated on the augmented data 
set by training GCMD neural network. Compared with the 
original data set, the accuracy of the model is improved by 
12.3% ~ 23.7%, and the performance improvement effect 
is significant, which proves the feasibility and effective-
ness of the MFS-CapsuleGAN data augmentation effect. 
In  addition, the generalization ability of the GCMD net-
work is tested by adding the data set of the background 
noise signal. The fluctuation range is within 0.117, which 
shows that the GCMD network has good robustness. 
All the experiments show that the augmented data set can 
improve the generalization ability of the model compared 
with the original data set. Through this method, the deep 
learning method is used to realize the different sound rec-
ognition of mechanical products, and it is possible to estab-
lish a perfect automatic detection production line.
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Fig. 20 Comparison of waveforms with and without noise in abnormal data

Table 8 Cross-validation accuracy for each dataset of GCMD

Dataset Accuracy

Original dataset 0.703

Original dataset with SNR 0.872

Augmented assessment set 0.989
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