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Abstract

This paper introduces a novel method for controlling a surface permanent magnet synchronous motor (SPMSM) during demagnetization 

fault conditions. The proposed fault-tolerant control (FTC) system incorporates a combination of a fuzzy extended state observer (FESO) 

based on an interval type 2 fuzzy logic controller (IT2FLC) and second-order sliding mode control (SOSMC) utilizing the super-twisting 

algorithm. The FESO aims to identify and eliminate demagnetization faults through reconstruction control. The FTC system enhances 

the dynamic performance and disturbance rejection of the SPMSM, providing a robust solution in the event of a demagnetization fault.
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1 Introduction
The use of field-oriented control is on the rise to enhance the 
dynamic performance of permanent magnet synchronous 
motors (PMSMs), especially those with simple construc-
tion, such as surface permanent magnet synchronous motors 
(SPMSMs). Various applications commonly use SPMSMs, 
including electric vehicles, aircraft, and trucks [1]. It is 
essential to provide adequate support for these systems and 
ensure they can still function even in the event of faults.

SPMSMs are susceptible to demagnetization faults, 
which can significantly reduce their efficiency as they are 
composed of permanent magnets. Demagnetization faults 
can arise due to environmental factors and electromag-
netic fields. According to [2], an operational environment 
with a high temperature of 100 °C can result in a 20% 
reduction in permanent magnet flux.

A design technique named fault-tolerant control 
(FTC) has recently been widely used for allowing sys-
tems like motors to continue operating in the event of 
a fault. Numerous effective FTC algorithms have recently 
emerged in the literature to improve the performance of 
motor systems under fault conditions. In [3], researchers 
developed a fault-tolerant control for motor systems using 
a first-order sliding mode observer (SMO) that detects and 

eliminates faults in real time. Another design in [4] incor-
porates the estimation of the effect of demagnetization 
faults in a permanent magnet synchronous motor (PMSM) 
by using an improved SMO algorithm based on equiva-
lent input disturbance (EID). However, the main challenge 
with SMO algorithms is the requirement of bounded and 
differentiable uncertainties. 

Han [5] proposed the extended state observer (ESO) 
approach to address disturbances and unknown terms as 
extra states in the system to be estimated. This method has 
proven effective in various fields, including load torque iden-
tification and fault-tolerant controls. In [6], authors proposed 
a fault-tolerant control based on extended state observers to 
handle open circuit faults in the switch of the five-leg con-
verter and the phase of 5-phase permanent magnet synchro-
nous generators, aiming to maintain system stability and 
robustness despite faults. In [7], a control technique com-
bines sliding-mode control (SMC) and an extended state 
observer (ESO) to achieve fast speed-tracking performance 
while considering all disturbances, including load torque.

This paper presents a proposed strategy for the FTC 
that combines the second-order sliding mode control 
(SOSMC) discussed in [8–10] with a fuzzy extended state 
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observer (FESO) incorporating an interval type 2 fuzzy 
logic controller (IT2FLC) [11]. This FTC method aims to 
ensure the robust operation of a surface permanent magnet 
synchronous motor (SPMSM) despite a permanent magnet 
demagnetization fault. The paper highlights the following 
key contributions:

• A speed and dq-frame current controller for PMSMs 
based on a SOSMC, aiming to improve the control 
performance and stability of the PMSM system.

• The combination of speed and current controllers 
with an observer based on the IT2FLC provides 
a robust system for addressing comprehensive dis-
turbances that affect the performance of the SPMSM, 
such as parameter variations and load torque. This 
approach offers enhanced control and stability, 
ensuring the effectiveness of the system.

• Demonstrating the efficiency and robust dynamic 
performance of the speed and current controllers 
through a FTC approach based on the FESO, specif-
ically in handling demagnetization fault.

The organization of the remaining five sections is as 
follows. Section 2 concisely gives the SPMSM model 
and illustrates how it adapts when disturbances occur. 
Section 3 introduces the SOSMC and the stability proof. 
Section 4 describes the SPMSM model with demagnetiza-
tion fault and presents the proposed FTC, designed based 
on a FESO. Finally, Sections 5 and 6 present the simula-
tion results and the conclusion of the paper, respectively.

2 SPMSM modeling
The PMSM stator voltage equations are as follows (Eq. (1)):
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The stator flux equations are as follows (Eq. (2)):
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The PMSM produces torque according to Eq. (3):
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With SPMSM machine attributes ( Ld = Lq = Ls ), the sim-
plified expression is as follows (Eq. (4)):
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To facilitate the development of control laws for the 
SPMSM and enhance understanding of its dq-frame 
dynamic model, the expressions of the substitution of the 
stator flux equations (Eq. (2)) into the voltage equations 
(Eq. (1)) are as follows (Eq. (5)):
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The components of the SPMSM model (Eq. (5)) express 
consistently with the machine parameters as follows:
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where Vd , Vq, id and iq represent the stator voltages and 
currents of dq-frame, respectively; Ls is the inductance of 
dq-frame, respectively; Rs is the stator resistance; Φf is the 
rotor flux; Ω is the rotor speed; J is the moment of iner-
tia; f denote friction coefficient and Tr represents the load 
torque; np is the pole pairs number of the motor.

Considering the load disturbances and perturbation 
parameters, the SPMSM model (Eq. (5)) can be expressed 
as follows (Eq. (6)):

d
dt

c i n i V d

d
dt

c i n i c V d

d
dt

c

id
d p q d id

iq
q p d q iq

� � � �

� � � � �

�

1

1 2

�

� �

�

�

�

33 1
i dq � �

�

�

�
�
�

�

�
�
� � � �

,  (6)

where did , diq and dΩ are the lumped disturbances given as 
follows (Eq. (7)):
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The components of the lumped disturbances (did , diq , 
dΩ ) represent as follows:
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where ∆Rs, ∆Ls, ∆J and ∆f represents the variations in 
motor parameter values.

3 Second-order sliding mode control
The definition of the SOSMC law, based on a super-twist-
ing algorithm, is as follows [12] (Eq. (8)):
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where s is the sliding surface; k1 and k2 are positive con-
stants; ρ1 and ρ2 are perturbation terms.

We define the following sliding surfaces (Eq. (9)):
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The SOSMC laws for the speed and currents in the 
dq-frame controllers are given below (Eqs. (10) to (12)):
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3.1 Stability analysis
The Lyapunov function is defined as follows [12] (Eq. (13)):
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The proposed Lyapunov function can also be expressed 
in quadratic form as follows (Eq. (14)):
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Taking the time derivative of Eq. (14) yields:
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The perturbation terms are as follows: ρ1Ω = dΩ , ρ1q = diq , 
ρ1d = did . It should be noted that the second terms, ρ2Ω , ρ2q 
and ρ2d , do not exist and are equal to zero. The perturba-
tion terms are globally bounded, as follows (Eq. (16)):
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where δΩ , δq and δd are bounding known positive constants. 
To ensure the stability of the system (V̇ < 0), we must select 
control gains that satisfy the following conditions:
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3.2 Chattering attenuation
A significant limitation of the sliding mode technique is 
the occurrence of chattering, which can be attributed to 
using the sign function. Experts suggest substituting the 
sign function with the sigmoid function to reduce chatter-
ing. The sigmoid function is given by [13]:

˙

˙
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where m is a small positive value, such as: |s| > > m.

4 FTC based on FESO
The proposed FTC of the SPMSM utilizes fuzzy extended 
state observers for fault detection and reconstruction, 
as illustrated in Fig. 1.

4.1 SPMSM model in demagnetization faulty condition
External factors, such as elevated temperatures, can induce 
the permanent loss of magnetic properties in magnets. 
In the event of a demagnetization fault, the amplitude and 
direction of the flux linkage in permanent magnets will 
vary. These variations are illustrated in Fig. 2, where the 
flux linkage amplitude transitions from Φf to Φr, accompa-
nied by a deviation angle represented as γ.

In the case that the permanent magnets demagnetiza-
tion fault occurs, the rotor flux linkage will become:
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where ΔΦrd = Φr cos γ − Φf  and ΔΦrd = Φr sin γ represent 
perturbation values for flux linkage components along the 
dq-frame.

The electromagnetic torque Eq. (4) will become as fol-
lows in Eq. (20):
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Substituting Eq. (19) into Eq. (1) gives the state equa-
tion for a demagnetized SPMSM:
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4.2 Fuzzy ESO
To design an ESO observer for the SPMSM, it is necessary 
to establish a model of the motor. It can be defined using 
the state equations shown below:



x A Bu t D
y C
� � � � � � � � �
� � �

�
�
�

��

x t f t
x t

.  (22)

According to the state Eq. (22), the traditional ESO of 
the SPMSM is designed as follows:
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where x̂(t ), ŷ(t ) and f̂ (t ) are the estimates of x(t ), y(t ) and 
f(t ), respectively; h is the observer gain matrix.

The following extended state-space model can describe 
the stator current of SPMSM:
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Fig. 1 Structural diagram of the proposed FTC

Fig. 2 Variation of PMSM flux-linkage
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where x(t ) = [ id iq  fd  fq ]
T is the state vector; u(t ) = [Vd Vq ]

T 

is the control vector; y = [id iq ]
T is the output vector; 

f(t ) = [   fd  fq ]
T represents the demagnetization fault affect-

ing the SPMSM.
It is clear that system Eq. (24) has full rank and is 

observable. It is possible to get the equations of the fuzzy 
ESO for the currents as follows:
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where hd1, hd2, hq1 and hq2 are constants that are all positive; 
fd̂ and fq̂ are the estimates of fd and fq, respectively.

The extended state-space model for the speed of 
SPMSM can be expressed as:
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where x(t ) = [Ω  fΩ ]T is the state vector; u(t ) = iq is the 
input; y = Ω is the output; f  (t ) = fΩ denotes the total per-
turbation amount resulting from the load and demagneti-
zation fault.

The equation of the fuzzy ESO for the speed can be 
obtained by:
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where hΩ1 and hΩ2 are both positive constants.
The IT2FLC operates by using the error signal (id – îd, 

iq − îq, Ω − Ω) as its input and applying proportional, inte-
gral, and derivative control actions to produce the output 
as follows:
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where Kpd , Kpq and KpΩ are the gains of the proportional 
controller. Kid , Kiq and KiΩ are the gains of the integral con-
troller. Kdd , Kdq and KdΩ are the gains of the derivative con-
troller. φd , φq and φΩ are the outputs of the interval type 2 
fuzzy logic control given by Eq. (31).

As shown in Fig. 3, the input scaling factor (Ke ) is cho-
sen to normalize the input to the range of [−1, 1], which 
is the same range as the membership functions of the 
IT2FLC depicted in Fig. 4 [14].

The IT2FLC has the following rule structure [11]:

R A B ii i i: , , , ,if is then is� � �1 2 3 , (29)

where Bi are crisp outcomes, with the specific values of 
B1 = −1, B2 = 0 and B3 = 1. m1, m2 and m3 represent the 
height of the lower membership functions and are defined 
as follows:
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Therefore, the only parameter that needs to be adjusted 
in IT2FLC is α [11].

The formula for the fuzzy mapping of the single input 
IT2FLC, denoted as φ(σ), was presented in [11] and can be 
expressed as follows:
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Fig. 3 Structure of the IT2FLC

Fig. 4 Membership functions
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� � � �� � � � �k ,  (31)

where k(σ) is the nonlinear gain, which is defined as 
follows:
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4.3 Reconstruction control
The proposed fault-tolerant control uses new control laws 
shown as follows:
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where iqref  , Vqref  and Vdref  are the SOSMC control laws given 
by Eq. (10), Eq. (11), and Eq. (12); respectively, the addi-
tional control laws îfq , V̂fd and V̂fq are determined by a fuzzy 
ESO that estimates the impact of the demagnetization 
fault and are defined as:
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where  fΩ̂ ,  fd̂  and   fq̂ are the fault estimates computed through 
Eq. (27) and Eq. (25).

5 Simulation results
A simulation model for a SPMSM was implemented and 
tested using MATLAB/Simulink [15]. The model utilizes 
the structural diagram of the proposed FTC (Fig. 1) with 
idref = 0. The parameters for the SPMSM drive are outlined 
in Table 1.

Processor-in-the-loop (PIL) experimentation is a useful 
way to evaluate the control system on hardware, as it allows 
the control algorithm to be considered in real-time. The con-
troller validated through PIL testing was equally efficient 
when tested on actual hardware [16]. To verify the proposed 
control, a PIL experiment was conducted, and its setup is 
shown in Fig. 5. The Simulink model had a fixed step size of 
1 × 10−6 s and was run using Simulink rapid prototyping on 
a dual-core DSP board (TMS320F28069M). The SPMSM 
and inverter systems were not physically present but simu-
lated in Simulink, with the controller operating in real-time.

A simulation test was conducted to assess the perfor-
mance of the proposed control strategy for SPMSM, and 
the results were compared with PI control and conven-
tional SMC. The conventional SMC employed the same 
sliding surfaces as the SOSMC design, but it also needed 
to estimate the load torque by using Eq. (35):

T Sr � � �� �
1

0.  (35)

Table 2 summarizes the parameters of the controllers 
and observers.

5.1 SPMSM under healthy conditions
The efficacy of the SOSMC was tested through an exper-
iment conducted on a SPMSM under normal operating 
conditions, with variations in speed and torque. Fig. 6(a) 
presents the variation in load torque, which began with 
a speed reference of 1500 rpm and a rated load torque of 
28.4 Nm. At 0.4 s, the motor experienced a sudden increase 
in torque to 38.4 Nm before returning to its initial value of 
28.4 Nm at 0.8 s. Fig. 6(b) presents the variation in speed 

̂
̂
̂

̂ ̂

̂ ̂

̂ ̂

̂̇

Table 1 Parameters of the SPMSM drive

Parameter Value

Rated output power (Prated ) 4.4 kW

Rated speed (nrated ) 1500 rpm

Rated torque (Trated ) 28.4 Nm

Rated current ( Irated ) 16.5 A

Rated voltage (Vrated ) 400 V

Pole pairs (np ) 4

Stator resistance ( Rs ) 0.25 Ohm

Stator inductance ( Ls ) 4.8 mH

PM flux-linkage (ϕf ) 0.32 Wb

Inertia constant ( J  ) 0.00774 Kg × m2

Viscous friction (   f   ) 0.0089 Kg × m2/s

DSP board 
TMS320F28069M

Launchpad

Inverter

SPMSM 
Model

PIL Block
(Controller)

DSP board 
TMS320F28069M

Launchpad

Inverter

SPMSM 
Model

PIL Block
(Controller)

Fig. 5 Experimental DSP board
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reference, which started at 750 rpm at time 0 s and reached 
its nominal value of 1500 rpm at 0.5 s.

Fig. 6 compares the speed responses to sudden changes 
in load torque and speed reference among three control 
techniques: PI control, traditional SMC, and SOSMC. 
The comparison highlights that the speed response of 
SOSMC demonstrated the lowest amount of oscilla-
tion and fluctuation in the speed response compared to 
the other two methods. Furthermore, the response of PI 
control was slower in tracking the reference speed com-
pared to SMC and SOSMC. Conversely, SOSMC achieved 
a quicker settling time to attain a steady state, less over-
shooting, and without requiring load torque estimation.

5.2 SPMSM under demagnetization fault
The simulation of permanent-magnet demagnetization 
was carried out by altering the permanent-magnet ampli-
tude (Φr ) and the deviation angle ( γ ). As illustrated in 
Fig. 7, the reference speed was 1500 rpm, while the load 
torque was 20 Nm. The amplitude of the permanent-mag-
net flux was 0.32 Wb at 0 s and 0.25 Wb at 0.5 s, while 
the deviation angle was 0 degrees at 0 s and 60 degrees at 

Table 2 Parameters of the controllers and observers

Speed q-axis current d-axis current

k1Ω = 80 k1q = 100 100

k2Ω = 600 k2q = 600 600

hΩ1 = 500 hq1 = 800 hd1 = 1000

hΩ2 = 90000 hq2 = 640000 hd2 = 500000

Ke = 1/11 Ke = 1/95 Ke = 1/13

KpΩ = 11 Kpq = 95 Kpd = 13

KiΩ = 9 Kiq = 85 Kid = 8

KdΩ = 6 Kdq = 70 Kdd = 9

αp = 0.62 αp = 0.5 αp = 0.25

αi = 0.075 αi = 0.9 αi = 0.5

αd = 0.62 αd = 0.5 αd = 0.5

Fig. 6 Speed performance under healthy conditions; (a) Variation in 
load torque; (b) Variation in speed reference

(a)

(b)

Fig. 7 Speed and torque performance under demagnetization fault; 
(a) Speed response; (b) Torque response

(a)

(b)
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0.3 s. The load torque changed from 20 Nm to 28.4 Nm at 
t = 1.5 s to evaluate the fault-tolerant control under demag-
netization fault.

Fig. 7 demonstrates that SOSMC remains powerful in 
both healthy and faulty conditions compared to PI control 
and traditional SMC. However, it still experiences fluctu-
ations during transitions when a fault occurs. By boost-
ing SOSMC with FESO, the performance of SOSMC in 
handling permanent magnet demagnetization faults is 
improved. This enhancement provides strong robustness 
and compensates for uncertainties and faults.

Figs. 8 and 9 compare the simulation results of the 
traditional ESO and the FESO regarding their ability to 
estimate fΩ, fd and fq values. The traditional ESO exhibits 
oscillatory behavior in its estimate, while the FESO pro-
duces a smoother estimate. This indicates that the FESO 
can generate more stable and reliable estimates than its 
conventional counterpart when a demagnetization fault 
occurs. This finding highlights the robustness and effec-
tiveness of the interval type 2 fuzzy logic-based approach 
in addressing the uncertainties and nonlinearities inherent 
in the system. Mean square error values for the estimation 
data in Figs. 8 and 9 are presented in Table 3.

6 Conclusion
This paper presented a FTC based on SOSMC with FESO 
for electric motor systems. The proposed control addressed 
the challenges of disturbances and failures in the SPMSM. 
The results showed that the proposed control performed 
well in the healthy mode, where SOSMC maintained smooth 

speed performance under various scenarios. Furthermore, 
the proposed FESO handled demagnetization faults effec-
tively, achieving a significant improvement over conven-
tional ESO approaches. In particular, the FESO reduced 
the mean square error by approximately 15% compared to 
the traditional ESO. Therefore, this FTC approach could 
be valuable for practical applications in various industries.

Table 3 Comparison between traditional ESO and FESO

ESO FESO

Mean square error

f ̂ Ω 300.8000 256.3508

f ̂ d 747.7654 655.8482

f ̂ q 771.2615 586.4111Fig. 8 The estimated value of fΩ

Fig. 9 The estimated values of fd and fq; (a) Actual value and estimation 
in d-axis; (b) Actual value and estimation in q-axis

(a)

(b)
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