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Abstract

Accurate estimation of battery metrics, such as state of health (SOH), is crucial for effective battery management systems (BMS) due to 

capacity degradation over time. This paper proposes a methodology to enhance battery capacity estimation accuracy by addressing 

uncertainties related to state of charge (SOC) estimation and measurement. The methodology employs the Neural Network Algorithm 

(NNA), an optimization algorithm inspired by artificial neural networks (ANNs). The NNA generates an initial population of pattern 

solutions and iteratively updates them using a weight matrix, bias operator, and transfer function operator. By combining the 

advantages of ANNs and optimization techniques, the NNA aims to find an optimal solution considering interdependent variables 

and incorporating global and local feedbacks. Leveraging the capabilities of the NNA, our objective is to identify the candidate that 

minimizes a specified cost function, ensuring up-to-date cell capacity through a memory forgetting factor. The algorithm's precision 

was validated using NASA's Prognostic Data, demonstrating outstanding performance by surpassing two aggressive algorithms in 

terms of accuracy. In the most severe case scenario, the algorithm achieved a peak error of less than 0.4%. Furthermore, the algorithm 

consistently demonstrated predictive performance measures that were superior to those of the compared algorithms.
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1 Introduction
Lithium batteries are highly valued for their exceptional 
efficiency, energy density, and extended lifespan, making 
them an ideal choice for many applications. A well-func-
tioning Battery Management System (BMS) plays a vital 
role in evaluating the battery's State of Health (SOH), 
State of Charge (SOC), and Remaining Useful Life (RLU) 
to ensure the battery's safety and reliability. Real-time 
and accurate estimation of these parameters is of utmost 
importance. The accuracy of capacity estimation signifi-
cantly impacts SOC, SOH, and SOE, as incorrect esti-
mates can lead to critical issues like battery pack failure or 
inaccurate autonomy estimation. Thus, ensuring efficient 
capacity estimation is imperative [1].

Various techniques, including coulombic counting, 
incremental capacity analysis (ICA), differential voltage 
analysis (DVA), and electrochemical impedance spectros-
copy (EIS), can be employed for estimating battery capac-
ity [2–17]. However, implementing these techniques in 

online applications presents challenges due to the need for 
specific charge/discharge profiles to replicate the equilib-
rium state. Additionally, noise may be introduced during 
the computation process, particularly when dealing with 
flat battery curves. Typically, a suitable filter is employed 
to mitigate this issue, making these techniques more suit-
able for offline estimation.

To overcome these limitations, it is essential to develop 
approaches that can effectively utilize sensor data obtained 
from a battery in operation without disrupting its regular 
functioning. Leveraging time series data from charge-dis-
charge curves during normal battery operation provides 
optimal inputs for estimation techniques [18].

We have identified various approaches for estimat-
ing battery capacity in online scenarios, which can be 
classified into two main categories: model-based tech-
niques and data-driven methods. In the model-based cat-
egory, capacity estimation is accomplished by employing 
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electrochemical or empirical models. Data-driven tech-
niques, on the other hand, utilize kernel-based methods or 
neural network (NN) approaches to estimate the capacity.

Model-based techniques involve the utilization of elec-
trochemical or empirical models in conjunction with data 
to evaluate the battery's capacity. The widely employed 
models in this context are the electrochemical (EM) model 
and the equivalent circuit model (ECM). The EM model 
describes the battery's behavior using partial differen-
tial equations [19–21], while the ECM [22–24] represents 
the battery using electrical components such as capacity, 
resistance, and voltage source.

Data-based approaches serve as an alternative to mod-
el-based techniques, addressing the limitations associated 
with accurate cell models and the availability of extensive 
data. These approaches employ machine learning methods 
to capture the complex relationship between cell capacity 
and measurements such as voltage and current. Within the 
data-based category, different methodologies, including 
kernel methods [25–27] and neural network methods [24, 
28, 29], can be utilized to achieve accurate capacity esti-
mation without relying on battery operating theory.

In recent research, a kernel-based approach combined 
with EMD (empirical mode decomposition) denoiser and 
MKRVM (multiple kernel relevance vector machine) tech-
niques was employed to estimate battery capacity [25]. 
The EMD was utilized to preprocess the capacity mea-
surement data and generate noise-free capacity records. 
The MKRVM model, constructed using the noiseless 
capacity data, preserved its diversity through a multiple 
kernel heterogeneous learning method. The sparse weights 
of the kernel basis functions were obtained through parti-
cle swarm optimization.

Another study introduced the use of Gaussian process 
regression for capacity estimation, relying on voltage mea-
surements during short galvanic operation periods  [26]. 
This approach eliminated the need for interpreting volt-
age-time records as incremental capacity or differential 
voltage curves, avoiding noise amplification through dif-
ferentiation and the requirement for voltage range mea-
surements to cover the peaks of IC/DV curves.

Deep neural networks (DNN), particularly those employ-
ing ensemble and transfer learning, have also been employed 
to assess battery capacity. In a recent study, a DCNN (deep 
convolutional neural network) was developed using the con-
cepts of ensemble and transfer learning [30]. Transfer learn-
ing allowed the transfer of knowledge from a source task 
to enhance performance in a related but distinct task, while 

ensemble-based learning ensured robustness by blending 
outputs from various learning algorithms. Additionally, 
a  one-dimensional convolutional neural network was uti-
lized in another method, where random segments of charge 
waveforms were used as inputs for capacity estimation [31]. 
To enhance the methodology's robustness and accuracy, 
a  linear decreasing particle swarm weighted optimization 
was applied to optimize the neural network's parameters.

Data-based methods face limitations in terms of the 
need for abundant and accurate data, as well as the time 
required for training [1].

Joint estimation techniques have been employed to 
overcome these limitations and achieve precise capacity 
estimations. However, these methods heavily depend on 
the accuracy of the underlying model and may encounter 
convergence or instability issues due to the interconnected 
nature of capacity and SOC. Several recent studies have 
addressed these challenges:

One study [32] proposed a multi-step model fusion algo-
rithm for co-estimating capacity and SOC. The algorithm 
utilized the covariance and mean of model errors at dif-
ferent levels of degradation to compute weights and estab-
lish a fusion model with stable parameters. Additionally, 
a proportional-integral observer incorporated a forward 
capacity gain to enhance convergence speed. The resulting 
fusion method integrated multistep modeling and a  pro-
portional-integral-differential observer for SOC and capac-
itance co-estimation. In another study [33], a second-order 
equivalent circuit model (ECM) combined with the square 
root cubature Kalman filter (SRCKF) was employed to esti-
mate SOC, considering capacity degradation and parame-
ter variations. The capacity was determined using a genetic 
approach. An enhanced adaptive extended Kalman filter 
(AEKF) was proposed in [34] to achieve co-estimation of 
SOC and battery capacity. The  online open circuit volt-
age, detected using the forgetting factor recursive least 
squares (FFRLS), was considered as an observer state 
for merging SOC and capacity in the filter. Additionally, 
an OCV-SOC-temperature relationship was developed to 
improve the AEKF's adaptability to temperature varia-
tions. Reference [35] presented a co-estimation method for 
battery capacity and SOC. A new capacity health indica-
tor, derived from lithium battery charge data, was utilized 
in combination with a least square support vector machine 
(LSSVM) for capacity evaluation. The obtained outcomes 
were then used as inputs for SOC estimation. To address 
dependency loss in recurrent neural networks (RNN), 
a moving window technique was employed.
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1.1. Paper objective
The main objective of this work is to enhance battery 
capacity estimation accuracy by addressing measurement 
noises and errors in SOC prediction. It is crucial to note 
that our focus is not on proposing a specific SOC estima-
tion algorithm, but rather on introducing an independent 
methodology for estimating battery capacity that avoids 
circular dependencies with SOC. Traditional methods like 
Coulomb counting, which rely on an accurate total capac-
ity estimate for precise SOC estimation, can introduce 
unstable dependencies when used in conjunction with our 
approach. Instead, we suggest SOC estimation techniques 
that solely rely on voltage measurements.

One recommended approach is to use Kalman fil-
ter-based methods, particularly sigma-point Kalman fil-
ters (SPKF) as mentioned in reference [36]. These meth-
ods effectively combine current and voltage data and are 
less susceptible to errors in capacity estimation, resulting 
in accurate SOC estimates. Integrating the nominal capac-
ity as a fixed constant within the SPKF further enhances 
the reliability of SOC estimates.

For capacity estimation, our goal is to employ a recursive 
approach that directly utilizes estimated SOC and/or mea-
sured quantities (voltage/current) while minimizing data 
volume requirements and avoiding the need for a detailed 
cell model. Heavy computations are also reduced to mini-
mize memory and computational demands.

In this particular context, we introduce a fresh approach 
centered around the Neural Network Algorithm (NNA), 
which draws inspiration from artificial neural networks 
(ANNs). The NNA operates by generating an initial set of 
pattern solutions and subsequently refining them iteratively 
using a weight matrix, bias operator, and transfer function 
operator. By harnessing the strengths of ANNs and optimi-
zation techniques, the NNA endeavors to discover an opti-
mal solution, taking into account the interconnected vari-
ables and incorporating both global and local feedback. 
Utilizing the capabilities of the NNA, our primary goal is 
to identify the most suitable candidate that minimizes a pre-
defined cost function, while ensuring current cell capacity 
through the utilization of a memory forgetting factor.

This paper makes significant contributions, which can 
be summarized as follows:

•	 A novel framework for recursive online battery 
capacity estimation based on the Neural Network 
Algorithm (NNA) is introduced. The evaluation was 
performed using datasets from NASA that included 

tests conducted on Samsung (INR 18650) batteries. 
The study demonstrates the accuracy and robustness 
of the NNA method, representing one of the ini-
tial attempts to estimate battery capacity using this 
approach.

•	 The proposed technique addresses various sources 
of capacity error, including measurement and esti-
mation noise.

•	 To evaluate the performance of the proposed 
approach, a comparison is made with other recur-
sive techniques such as Total Least Squares (TLS), 
and the Approximate Weighted Total Least Squares 
(AWTLS).

This research paper is structured as follows: Section 2 
offers a thorough formulation of the capacity assessment 
problem. Section 3 introduces the novel NNA-based 
framework. Section 4 provides in-depth details on the 
implementation configuration, analysis, findings, and dis-
cussion of the NASA aging battery data. Lastly, Section 5 
summarizes the key findings and provides concluding 
remarks.

2 Problem definition
2.1 Problem definition
The expression for coulomb counting is as follows [36, 37]:

SOC SOCt
C

i t t
t

t

2 1

1

1

2� � � � � � � �� � . 	 (1)

In the provided context, the variables used are as fol-
lows: SOC represents the State of Charge, C represents 
the battery capacity, and i(t) represents the battery current. 
Furthermore, the symbol η denotes the efficiency factor.

By rearranging the terms of Eq. (1), we can observe a lin-
ear relationship expressed as y = C. x in Eq. (2). This lin-
ear relationship allows us to estimate the battery capacity C 
using a standard linear regression approach, assuming we 
have knowledge of the y and x values. However, a challenge 
arises due to the presence of noise in both the x-axis (SOC 
difference) and the y-axis (cumulated current). Consequently, 
Eq. (2) is modified to (y − ∆y) = C (x − ∆x) [36, 37].
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To address the noise in the y and x axes, researchers 
in  [36,  37] have explored the least squares technique for 
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predicting battery capacity. They propose four algorithms: 
AWTLS, WTLS, WLS, and TLS. To derive the formulas for 
these methods, they adopt the loss function expressed as:

F
y C x
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N
j h j

yj xj h
loss
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� � ��

�
1

2

2 2 2� �
. 	 (3)

The estimated battery capacity is represented by Ch, 
with xj indicating the estimated SOC during the time 
interval [t1  −  t2], and yj representing the accumulated amp-
hours over the same period. The variances on the y and x 
axes are denoted as (σyj )

2 and (σxj )
2, respectively.

In the study conducted by the authors [36, 37], they 
developed four recursive techniques to predict the total 
battery capacity using Eq. (3). Among these techniques, 
the AWTLS method was identified as the most accurate, 
yielding favorable results. The methods were derived with 
certain considerations, such as applying different weight-
ings to xj and Xj compared to yj and Yj (where Yj and Xj 
are points on the line Yj = Ch Xj ). Moreover, the methods 
ensured that the line connecting the data points (Yj, Xj ) 
and (xj, yj ) was perpendicular to the line Yj = Ch Xj . Further 
details can be found in the referenced work [36, 37].

In this study, the NNA algorithm is utilized to mini-
mize Eq. (3) without resorting to any approximations. 
As an optimizer, the algorithm requires the definition of 
an objective function. In line with previous work [36, 37], 
we employ the same loss function Eq. (3). The NNA algo-
rithm aims to minimize this function while considering the 
following constraints: Clow and Chigh, which represent 
the minimum and maximum capacity values, respectively.

C C Chlow high
< < 	 (4)

The subsequent section provides a detailed description 
of the NNA algorithm.

3 Neural network algorithm NNA
3.1 Basic idea
Artificial neural networks (ANNs) are computational 
models that draw inspiration from the structure and func-
tional aspects of biological neural networks. ANNs con-
sist of interconnected computing units, known as artificial 
neurons, which mimic the behavior of biological nervous 
systems [38]. The network's overall function is largely 
determined by the connections between these units.

Based on their connectivity pattern or architecture, 
ANNs can be categorized into two main types: feedforward 

neural networks and recurrent networks [38]. Feedforward 
networks have a non-looping architecture, meaning they 
produce a single set of output values for a given input data-
set. They are often considered "static" networks. On the 
other hand, recurrent networks incorporate loops through 
feedback connections, introducing a time parameter to the 
model. This makes them "dynamic" neural networks.

Recurrent networks utilize two types of feedback con-
nections: local feedbacks and global feedbacks. Local 
feedbacks refer to links that transmit the output of a neu-
ron back to itself, while global feedbacks involve links 
that pass the output of a neuron to other neurons within the 
same or lower layers of the multilayer network architec-
ture. Fig. 1 illustrates typical architectures for both feed-
forward and recurrent neural networks. Additional details 
about ANNs are provided at each relevant step of the sug-
gested optimization method.

Fig. 1 ANNs with: (a) feed forward neural network, (b) recurrent neural 
networks

(a)

(b)
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3.2 NNA method
The NNA, similar to other metaheuristic optimization 
algorithms, begins with an initial population of pattern 
solutions. While ANNs are commonly used for predic-
tion, in the NNA, the best solution obtained at each itera-
tion is treated as the target data, aiming to minimize the 
error among the target and predicted pattern solutions. 
Inspired by ANNs, the NNA seeks to find an optimal solu-
tion through iterative updates. NNA is a new optimiza-
tion algorithm based on the neural network structure [38], 
incorporating specific mathematical formulations and 
concepts. Detailed descriptions and processes of the NNA 
can be found in the subsequent subsections.

3.2.1 Generating initial population
To address an optimization problem, it is often required to 
represent the decision variables as an array. Before delving 
into the processes of the Neural Network Algorithm (NNA), 
it is essential to introduce the key terminology associated 
with this algorithm. Every agent, which comprises a set 
of values for each optimization variable, is  referred to as 
a  "pattern solution" (e.g., in the Genetic Algorithm, this 
array is known as a "Chromosome"). For a D-dimensional 
optimization problem, a pattern solution is represented 
by a  1 × D array that serves as input data in the NNA. 
The array is formulated as:

Pattern solution � �� �x x xD1 2
, , , . 	 (5)

The population of pattern solutions in the optimiza-
tion algorithm is analogous to the input data in Artificial 
Neural Networks (ANNs). To initiate the optimization pro-
cess, a candidate matrix of pattern solutions with dimen-
sions Npop × D is generated. This matrix, denoted as X, 
is randomly generated within the lower and upper bounds 
defined by the decision maker for the problem. The matrix 
X can be expressed as follows, with the rows representing 
the population size (Npop ) and the columns representing 
the dimension size (D):
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Each decision variable value (x1, ..., xD ) can be expressed 
as a floating-point number (i.e., a real value) or can be 
defined within a set of discrete variables. The cost (or fit-
ness) of a pattern solution is determined by evaluating the 

cost function (or fitness function), denoted as CF, at the 
corresponding pattern solution. The cost function is cal-
culated as follows:

CF f x x x i Ni
i i

D
i� �� � � �

1 2
1 2, , , , , , , .

pop
	 (7)

In the objective function, denoted as f, the notations with 
a vector sign represent vector values (arrays), while the 
remaining notations and parameters are considered scalar 
values. After computing the cost function (fitness function) 
for all pattern solutions, the best pattern solution is deter-
mined as the target solution which is defined as the candi-
date solution with the minimum objective function value.

The Neural Network Algorithm (NNA) shares similar-
ities with ANNs, where Npop input data is associated with 
D dimension(s) and a single target data or response (refer 
to Fig. 1 (a)). Once the target solution ( X  Target ) is estab-
lished among the other pattern solutions, the correspond-
ing weight ( W  Target ), which belongs to the population of 
weights (weight matrix), needs to be selected.

3.2.2 Weight matrix
In Artificial Neural Networks (ANNs), the artificial neu-
rons or processing units can have multiple input paths 
analogous to dendrites. These units combine the weighted 
values of these input paths through a simple summation, 
resulting in an internal activity level for the unit [38]. 
The output path of a unit may be connected to the input 
path of other units through connection weights, repre-
senting the synaptic strength of biological neural connec-
tions. Each connection is assigned a weight (w) (Fig. 1 (b)), 
which modifies or weights the signals on the input lines 
before they are summed [38].

In ANNs, initial weights are typically assigned random 
numbers, and as the iteration progresses, these weights are 
updated based on the calculated network error. In the case 
of the Neural Network Algorithm (NNA), initial weights 
are defined according to Eq. (8):
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The weight matrix W, with dimensions Npop × Npop, 
is responsible for generating random numbers uniformly 
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distributed between zero and one during iterations, 
denoted by t. The first subscript of the weight indicates its 
association with a specific pattern solution (e.g., w2× cor-
responds to the second pattern solution), while the sec-
ond subscript is shared among the other pattern solutions 
(e.g., w23 is shared with the third pattern solution). Each 
pattern solution has its corresponding weight value, which 
contributes to generating a new candidate solution.

However, there is a constraint imposed on the weight 
values. This constraint ensures that the sum of weights 
for a particular pattern solution does not exceed one. 
Mathematically, this constraint can be defined as follows:

j

N

ijw t i N
�
� � � � � �
1

1 1 2

pop

pop
, , , , , 	 (9)

w U i j Nij � � � � �0 1 1 2, , , , , , .
pop

	 (10)

The weight values in the Neural Network Algorithm 
(NNA) are generated as uniformly distributed random 
numbers between zero and one, as shown in Eq. (10). 
However, there is a constraint that the sum of weight val-
ues for each pattern solution should not exceed one, as 
expressed in Eq. (9). This constraint is necessary to con-
trol the bias of movement and the generation of new pat-
tern solutions or individuals. Without this constraint, the 
weight values tend to grow disproportionately in a specific 
direction, leading the algorithm to get trapped in a local 
optimum point. The constraint plays a similar role to the 
pheromone parameter in ant colony optimization (ACO), 
where excessive pheromones on a route attract more ants. 
By enforcing this constraint, the NNA ensures that its 
agents have controlled movement with a mild bias, rang-
ing from zero to one.

Once the weight matrix (W  ) is formed, new pattern 
solutions (XNew) are calculated using an equation inspired 
by the weight summation technique employed in ANNs.

X Xj
i

N

ij it w t t j NNew

pop

pop
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�
�1 1 2

1

, , , , 	 (11)

X X Xi i it t i N�� � � �� � � � �1 1 1 2
New

pop
, , , , 	 (12)

In the NNA, where t represents the iteration index, 
the new pattern solution is updated for iteration t + 1 using 
Eq. (11) and Eq. (12). To illustrate this process, consider an 
example with six pattern solutions (equivalent to six neu-
rons or a population size of 6). The update of the first new 
pattern solution can be computed as follows:

X X X

X X
1 11 1 21 2

31 3 41 4

1
New t w t t w t t

w t t w t t

�� � � � � � � � � � � �
� � � � � � � � � �
�� � � � � � � � � �w t t w t t

51 5 61 6
X X .

	 (13)

Additionally, for enhanced elucidation, Fig. 2 illustrates 
the process by which the NNA generates its fresh set of 
pattern solutions for D dimension(s). Once the new pat-
tern solutions have been derived from the existing popu-
lation of patterns, the weight matrix should be adjusted to 
account for the optimal weight value known as the "tar-
get weight". The ensuing equations propose a method for 
updating the weight matrix.

W W

W W
i i

i

Updated

Target

pop

t t rand

t t i N

�� � � � � � �
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1 2

1 2, , ,

	 (14)

During the optimization process, it is crucial to ensure 
that the weight matrix consistently adheres to the con-
straints Eq. (9) and Eq. (10).

3.2.3 Bias operator
The dynamics of the neural networks model are signifi-
cantly influenced by the bias current. This current is intri-
cately linked to a surrounding condition, such as noise, 
in  order to ensure that the output of each neuron aligns 
with the surrounding condition [38]. In the NNA, the bias 
operator introduces noise by modifying a certain per-
centage of the pattern solutions in the new population of 
pattern solutions Xi

New t �� �� �1  and the updated weight 
matrix Wi

New t �� �� �1 .  Essentially, the bias operator in the 
NNA functions as a means of exploring the search space, 
similar to the mutation operator in the GA.

Fig. 2 Schematic view of generating new pattern solutions
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In essence, the bias operator prevents premature conver-
gence of the algorithm, particularly in the early iterations, 
by modifying several individuals within the population. 
It  introduces noise to the new pattern solutions (Eq. (11)) 
and the updated weight matrix (Eq. (14)). To achieve this, 
the provided Pseudo code in Algorithm 1 has been employed 
for the new pattern solutions and updated weight matrix.

Algorithm 1 displays the lower bound (LB) and upper 
bound (UB) of a given problem. It also showcases the 
modification factor (β), which determines the percentage 
of pattern solutions that need to be altered. Initially, β is 
set to 1, indicating a 100% chance of modifying all indi-
viduals in the population. However, its value is adaptively 
reduced at each iteration using a specific reduction formu-
lation, as suggested below:

� �t t t�� � � � �� � �1 0 99 1 2. , , , , ,Max
Iteration

	 (15)

� t t t�� � � � � �1 1 1 2
max

, , , , .

iteration

Iteration
Max 	 (16)

To achieve this objective, either Eq. (15) or Eq. (16), 
or any other reduction equation, can be employed. The bias 
operator is adaptively decreased to facilitate the algorithm 
in searching for an optimal solution closer to the target solu-
tion. Additionally, this reduction in β helps prevent drastic 
alterations in the pattern solutions during the final iterations.

3.2.4 Transfer function operator
In the NNA, the transfer function operator is responsible for 
updating and improving the new pattern solutions by mov-
ing them closer to the target solution. The transfer function 
operator, defined by Eq. (17), utilizes a constant value of 
two to search both before and after the target solution. This 
allows for exploration on both sides of the target solution. 
The collaboration between the bias and transfer function 
operators in the NNA is detailed in Algorithm 2, where the 

bias operator is more influential in generating new pattern 
solutions during early iterations, while the transfer function 
operator plays a significant role in later iterations.

X X X

X

X

i i i
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*

,

t t t

rand t

t i
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2

1 1

TF
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pop

	 (17)

Utilizing Eq. (13), the new pattern solution, X1 (t  + 1) is 
transferred from its current position to an updated posi-
tion, Xi

*
.t �� �1  The collaboration between the bias and 

transfer function (TF) operators in the NNA is elaborated 
in detail in Algorithm 2.

Algorithm 2 highlights that during early iterations, 
the  bias operator has a greater likelihood of generating 
new pattern solutions and discovering unvisited patterns, 
along with new weight values. However, as the iteration 
number increases, this probability diminishes, and the TF 
operator assumes a more significant role in the NNA, par-
ticularly during the final iterations.

3.2.5 Steps of the NNA
The NNA is inspired by ANNs, incorporating their advan-
tages. Fig. 3 provides an overview of the NNA's proce-
dures, while Fig. 4 illustrates its schematic representa-
tion. The NNA employs weight matrix, bias, and transfer 

Algorithm 1 Pseudocode for the generating the new pattern solutions

For i=1 to Npop 
If rand ≤ β

% -- Bias for New Pattern Solution---%
Nb= Round (D × β)
For j=1 to Nb

X Input (i,Integer rand [0,D])=LB+(UB-LB) × rand.
End For

% -- Bias for Updated Weight Matrix--%
Nwb= Round (Npop × β)
For j=1 to Nwb

X Input (j,Integer rand [0, Npop])=U(0,1).
End For

End If
End For

Algorithm 2 Pseudocode for Bias and TF combination

For i=1 to Npop 
If rand ≤ β

% -- Bias Operator--%
Bias Operator (refer to subsection 3.2.3)

Else (rand > β)
% -- Transfer Function (TF) Operator-%  

Apply Eq. (17)
End If

End For

Fig. 3 NNA process
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function operators denoted as "W", "Bias", and "TF" 
respectively. It features both self-feedback and feedback 
to other neurons, depicted by dashed and solid lines in 
Fig. 4. The weight matrix is modified iteratively during the 
4-optimization process. With interdependent current and 
next values of design variables, the NNA is categorized as 
a dynamic optimization model.

X Xi it t f t P t i N�� � � � � � �� � � �� , , , , ,1 2
pop

	 (18)

Eq. (18) represents the general trend of the NNA as 
a  dynamic optimization model, where Xi (t  + Δt ) and Xi (t ) 
denote the next and current locations of the i-th pattern solu-
tion, respectively. The NNA utilizes concepts and strategies 
from ANNs, making it an associated memory-based algo-
rithm that incorporates global and local feedbacks. The sum-
marized steps of the proposed method are as follow.

In the proposed algorithm, the first step involves 
determining the population size and maximum number 
of iterations. Subsequently, an initial population of pat-
tern solutions is generated randomly within a specified 
range. The cost of these initial solutions is then calculated. 
Following this, a weight matrix is generated randomly 
between zero and one, adhering to the given constraint. 
A target solution and its corresponding weight are set as 
the minimum value for minimization problems. New pat-
tern solutions are generated and updated using specific 
equations. The weight matrix is also updated based on the 
applied constraints. The algorithm checks the bias condi-
tion, performing the bias operator if the condition is met, 
or applying the transfer function operator if the condition 
is not met. The objective function value is calculated for 
all updated pattern solutions, and the target solution and 

its weight are updated accordingly. The value of a vari-
able is updated using a reduction formulation. The algo-
rithm checks a predefined stopping condition, and if satis-
fied, the process ends. Otherwise, it returns to Step 6 and 
repeats until the stopping criterion is met.

3.2.6 Proposed algorithm
Fig. 5 illustrates the proposed algorithm to estimate bat-
tery capacity with two main phases: data pre-processing 
and estimation.

In the first stage, data pre-processing focuses on elimi-
nating unreliable measurements and preparing the data for 
further analysis. Corrupted, incomplete, or overlapping 
data points are removed, and the remaining data is evenly 
spaced. SOC estimation, although not the primary focus 
of this study, is performed using an independent approach 
that avoids circular dependencies with SOC. Specifically, 
SOC estimation techniques based solely on voltage mea-
surements, such as sigma-point Kalman filters (SPKF), are 
utilized. SPKF effectively integrates current and voltage 
data to minimize capacity estimation errors and achieve 
accurate SOC estimation. Other approaches for SOC pre-
diction can also be explored (refer to [39, 40] for additional 
information). The result of this stage is the generation of 
the y and x vectors.

The second stage involves the utilization of the NNA algo-
rithm to estimate the total battery capacity. The NNA algo-
rithm is configured with appropriate parameters. For  each 

Fig. 4 Schematic depiction of NNA performance

Fig. 5 The proposed framework to estimate battery capacity
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new x (∆SOC) and y value, the NNA algorithm minimizes the 
loss function Eq. (3) to identify the optimal candidate (Ch ). 
The estimated capacity (Ces ) is computed by incorporating 
a forgetting factor ( γ) Eq. (19), typically ranging from 0.9 
to 1 [41–44], which facilitates rapid convergence of the NNA 
algorithm towards the true capacity value.

C k C C kes h es� � � � �� �� �� �� �1 1 	 (19)

4 Results and discussion
In Section 4, we conduct a comparative analysis between 
the Neural Network Algorithm (NNA) and two least 
squares approaches, namely Total Least Squares (TLS) 
and Adaptive Weighted Total Least Squares (AWTLS), 
as discussed in references [36, 37]. The specific parame-
ters employed in the NNA are outlined in Table 1, encom-
passing the boundaries for battery parameters such as the 
lower bound capacity (Clow ) and the higher bound capac-
ity (Chigh ), along with the forgetting factor γ.

The parameter "population size" (Np ) governs the num-
ber of individual solutions or eagles within each generation. 
A larger population size can promote exploration, but it may 
also lead to higher computational costs. The "Max_Iteration" 
parameter defines the maximum number of iterations or gen-
erations that the algorithm will execute before termination. 
γ denotes the forgetting factor employed in the algorithm.

4.1 NASA Battery aging dataset
For performance testing, the NASA PCoE dataset was 
used [45]. Intensified life tests were conducted on the 
SAMSUNG INR 18,650 lithium-ion cells. Four batter-
ies (No.18, No.7, No.6, and No.5) with a 2 Ah capacity 
underwent charging, discharging, and impedance mea-
surement. Charging involved CC (Constant Current) and 
CV (Constant Voltage) modes, while discharging was per-
formed at specific voltage levels. The tests ended when the 
batteries lost 30% of their initial capacity. Fig. 6 illustrates 
the capacity deterioration.

4.2 Discussion
We have employed both the least squares and NNA tech-
niques to predict the capacity of previously reported batter-
ies. The results are presented in Fig. 7, which displays the 
estimated capacity obtained from both algorithms, along 
with the true capacity. To emphasize the differences between 
the methods, we have included zoomed-in sections. Notably, 
the NNA approach exhibits slightly better accuracy com-
pared to the least squares method (TLS, and AWTLS).

Fig. 8 presents the APE (absolute percentage error) val-
ues Eq. (20), demonstrating that NNA outperforms the least 
squares approaches in terms of error. NNA achieved a max-
imum error of only 0.39% (B.07), while the AWTLS algo-
rithms had an APE that exceeds 0.9% in most cases. All meth-
ods yielded a low mean error that did not exceed 1%.

APE %� � � �
� � � � �

� �
100

C j C j
C j

es tr

tr
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Table 2 summarizes the max and mean error values. 
By examining the values and understanding their implica-
tions, we can understand why NNA is superior to AWTLS 
and TLS.

Examining Battery #B05, the NNA algorithm demon-
strates impressive accuracy with a maximum error of 
0.279391% and a mean error of 0.083373%. In contrast, 
both AWTLS and TLS algorithms exhibit higher errors, 
with AWTLS recording a maximum error of 0.899295% and 
a mean error of 0.554360%, and TLS showing a maximum 
error of 1.171136% and a mean error of 0.554362%. These 
results clearly indicate that the NNA algorithm provides 
superior estimation accuracy compared to the other methods.

Moving on to Battery #B06, we observe a similar 
trend. The NNA algorithm achieves a maximum error of 

Table 1 NNA algorithm parameters, battery bounds and the 
forgetting factor

Battery Population 
number ( Np )

Number of 
iterations 

Max_Iteration 
γ

C (Ah)

Clow Chigh

#B05 30 2 0.99 0 2.5

#B06 30 2 0.99 0 2.5

#B07 30 2 0.99 0 2.5

#B18 30 2 0.99 0 2.5

Fig. 6 Trajectories degeneration of battery capacity
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0.396103% and a mean error of 0.084259%, showcasing 
its precision in estimating battery capacity. Conversely, 
AWTLS and TLS algorithms display higher errors, with 
AWTLS recording a maximum error of 1.689592% and 
a mean error of 0.938652%, while TLS exhibits a maxi-
mum error of 2.182708% and a mean error of 0.938669%. 

Once again, the NNA algorithm outperforms its counter-
parts in terms of accuracy.

Battery #B07 further supports the superior performance 
of the NNA algorithm. It achieves a maximum error of 
0.216433% and a mean error of 0.073802%, indicating 
its ability to estimate battery capacity with exceptional 

Fig. 7 The estimated Capacity: (a) B05, (b) B06, (c) B07, (d) B18

(a)

(b)

(c)

(d)

Fig. 8 The APE (%): (a) B05, (b) B06, (c) B07, (d) B18

(a)

(b)

(c)

(d)
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precision. AWTLS and TLS algorithms, on the other hand, 
demonstrate higher errors with AWTLS recording a maxi-
mum error of 0.938234% and a mean error of 0.450062%, 
and TLS showing a maximum error of 1.224801% and 
a mean error of 0.450061%. Once again, the NNA algorithm 
proves to be the most accurate in estimating battery capacity.

Lastly, analyzing Battery #B18, we find that the NNA 
algorithm maintains its consistent performance with a max-
imum error of 0.247501% and a mean error of 0.080718%. 
In contrast, AWTLS exhibits a significantly higher max-
imum error of 3.822576% and the same mean error of 
0.080718%, highlighting its lower accuracy in estimating 
the capacity of this particular battery. TLS, with a maxi-
mum error of 2.182708% and a mean error of 0.196232%, 
also shows less precision compared to the NNA algorithm.

In conclusion, the comparison of the algorithms' per-
formance in estimating battery capacity demonstrates 
that the NNA algorithm consistently outperforms both 
AWTLS and TLS. It achieves lower maximum and mean 
errors across all batteries, indicating higher accuracy and 
precision. These results highlight the NNA algorithm's 
effectiveness in estimating battery capacity and its poten-
tial for reliable applications in the field.

To assess the efficacy of the algorithms and determine 
their predictive performance, we analyze three key vari-
ables: mean squared error (MSE), mean absolute percent-
age error (MAPE), and root mean square error (RMSE). 
These metrics allow us to evaluate the accuracy and reli-
ability of the algorithms' predictions. The three metrics 
are described as:

MSE � � � � � �� �
�
�1
1

2
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p
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where p is the number of points, Ctr is the measured capac-
ity, and Ces is the estimated value.

Comparing the numerical results from Table 3, the per-
formance of different algorithms for battery capacity esti-
mation can be assessed. Analyzing the values of RMSE, 
MAPE, and MSE allows us to evaluate the accuracy and 
reliability of each method.

In terms of RMSE, NNA consistently outperforms 
AWTLS and TLS across all batteries. For instance, NNA 
achieves RMSE values of 1.5693 mAh (Battery #B05), 
1.5293 mAh (Battery #B06), 1.4423 mAh (Battery #B07), 
and 1.5166 mAh (Battery #B18). In contrast, AWTLS and 
TLS exhibit higher RMSE values, such as 2.2288 mAh and 
2.9231 mAh (Battery #B05) for AWTLS and TLS, respec-
tively. The consistently lower RMSE values attained by 
NNA indicate that its predictions are closer to the true 
capacity values compared to the other algorithms (Fig. 9).

When considering MAPE, NNA again demonstrates 
superior performance compared to AWTLS and TLS for 
most batteries. For example, NNA achieves MAPE val-
ues of 0.0834 (Battery #B05), 0.0843 (Battery #B06), 
0.0738 (Battery #B07), and 0.0807 (Battery #B18). In con-
trast, AWTLS and TLS yield higher MAPE values, such 
as 0.0846 and 0.1129 (Battery #B05) for AWTLS and 
TLS, respectively. The lower MAPE values obtained by 
NNA indicate that its predictions have a smaller average 

Table 2 Absolute max and mean error for the algorithms in percent

Battery Methods Max error (%) Mean error (%)

#B05

NNA 0.279391 0.083373

AWTLS 0.899295 0.554360

TLS 1.171136 0.554362

#B06

NNA 0.396103 0.084259

AWTLS 1.689592 0.938652

TLS 2.182708 0.938669

#B07

NNA 0.216433 0.073802

AWTLS 0.938234 0.450062

TLS 1.224801 0.450061

#B18

NNA 0.247501 0.080718

AWTLS 3.822576 0.080718

TLS 2.182708 0.196232

Table 3 Predictive performance indicators

Battery Methods RMSE (mAh) MAPE Mean squared 
error (MSE)

#B05

NNA 1.5693 0.0834 2.4628e-06

AWTLS 2.2288 0.0846 1.8142e-04

TLS 2.9231 0.1129 1.8143e-04

#B06

NNA 1.5293 0.0843 2.3389e-06

AWTLS 3.9284 0.1473 5.7219e-04

TLS 5.1434 0.1962 5.7218e-04

#B07

NNA 1.4423 0.0738 2.0803e-06

AWTLS 1.9552 0.0649 1.5878e-04

TLS 2.5534 0.0860 1.5879e-04

#B18

NNA 1.5166 0.0807 2.3000e-06

AWTLS 6.8082 0.1726 2.3000e-06

TLS 10.3380 0.2546 0.0102
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percentage error, signifying its improved accuracy in esti-
mating battery capacity (Fig. 9).

Analyzing the MSE values further supports the supe-
rior performance of NNA. With the exception of Battery 
#B18, where it is tied with AWTLS, NNA achieves the 
lowest MSE values for all batteries. For instance, NNA 
yields MSE values of 2.4628e-06 (Battery #B05), 2.3389e-
06 (Battery #B06), and 2.0803e-06 (Battery #B07). 
Conversely, AWTLS and TLS produce higher MSE val-
ues, such as 1.8142e-04 (Battery #B05) for AWTLS and 
1.8143e-04 (Battery #B05) for TLS. The lower MSE val-
ues obtained by NNA indicate its ability to minimize the 
squared differences between predicted and true values, 
resulting in improved predictive performance.

Fig. 10 showcases boxplots illustrating the absolute 
error in battery capacity for each algorithm across all 
tests. The red horizontal line represents the mean error for 
each approach. The box height, known as the Interquartile 
Range (IQR), depicts the data’s variability and spread, 
while outliers lie beyond the whiskers. These boxplots 
offer valuable insights into the performance and accuracy 
of the methods.

Remarkably, the NNA algorithm exhibits the lowest 
spread, with a significantly smaller IQR compared to other 

methods. Conversely, the compared techniques demon-
strate wider spreads, characterized by larger IQRs and 
more outliers, indicating lower accuracy relative to the 
NNA algorithm.

Furthermore, the absence of outliers in all tests for all 
algorithms confirms their high accuracy in estimating bat-
tery capacity. The NNA algorithm, specifically, exhibits 
a relatively small difference between the 25th and 75th 
percentiles, as supported by Tables 2 and 3, highlighting 
its precision and further substantiating its capability for 
accurate update.

In summary, based on the numerical comparisons, NNA 
outperforms AWTLS and TLS in terms of RMSE, MAPE, 
and MSE. The consistently lower values obtained by NNA 
highlight its superior accuracy and reliability in estimat-
ing battery capacity. By leveraging neural networks to 
capture complex relationships, NNA surpasses the tra-
ditional statistical approaches employed by AWTLS and 
TLS, providing more accurate predictions and enhanced 
performance in battery capacity estimation.

Fig. 9 The predictive performance: (a) MAPE, (b) RMSE

(a)

(b)

Fig. 10 Boxplots: (a) B05 and B06, (a) B07 and B18

(a)

(b)
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5 Conclusion
In conclusion, this manuscript presents a novel technique 
aimed at enhancing the accuracy of battery capacity esti-
mation by minimizing uncertainties associated with SOC 
estimation and measurement. The proposed methodol-
ogy utilizes the Neural Network Algorithm (NNA), which 
draws inspiration from artificial neural networks (ANNs) 
and employs an optimization approach. Through the iter-
ative updating of pattern solutions using a weight matrix, 
bias operator, and transfer function operator, the NNA 
effectively considers interdependent variables and incor-
porates global and local feedbacks, thus seeking an opti-
mal solution. By leveraging the advantages of ANNs and 
optimization techniques, the NNA facilitates the identi-
fication of a candidate that minimizes a designated cost 
function, ensuring the up-to-date cell capacity through 
a memory forgetting factor.

To evaluate the effectiveness of the NNA algorithm, 
the  NASA PCoE dataset was utilized for battery capac-
ity estimation. The results demonstrated highly impres-
sive performance compared to two robust techniques. 
The NNA consistently exhibited low relative errors, with 
maximum error below 0.4%. Furthermore, the NNA out-
performed least squares techniques in terms of predictive 
performance indicators such as MSE, MAPE, and RMSE.

Future work entails further improving the computa-
tional efficiency of the NNA technique while refining its 
efficacy through validation with diverse datasets, explora-
tion of different battery chemistries, and optimization of 
parameters. These endeavors aim to enhance the applica-
bility and reliability of the proposed method for accurate 
battery capacity estimation in real-world scenarios.
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