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Abstract

This paper presents a new contribution in the implementation of Volterra model predictive control for fast dynamics systems. 

The control approaches considered results on a switch paradigm that combine an online part based on suboptimal solution and 

an offline part referred to an offline neural network controller. The proposed approach has an advantage in comparison with nonlinear 

optimization-based control schemes. A real time application on STM32 to control a boost converter is studied and the results show 

very remarkable performances in time computing.
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1 Introduction
Model Predictive control is an advanced control technique 
of the model-referenced optimal control type ("Model 
Based Predictive Control (MBPC)"). The general idea is to 
determine at each iteration an optimal command sequence 
taking into account the future behavior of the process pre-
dicted by a model. The application of this control is essen-
tial when we deal of a chemical and petroleum process that 
is characterized by "slow" processes. Indeed, predictive 
control, which is based on the resolution of an online opti-
mization problem, is generally costly in terms of compu-
tation time. The first formulations of predictive control are 
obtained for linear problems. In this case, the analytical 
expression of the optimal solutions can be established and 
avoiding online optimization.

Among these formulations, we can mention the gener-
alized predictive control (GPC) [1]. Nevertheless, this lin-
ear approach is not completely satisfactory and has cer-
tain limitations (highly nonlinear process and subject to 
significant disturbances, control of systems that regularly 
change operating point) which motivated the develop-
ment of nonlinear predictive control ("Nonlinear Model 
Predictive Control" (NMPC)) [2].

The nonlinear approach of predictive control no lon-
ger allows an analytical solution of the optimization prob-
lem, which must therefore be solved online. However, 
the increase in computing time, the new formulations of the 
problem [3–5] and the improvement of the optimization pro-
cedure allowed this command to know a strong development 
and more particularly for systems with fast dynamics [6–9].

During the two last decades, considerable research has 
been carried out for the modeling, identification and con-
trol of nonlinear systems. Most real dynamical systems can 
best be represented by nonlinear models, which describe 
their behavior over a wide operating range. However, a lin-
ear model can only approximate the system around a given 
operating point. With the introduction of a nonlinear 
model, in the NMPC algorithm, the complexity of the con-
trol problem increases significantly [10–12]. The simplest 
way to reduce the online calculation is to transform the 
nonlinear problem (NMPC) into a linear problem (LMPC). 
The extraction of a linear model for a given operating point 
or the use of successive linearization over the prediction 
horizon is one of the approaches used to deal with nonlin-
ear systems. The advantage of this technique lies in the fact 
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that a solution from a quadratic formulation can be used to 
provide the optimal control [13]. Another alternative which 
it also makes possible to reduce of the computational load 
is to transform the nonlinear system into a linear system by 
using a technique of linearization by state feedback. Such 
approaches are presented in [14, 15]. The major challenge 
of this technique lies in the formulation of the constraints. 
The use of empirical models for nonlinear predictive control 
has been studied by several researchers. Neural networks 
and fuzzy logic form the framework most "popular" for 
empirical model development, although techniques based 
on Hammerstein models, Wiener models, and Volterra 
models have been introduced. One of the most frequently 
studied classes of nonlinear models are the separate non-
linearity models (Block Oriented Models) of Hammerstein 
type or Wiener type. Indeed, this type of presentation can 
cover the description of a large class of complex processes.

Several methods have been presented in the literature 
for the identification of these patterns. One can cite the 
most recent approaches which deal with the transforma-
tion into an orthogonal basis and the exploitation of the 
SVD decomposition to separate the linear parameters 
from the nonlinear ones [16]. From a command point 
of view these basic structures are exploited in [17–21]. 
Solving the control problem is based on nonlinear opti-
mization techniques that are computationally expensive. 
Although these control strategies are applied on chemical 
processes, where the optimization time is not constrained 
by the time constants of the system, their application for 
systems with fast dynamics remains a difficult problem to 
solve. The main drawback of these approaches is that the 
estimation of the static nonlinearity can rarely be obtained 
with precision. Therefore, modeling and control involving 
fuzzy logic and artificial neural networks can give accept-
able approximations and fast resolver technique [22–30].

From what preceded, we can consider that the nonlin-
ear predictive control remains a strategy based mainly on 
the optimization of a nonlinear and no convex criterion. 
However, two major difficulties can be listed:

1. is related to the computation time which remains 
among the main locks to be solved;

2. the major difficulty concerns the feasibility of the 
solution.

The feasibility concerns the existence or not of solu-
tions respecting the constraints associated with the opti-
mization problem translating the control problem and 
finally the inadequacy, sometimes, of real-time control of 
processes with rapid dynamics. Faced with these inherent 

difficulties of the optimization problem, the application of 
this control strategy still remains a problem to be solved 
for systems with limited computing time, namely systems 
with fast dynamics [28, 31–34].

The article is organized in the following way. Section 2 
describes the new MPC strategy adopted. The software 
and hardware implementation of the MPC algorithm using 
the STM32 microcontroller is detailed in Section 3 as well 
as the experimental results are presented based on a Boost 
converter showing very satisfactory results. Finally, 
Section 4 concludes this paper.

2 New concepts for nonlinear predictive control based 
on the parametric Volterra model
This approach focuses on nonlinear discrete single-vari-
able systems defined in the form of a nonlinear input-out-
put type equation given by:

y k f y k i u k j i j� � � �� � �� �� � � �, , , ,0  (1)

where y k� ��  is the output of the system, u k� ��  is the 
command variable and f is an application of ���  in ℜ.

We consider the control of a class of single-input sin-
gle output non-linear system described by the following 
non-linear discrete-time parametric second-order Volterra 
model [35]. The structure of the parametric Volterra model 
can be designed of a second-order discrete models given 
by:
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where y(k) and u(k) are respectively the output and input 
u(k) with the parameters Volterra model ai, bi, and nu and ny 
are the number of lags on the input and the output, respec-
tively. ε(k) contains all terms up to second-order and y0 is 
a bias term. The use of a the parametric Volterra model 
has one advantage is that the one-ahead prediction problem 
can be formulated as a linear regression, which simplifies 
the identification of the parameters from input-output data. 
Therefore, the model given by Eq. (2) can be written as:
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where φ(k) and θ are the regressor and the parameter vec-
tors, respectively. The model Eq. (3) is linear in parame-
ters, and its regressors and parameters may be identified 
from input output information. The objective of the con-
trol law is to compute at each sampling time k, the control 
input that minimizes a cost function given by:

min , , , ,
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Subject to the following constraints:
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where Hu, Hp are the minimum and the maximum pre-
dictions, Hu is the control horizon umin, umax, Δumin, Δumax 
are respectively the lower limit, upper limit, lower rate of 
change limit and higher rate of change limit of the input 
control. Q is the diagonal matrix of dimension (ny × ny ), 
R is (nu × nu ) diagonal.
y un ny u� �R R, .�  With the introduction of a nonlin-

ear model into MPC scheme, a nonlinear programming 
technique (NLP) has to be solved at each sampling time to 
compute the future manipulated variables in on-line opti-
mization that is generally non-convex which make their 
implementation difficult for real time control.

However, the application of such techniques for fast 
nonlinear systems remains a widely opened problem due 
to the computation burden associated with solving an open 
loop optimal control. From a predictive control point of 
view, several works have been developed, concerning 
the exploitation of the parametric Volterra type nonlin-
ear model. The formulation of the control problem based 
on a parametric Volterra type model has been proposed 
in [35, 36]. The introduction of constraints on the input, 
on its increment and on the output, in the predictive con-
trol strategy based on the parametric Volterra model has 
been developed in [37, 38]. The presentation of a general 
nonlinear predictive control strategy, based on effective 
optimization techniques, has been developed in [39].

One possible way to address computational complex-
ity is studied in this paper by using at first the suboptimal 
solution combined in the second way of an offline neu-
ral network controller. The bloc diagram of the considered 
MPC strategies is presented in Fig. 1.

2.1 The suboptimal solution
Considering the polynomial form of the Volterra model, 
the control law subject to constraints are based on this 
form. So, the model given by Eq. (2) can be put in the 
polynomial form as:
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The output given by Eq. (8), can be written as:
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where F(q−1) and G(q−1) are two polynomials unique solu-
tions of the following Diophantine equation:

1
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Fig. 1 Bloc diagram of MPC strategies
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Knowing that the present and future control signals 
can be written according to the present and future control 
increments and the old control u(k−1) according to the fol-
lowing relation:

u k i u k u k j i H
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Considering equations, Eqs. (13) to Eq. (15), the opti-
mal predictor of the system output can be expressed only 
as a function of the present and future increments of the 
command as follows [40]:
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The cost function Eq. (6) can be put in the following 
form: by taking into account the equation of the predictor 
in incremental form:
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Under the assumption that all the increments of future 
orders are equal:
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However, the sub-optimal usub solution is chosen accord-
ing to the following procedure [35, 36]:

1. If all the roots are real, we will choose the root for 
which the cost function is minimal.

2. The real root is chosen in the case where the other 
two roots are complex conjugate.

In the presence of constraints, it is obvious that it is no 
longer possible to find an analytical solution to the control 
problem. The predictive control law should be computed 
iteratively using a one-dimensional search algorithm [39].

In order to satisfy the constraints on the command as 
well as on its increment, model. However, the new predic-
tive control algorithm approach can be improved in order 
to reduce the computation time, in particular by proceeding 
to first limit the optimal solution by the values umin and umax 
permitted. Secondly, the developed control usub is delimited 
by two bounds which take into account their maximum and 
minimum deviations. These bounds are given by:
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In the case where the control process violates the differ-
ent constraints, a test is carried out based on the tracking 
error ε(k), the control action u(k) and its variations Δu(k). 
So, in this case a trained neural network was done off-
line is used which provide the process the adequate con-
trol action. We thus replace the non-convex nonlinear 
optimization by a test carried out on the violation of the 
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constraints as well as the tracking error. Our contribution 
lies here which makes it possible to reduce the time calcu-
lation of the nonlinear optimization.

2.2 The offline neural network controller
For the off-line part a neural predictive control is done 
with a nonlinear optimization algorithm, and a nonlin-
ear neural model is employed for prediction. At every 
moment k, the future values of the control signals uNN(k), 
are determined as a solution to a nonlinear optimization 
problem [40–44]. The development of the control law is 
based on the minimization of a cost function given by:
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The Newton-Raphson optimization method is used and 
J is iteratively minimized to determine the best control 
vector [26].
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The adaptation of the control vector is calculated by 
Eq. (28):
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with � � � � � �2 2J k u kNN  and � � � � � �J k u kNN  are the 
Jacobian and Hessian matrices and n is the number of 
iterations.

To avoid calculating the inverse of the Hessian matrix, 
Eq. (10) is rewritten as a system of linear equations Ax = B.
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3 Experimental results
The process used is a Boost converter that is designed for 
a new implementation of model predictive control. The bloc 
diagram is shown in Fig. 2.

This signal controls the switching of the power tran-
sistor via the MOSFET driver. The output of the boost is 
connected to the input of the analog to digital converter 
(ADC) of the microcontroller. The system to be identified 
having the following characteristics:

• Supply voltage: VDC = 12 V,
• Output voltage: Vout = 24 V,
• Hash frequency: 80 KHz,
• Load resistance: Rch = 24 Ω,
• Duty cycle: D0 = 0.5.

All the implemented algorithms have been executed 
on the STM32F746 DISC0 microcontroller platform, 
known for its cost-effectiveness. This platform features 
the STM32F746, an Arm Cortex-M7 32-bit RISC Core 
based digital signal controller (DSC). Developed by 
STMicroelectronics, the STM32F746 combines advanced 
hardware features with a rich set of peripherals and a robust 
ecosystem for efficient development. Operating at speeds 
of up to 216MHz, this processor supports single-cycle DSP 
and SIMD instructions, making it well-suited for applica-
tions that require rapid and efficient data processing.

One of the standout features of the STM32F746 is its 
integrated hardware floating-point unit (FPU), which 
empowers the microcontroller to execute complex mathe-
matical operations involving real numbers with high pre-
cision and speed. This capability makes the STM32F746 
an ideal choice for applications involving signal process-
ing, control systems, and scientific computations.

The microcontroller boasts an array of embedded mem-
ories that play a crucial role in its efficiency. With up to 
1 Mbyte of Flash memory, it can store program code and 
data, enabling flexible and reliable application deploy-
ment. The STM32F746 also incorporates 320 Kbytes of 
SRAM, including a dedicated 64 Kbytes of Data TCM 
RAM for critical real-time data, as well as 16 Kbytes of 
instruction TCM RAM for time-sensitive routines.

Fig. 2 Boost Converter bloc diagram
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Furthermore, the STM32F746 is equipped with a com-
prehensive set of peripherals. It includes multiple 12-bit 
Analog-to-Digital Converters (ADCs) for accurate ana-
log signal acquisition, along with Digital-to-Analog 
Converters (DACs) for generating analog outputs. 
The microcontroller supports a generous assortment of 
general-purpose timers, some of which even offer Pulse-
Width Modulation (PWM) capabilities. Its communica-
tion interfaces encompass USART, SPI, I2C, I2S, CAN, 
USB, and Ethernet, facilitating seamless connectivity 
with a variety of external devices and networks.

For real-time control, the Keil MDK-ARM toolchain is 
employed. This software development platform, operating 
in a window-based environment, combines a powerful edi-
tor with a project manager and make facility tool. It serves 
as an integrated solution for developing embedded appli-
cations, providing a C/C++ compiler, macro assembler, 
linker/locator, and an AXF file generator. The program 
itself is coded in the C language.

In configuring the analog-to-digital converter ADC1, 
the scan mode with DMA is utilized. Additionally, a timer 
generates a PWM signal operating at an 80 kHz fre-
quency. This signal serves to control a power transistor 
with an impressive 0.1% resolution on the duty cycle.

When it comes to programming, the floating-point 
hardware unit (FPU) is harnessed for operations involving 
real variables. Meanwhile, the DSP_Lib library comes into 
play for matrix operations. The entire program, consisting 
of two parts, an online segment is embedded within the 
microcontroller. The offline portion is calculated through 
Matlab ® [45].

The Experimental boost converter lab with different 
components is presented in Fig. 3.

To estimate the Volterra parameters a collection 
of experimental data is generated based on an ampli-
tude-modulated pseudo-random binary signal (APRBS) 

used as excitation signal. A Recursive Least Squares' 
method (RLS) is retained for the parametric identification 
of the Volterra model.  The results of empirical data and 
the modeling of the Volterra model are illustrated in Fig. 4.

Having used the structure command given in Fig. 1, 
the obtained results are shown in Fig. 5. A feedforward 
neural network is used with five neurons Andan hyper-
bolic tangent function in the hidden layer are used. 
It respectively shows the trajectory to follow and the out-
put of the system as well as the evolution of the control 
law. We Shows that the output of the system quickly con-
verges to the reference.

We can, moreover, notice the respect of the constraints.  
Comparisons are made between the proposed approach and 
the nonlinear control approach (NMPC). We notice that:

Fig. 3 Experimental control Boost converter lab

Fig. 4 Identification boost converter, (a) The APRBS signal; 
(b) The measurement (red line) and simulated process output (blue line)

(a)

(b)

Fig. 5 Evolution of the output/setpoint and command signals: Proposed 
approach and NMPC
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• The resolution of the optimization problem in the 
proposed approach is convex.

• The best dynamics are seen when evaluating the out-
puts regarding the nonlinear control approach, while 
the proposed approach shows similar dynamics to 
that obtained by a classical multi-model control.

• To verify the ability of this proposed strategy 
to rejecting disturbances, an output disturbance 
is introduced at the instants k = 250 and k = 700. 
The disturbance is eliminated showing a satisfactory 
ability to reject disturbances. So, it is shown that the 
control concept used is capable of delivering signifi-
cantly improved control performance.

In Fig. 6(a) we have plotted the required computation 
time at each step to get the sequence command for both the 
new approach and the NMPC case. No iteration exceeds 
1 ms for the proposed approach. It should be remembered 
that the sampling period is 1ms. The optimization task is 
clearly the most computationally demanding, which shows 
the infeasibility of real-time application for time-limited 
systems. In Fig. 6(b) we show the sampling time where we 
use the solution provided by the neural network predictive 
control implemented in a lookup table. During 900 itera-
tions we used only 18.7% of the cases where we used the 
solution given the neural network, which shows that the 
computational load is reduced by 80%.

4 Conclusions
The novel approach presents very remarkable perfor- 
mances in time computing and avoids nonlinear opti- 

mization procedure. The proposed concept compares 
favorably with respect to a numerical optimization rou-
tine when applied to Boost converter system. Moreover, 
the novel algorithm reduces the online computational bur-
den and hence has the potential to be applied to the system 
with faster time constants. Computation in the new design 
procedure is simpler and faster than the nonlinear optimi-
zation and it offer very good control performance. Due to 
this approach the on-line optimization procedure at each 
simple time is avoided, so for that it can useful with very 
small sampling time.

Fig. 6 Time computation; (a) Evaluation of the required implementation 
time; (b) Instants of the use of the neural network controller

(a)

(b)
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