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Abstract

The early detection of cancers increases the possibility of health recovery and prevents the disease from becoming a silent killer. This 

study introduces an effective method for identifying ovarian cancer (OC) using Elman Recurrent Neural Network (ERNN), which can 

recognize cancer via mass spectrometry data. The network has a topology of 100 input neurons for receiving data, five neurons for 

hidden and context layers, and two output nodes to indicate the status. The proposed method uses reduced-size features, including ion 

concentration levels at specific mass/charge values, which are trained using various learning algorithms to determine the suitable one 

that achieves the best results. The experimental results show that all the training algorithms achieve about 100% performance rate, with 

the Levenberg Marquardt (LM) being the most accurate and fastest algorithm, which converges after six epochs and achieves 0.0035, 

0.0045 and 0.0045 mean square errors for training, validation, and test performances, respectively. Based on comparative results, 

the proposed LM-ERNN method outperforms other OC detection methods and holds promise for detecting other types of cancer.
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1 Introduction
Nowadays, cancer has become a significant risk that affects 
our life. One type of cancer that infects the women's gen-
eration system is ovarian cancer (OC). According to the 
latest study on women, OC contributes to more than 4% 
of cancer mortality. Countries with a high human devel-
opment index have the highest cancer incidence; however, 
the mortality rate curve reverses [1]. The occurrence of 
OC is influenced by several factors, with genetic factors 
being the most significant. Other factors, such as lactation, 
oral contraceptive pills and pregnancy, reduce the possi-
bility of OC infection [2]. 

The recent electronics revolution has led to the cre-
ation of different computer systems for various applica-
tions. These systems are superior to humans in speed, 
accuracy, and efficiency. Computers are widely used in 
medical applications such as diagnosing diseases, which 
can be accomplished in two different methods accord-
ing to the type of application. The first method utilizes 
the same pattern recognition procedure as [3], i.e., a ded-
icated algorithm trains certain images and different 
images are examined for decision-making. An example of 

this type of disease diagnosis is breast cancer detection, 
which depends on mammographic images [4]. The  sec-
ond method depends on the data file, which includes infor-
mation about specific tests such as genes, hormones, pro-
teins, and blood components. An example of this can be 
seen in the classification of genomics [5]. It is important 
to mention that there are two methods for diagnosing OC. 
The first method uses ultrasound Doppler images of the 
ovaries [6–8], whereas the second method involves ana-
lyzing the serum proteomic data profile [9]. In this partic-
ular case, the proposed work will use the second method 
due to its simplicity, accuracy, and speed.

Patient samples are differentiated using serum pro-
teomic pattern diagnostics to decide whether the patient 
is infected. Surface-Enhanced Laser Desorption and 
Ionization (SELDI) mass spectrometry can produce pro-
tein profile data patterns. This technology can potentially 
improve clinical diagnostics tests for cancer pathologies [9]. 
Data profiles contain immense data points that should be 
analyzed using elegant analytical methods. Bioinformatics 
is widely used to analyze the outcomes of the physiological 
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and microarrays of cluster genes. This pattern helps distin-
guish veiled samples from healthy women [9].

In this study, we aim to address the challenge of detect-
ing OC using data protein profiles by applying Machine 
Learning (ML) techniques. Specifically, we focus on eval-
uating the performance of several training algorithms 
within the realm of deep learning to identify the most 
effective approach for OC detection. OC is a significant 
health concern, and early detection is critical in improv-
ing patient outcomes. Traditional methods of OC detec-
tion often need to be revised in accuracy and efficiency. 
Therefore, there is a pressing need to explore advanced 
computational techniques, such as deep learning, 
to enhance the precision and reliability of OC detection. 
A comprehensive examination of different training algo-
rithms frequently utilized in deep learning is conducted. 
Performance metrics such as accuracy rate and number 
of iterations are used to evaluate algorithms carefully. 
The proposed work aims to choose the best algorithm that 
achieves the highest detection rate with the lowest com-
putational complexity, which is the demand for real-time 
applications. Our proposed system presents a precise and 
reliable approach to OC detection using the advanced 
capabilities of deep learning algorithms and utilizing data 
protein profiles. The reduced complexity ensures that the 
system can be implemented efficiently and effectively 
within clinical settings, paving the way for improved early 
detection and timely intervention.

2 Related work
Researchers have made efforts for OC detection and pre-
sented valuable insights through rigorous experimenta-
tion and analysis. Ongoing research in this field aims to 
develop more effective methods for obtaining optimal 
results. Below are some recent approaches that address 
the prediction of OC.

An OC diagnosis method based on Fuzzy Neural 
Network (FNN) was introduced in [10]; the data used 
in this method were taken from the DNA microarray 
used to identify gene expressions. To reduce huge fea-
tures, the researchers used the sparse logistic regression 
method to choose only nine features that can be used to 
classify the four classes of OC diagnosis. Although the 
method achieved an accuracy rate of about 84.72%, it is 
not within the ambition for OC detection. In [11], an Error 
Guided Artificial Bee Colony (EABC) model was intro-
duced to detect OC. The model used a neural network with 
100 inputs, two hidden layers containing 20 neurons each, 

and a single output. The model was iterated 200 times 
during training to attain the optimal outcome. However, 
an accuracy rate of approximately 91.2% is still needed to 
reach the desired detection rate. The authors in [12] utilized 
Deep Convolutional Neural Networks (DCNN), and a pre-
trained CNN model called AlexNet to classify OC from 
cytological images. They improved the accuracy from 
72.76% to 78.20% using the training data of augmented 
cytological images. A model of Artificial Neural Network 
(ANN) with 15 neurons and a sigmoid activation function 
was used in [13] to detect OC, where it achieved a 98.7% 
of classification rate. Optimal Recurrent Neural Networks 
(ORNN) and Self Organizing Maps (SOM) were used for 
OC detection in [14]. In addition, an Adaptive Harmony 
Search Optimization (AHSO) algorithm was used to opti-
mize the weights of RNN, where the detection rate of this 
method was about 96.27%. Principal Component Analysis 
(PCA) was used in [15] to construct 2D barcodes of con-
verted serum glycopeptides expression features. AlexNet 
was applied to detect epithelial OC early-stage, which 
introduced 95% accuracy of cancer detection. In [16], 
the authors examined four optimization methods on three 
types of feature selection for choosing the best genes that 
can be used to identify OC. In addition, they examined five 
algorithms to classify OC and data mining that can be used 
to predict OC recurrence. They concluded that using the 
multi-layer perceptron (MLP) with GDX achieved 98.96% 
classification accuracy. Besides, using the Kruskal Wallis 
test for feature extraction, Genetic Bee Colony (GBC) 
for optimization, Radial Basis Function (RBF) with and 
Support Vector Machine (SVM) for classification achieved 
an accuracy rate of about 99.48%. An ML-based system 
was introduced in [17] to predict OC using the most con-
cerning features and a decision tree model, where two bio-
markers have been suggested, human epididymis protein 4 
(HE4) and carcinoembryonic antigen (CEA). The experi-
mental results showed that CEA is a suitable biomarker for 
predicting OC in patients with low HE4, and ML is bet-
ter than the risk of ovarian malignancy algorithm, where 
the method achieved a 94.9% accuracy rate. In [18], dif-
ferent ML methods were utilized to classify the testing 
women where they have OC, Ovarian LMP, Fallopian Tube 
Cancer, Peritoneal Cancer, and no-cancer. The most suc-
cessful outcome was achieved using the random forest 
(RF) algorithm, which attained an accuracy rate of approx-
imately 72%. Also, the RF algorithm was proven the best 
classifier in [19], with the obtained accuracy of 90.5% 
using the median imputation. In [20], the SVM model was 
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employed in conjunction with K-Nearest Neighbor (KNN) 
model to predict OC, where the use of SVM achieved a bet-
ter accuracy rate than the KNN, which was about 97.16%. 
The authors in [21] utilized an algorithm called classifica-
tion and regression trees (CART) for diagnosing OC, where 
the binary decision tree achieved 98.1% accuracy using the 
CPTAC dataset. In addition, the researchers tested the data 
from another database on the first database's trained model, 
obtaining an accuracy rate of 98.2%.

3 Background
3.1 Elman Recurrent Neural Network (ERNN)
ANN is a popular classification method that comprises 
several types: recurrent, backpropagation, feedforward, 
etc. The RNN structure includes single or multiple hidden 
layers of feedback loops. These loops connect the neurons 
of two layers using a unit delay element (z−1), representing 
the main difference compared with feedforward connec-
tions [22]. The role of the delay unit is to work as a mem-
ory location; it keeps the current activity value and dis-
plays it to the next event, as shown in Fig. 1. This process 
involves propagating through a recurrent backward loop 
and manipulating the activation with the input of the next 
pattern before presenting the result at the output layer. 
Jordan and Elman are maybe the most known for using the 
RNN as a full and partial mechanism [23]. 

In 1990, Jeffrey L. Elman proposed a simple structure of 
RNN called Elman RNN (ERNN) [24]. It is a back-prop-
agation ANN comprising input, output, and hidden layers. 
The ERNN model contains a unique layer known as the 
context layer. This layer establishes connections between 
the outputs and inputs of the hidden layer, allowing for 
feedback. The input and context nodes activate the hidden 
nodes, which then activate the output and context nodes 
through feedforward and feedback connections. The pro-
cess is illustrated in Fig. 2 [25]. 

When the signal moves towards the output nodes, it goes 
through the hidden neurons. These neurons have trans-
fer functions that can be either linear or nonlinear. On the 
other hand, the context nodes are employed to save the out-
put values of the hidden nodes, where each hidden node 
transmits its output to the corresponding context node, 
which memorizes the received value and then returns it to 
the same hidden node. As a result, the context nodes are 
activated by the previous inputs of the hidden nodes and 
keep their information for the next iteration [26].

The ERNN structure can detect and produce transitory 
patterns due to the saved values in the context nodes from 
the earlier steps. Therefore, the number of iterations and 
feedback of the two Elman networks, which may have the 
same inputs, biases, and weights at a given time, can pro-
duce different outputs. Besides, ERNN can train patterns 
that may be altered with time because of its ability to 
store data used for future estimation. ERNN with nonlin-
ear state-space is expressed as follows [26]:

Y t g w X t� � � � �� �� �3
, 	 (1)

X t f w X t w u tc� � � � � � �� �� �� �1 2
1 , 	 (2)

X t X tc � � � �� �1 , 	 (3)

where:
•	 u(t−1), Y(t), X(t) and Xc(t) are the network input, net-

work output, output of the hidden layer, and the feed-
back vector, respectively;

Fig. 1 RNN structure [22]
Fig. 2 ERNN model [25]
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•	 w1, w2 and w3 are the connections' weights between 
the hidden layer and the context, input and output 
layers, respectively;

•	 g and f are the activation functions of the output 
layer and hidden layer, respectively.

ERNN uses the linear (pure-lin) activation function 
in the output layer and the hyperbolic tangent sigmoid 
(tan-sigmoid) function in the hidden layer as denoted in 
Eqs. (4) and (5), respectively:

g x x� � � , 	 (4)

f x e
e

x

x� � � �
�

�

�

1

1

2

2
, 	 (5)

where x is the weighted input for output or hidden nodes.
From Eqs. (2) and (3), one can deduce the expression 

that refers to the time-varying status of ERNN as follows:

X t f w t X t w t u tc c� � � �� � �� � � �� � �� �� �1 2
1 1 1 2 . 	 (6)

In addition, Eq. (6) illustrates the dependence of feed-
back values on the weights estimated from different periods.

Although ERNN has advantages, it requires more 
neurons in the hidden layer than other ANNs. Besides, 
the training process is accomplished using the error gra-
dient approximation. The squared error function E(w) is 
used to update the weights, as illustrated in Eq. (7) [26].

E w
k

n

� � � � � � � ��� ��
�
� y w y wk k

2

1

, 	 (7)

where yk(w) and ỹk(w) are the actual and target output 
vectors.

3.2 Training algorithms
The ANN training algorithms aim to obtain a decision 
function that can update the network weights, where 
several algorithms have been used and achieved dif-
ferent results. Examining all the training algorithms is 
a time-consuming and laborious task. It requires a lot of 
effort and patience, but according to the previous work, 
the best training algorithms are:

•	 Gradient Descent Adaptive Learning backpropaga-
tion (GDA);

•	 Gradient Descent momentum (GDX);
•	 Levenberg Marquardt (LM);
•	 Adaptive learning backpropagation with Resilient 

Backpropagation (RPROP).

Therefore, this study has used these algorithms to 
determine the best one that meets the performance rate 
and speed requirements.

3.2.1 Gradient Descent Adaptive Learning 
backpropagation (GDA)
Backpropagation networks automatically receive raw 
data and can achieve a specific function during the train-
ing by adjusting the weights of connections between 
nodes. The network undergoes multiple training iterations 
until the difference between the target and actual out-
puts approaches zero. The trained network with a super-
vised model accepts many pairs of input-target vectors. 
The  word "adaptive" refers to increasing the network 
training by subsequently changing the biases and weights 
of the network according to the matching between the out-
put-target vectors [27].

Gradient descent (GD) has been employed in the back-
propagation model, where the partial derivatives and 
chain rule are used to calculate the cost function or the 
difference error (Δ) [28]:

� � �
1

2

2
( ) ,Y Yd l

	 (8)

where Yd and Yl are the desired and actual outputs, respec-
tively. In the output layer, the partial error derivative is:

�
�

� �
E
Y

Y Y
l

l d , 	 (9)

After each learning iteration, the weights are modified 
to reduce the cost function, where this process is iterated 
until no further reduction can be achieved.

3.2.2 Gradient-Descent momentum (GDX)
The learning rate is used in the standard stochastic GD to 
update the weights, but it can cause a convergence delay 
in the case of a noisy gradient or a potential minimum 
overshoot if the gradient is much steeper. In physics, the 
momentum introduces an exponentially decreasing veloc-
ity related to the average gradient. The same concept 
can be applied to the ERNN to avoid high descent in the 
unwanted direction. The velocity update is given by [28]:

v v d� ��  . 	 (10)

In addition, the actual update is shown as in Eq. (11):

� �� � v, 	 (11)
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where v is the velocity, α is the momentum parameter; 
α ∈ (0,1), d and θ are the gradient parameters, and  is the 
learning rate.

3.2.3 Levenberg Marquardt (LM)
The Levenberg-Marquardt (LM) algorithm uses the Gauss-
Newton and GD methods to solve non-linear least squares 
problems. In a curve-fitting problem, points of the function 
with the least-squares errors between the actual and exist-
ing data points are fitted. The Gauss-Newton method aims 
to minimize the error by finding the minimum quadratic 
function assumed to be locally quadratic [28]. It has fast 
local convergence for problems that are somewhat non-
linear and almost consistent. However, it should be noted 
that it might not be able to converge locally on highly non-
linear problems or have large residuals [29]. Besides, GD 
reduces the sum of the squared errors by modifying the 
function parameters towards the abrupt descent [28].

Let Ŷ(t; q) be the fitting function of an independent 
variable (t) and a vector (q) of n parameters to a set of 
m data points (ti, Yi). If W is a diagonal weighted matrix, 
the squared error E2(q) is given by [28]:

E Y Y Y Y Y YT T T2
2q W W W� � � � � .̂ ̂ ̂ 	 (12)

The GD of E2 with respect to the q parameters is 
denoted by:

�
�

� � �� �
q
E Y Y T2

2 WJ , 	 (13)

where J is the Jacobian (m × n) matrix that represents 
∂Ŷ/∂q, where Ŷ = Eq in the linear models. The GD update 
hgd is denoted by:

̂h Y Ygd
T� �� ��J W , 	 (14)

where the step length is determined by the positive scalar 
α in the steepest-descent direction.

The Gauss-Newton update hgn is given by:

̂J WJ J WT
gn

Th Y Y�� �� � �� �. 	 (15)

The LM update hlm adaptively varies the parameters 
between the GD and Gauss-Newton as in Eq. (16):

̂J WJ J WJ J WT T
lm

Tdiag h Y Y� � ��� �� � �� �� , 	 (16)

where the damping parameter λ is scaled by the diagonal 
of the Hessian JTWJ for each parameter. If λ has a high 
value, the update method is considered GD. However, 
if the value of λ is low, the update method is considered 
Gauss-Newton [28].

3.2.4 RPROP

RPROP is a resilient propagation that directly updates the 
weights according to the local gradient calculations. Each 
weight is assigned a unique value that determines how 
much it will be adjusted during the training based on the 
error function [30].

Let Wij be the weight assigned from j to i neurons and 
t represents the learning iteration. The new weight is 
updated as in Eq. (17) [31]:

W W Wij
t

ij
t

ij
t�� � � � � �� �1 � . 	 (17)

The weight update direction depends on the sign of 
∂E/∂Wij, where E is an arbitrary error measure. The RPROP 
technique is unique because it uses a step-size Δij, 
which is not dependent on the absolute value of ∂E/∂Wij. 
If  ∂E/∂Wij  >  0, the weight is decreased, i.e., Wij = −Δij, 
while if ∂E/∂Wij < 0, the weight is increased, i.e., Wij = +Δij.

4 The Proposed ERNN Model 
This study utilizes an ERNN as a classifier to distinguish 
between normal and cancer patients by selecting a reduced 
set of features that represent intensity levels of serum pro-
teomics at specific charge/mass values. The serum pro-
teomic pattern samples are taken from a group of patients, 
and different features are identified to determine whether 
the patient has ovarian cancer. The input for the network is 
a variable matrix (u) containing data for each patient. Each 
column in the u matrix represents one patient's data, while 
the rows indicate the levels of ion intensity at a  specific 
charge/mass, as illustrated in Fig. 3.

The patient's status is based on the ERNN output, rep-
resented by a matrix called y, which has two rows and the 
same number of columns as in u.

The proposed ERNN model comprises input, hidden, 
context, and output layers, as shown in Fig. 4.

The input layer receives the features of one patient's data 
at a time. It has 100 nodes according to the number of fea-
tures of the database used. To optimize the performance 

̂

Fig. 3 Matrix u that comprises the patients' data
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and save time, we have chosen to use only five nodes in 
each hidden and context layer. This fixed parameter allows 
us to improve other aspects, such as weights and the num-
ber of epochs. The trial-and-error method can also deter-
mine the number of nodes, but it consumes more time since 
other parameters need to be iteratively changed. Finally, 
the output layer includes two nodes with a binary indication 
(0 or 1). The hidden and output layers use the tan-sigmoid 
mentioned in Eq. (5) as an activation function. The model 
is trained using the LM, GDA, GDX and RPROP algorithms 
to find the proper one. The connections' weights between 
the hidden layer and the context, input and output layers 
are denoted by w1, w2 and w3, respectively.

The pairs input/output (u, y) are generated to train the 
ERNN on the target output. The weights w1, w2 and w3 
are stored after accomplishing the optimum training per-
formance. Furthermore, according to the trained cases, 
ERNN can predict the output (y) for each new input (u) 
that has never been trained to indicate cancer cases. The 
procedure of ERNN training is demonstrated in Fig. 5.

The ERNN is tested by entering the new patient's 
charge/mass values, which give the output (y) that indi-
cates cancer or a normal case. The judgment of whether 
a person is ill or healthy is based on the value of the two 
rows of  y (namely [1; 0] or [0; 1] representing a cancer 
patient or a healthy person, respectively).

5 Experimental results
During the experiments, a computational environment 
with a 2.4 GHz Core i7 processor, 8 GB of RAM, a 64-bit 

operating system (Windows 10), and MATLAB (R2020b) 
with the neural network toolbox has been utilized. The pro-
teomic spectra were taken from the Clinical Proteomics 
Program Databank (FDA-NCI), and the data profile has 
been created by SELDI mass spectroscopy [2].

 Based on the ERNN classifier, the OC detection sys-
tem was tested for 216 samples of women with 100 fea-
tures, where 95 out of them are uninfected persons, and 121 
are ovarian cancer patients. The data samples were grouped 
into training (70%), validation (15%), and testing (15%) 
sets. The training set was used for training the network and 
updating its parameters, whereas the validation set was used 
to evaluate the performance of the training process. On the 
other hand, the testing set was evaluated independently. 
Once the training process is done, the ERNN is tested on 
32 new individuals not part of the training set. The perfor-
mance of ERNN was evaluated using the mean square error 
(MSE) between actual and target values as in Eq. (18):

MSE
desired actual

� �� �� � � �
�
�1

2

1n i i
i

n

y y 	 (18)

The performances of the four mentioned algorithms 
used in training ERNN are presented in the following 
experiments.

Fig. 4 Proposed ERNN model

Fig. 5 ERNN training procedure
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5.1 GDA algorithm
The ERNN was trained using the GDA algorithm, and 
data from 32 individuals were classified as healthy or can-
cerous. The results of this model are shown in Fig. 6.

The structure of the confusion matrix is illustrated as 
follows: The green, red and blue squares indicate the per-
centage of correct, incorrect, and total classification rates, 
respectively. The gray square in the first row shows the 
classification rates of cancer cases, whereas the healthy 
case rates are indicated in the second row's gray square. 
Finally, the true and false prediction rates for all positive 
and negative cases are displayed in the 3rd row's 1st and 2nd 
gray squares, respectively. The top values in the blue and 
gray squares refer to the accuracy rates, whereas the bot-
tom values indicate the percentage error.

As illustrated in Fig. 6, the implementation of ERNN 
and GDA achieved a remarkable performance evaluation 

of about 100%. However, the best performance is achieved 
after taking 119 epochs. The training, validation, and test 
performances got an MSE of 0.0433, 0.0686, and 0.0192 
at the same epoch.

5.2 GDX algorithm
When utilizing the GDX algorithm to train the ERNN, 
the  network was tested on new data belonging to 
32 patients, and the results are shown in Fig. 7.

As seen in Fig. 7, the classification accuracy is 100%, 
and the optimal performance is achieved after 124 epochs. 
The best training performance was 0.0511, the best vali-
dation performance was 0.0312, and the best test perfor-
mance was 0.0159. Therefore, the GDX-ERNN method is 
consistent with the GDA training method.

Fig. 6 Results of using the GDA algorithm; (a) Training performance; 
(b) Confusion matrix

Fig. 7 Results of using the GDX algorithm; (a) Training performance 
(b) Confusion matrix
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5.3 LM algorithm
Similarly, as in the previous experiments, a set of 32 sam-
ples not used in the training phase was tested according to 
the trained ERNN, where the model performs excellently. 
The LM model was trained and examined using different 
numbers of epochs, and the results are displayed in Fig. 8.

According to Fig. 8, the best performance of the train-
ing algorithm was reached at epoch 6 with an MSE of 
0.0035, while the best validation and test performances 
were 0.0045. Besides, the accuracy of using the LM algo-
rithm to train the ERNN was about 100 %.

5.4 RPROP algorithm
This experiment was conducted using the RPROP algorithm 
to train the ERNN. The testing process was conducted 

on the data used in the previous algorithms, representing 
32 samples not used in the training step, and the results are 
shown in Fig. 9.

From Fig. 9, one can observe the highest accuracy rate 
achieved at epoch 9 using the RPROP algorithm. The best 
training performance was 0.0715, the best validation 
performance was 0.0401, and the best test performance 
was 0.0242.

5.5 Comparative results
To discriminate between the LM, GDA, GDX, and RPROP 
algorithms that are used to train the ERNN, a comparison 
among these algorithms is made in Table 1.

Fig. 8 Results of using the LM algorithm; (a) Training performance; 
(b) Confusion matrix

Fig. 9 Results of using the RPROP algorithm; (a) Training performance; 
(b) Confusion matrix
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It is evident from Table 1 that the LM algorithm has 
advantages over the others in terms of MSE and the number 
of training iterations. Therefore, it offers the fastest train-
ing backpropagation algorithm, where the speed of this 
algorithm was modified to be compatible with the speed 
of the second-order system. Although the RPROP algorithm 
reaches the best results after nine epochs, the MSE of the 
training performance is the highest compared to the others.

5.6 Comparison with other approaches
It is better to evaluate the proposed work by comparing 
it with the previous approaches for detecting OC. Table 2 
displays such a comparison based on two key performance 
metrics: classification accuracy and the number of epochs.

It is obvious from Table 2 that the proposed LM-ERNN 
method is capable of achieving the highest accuracy rate 
using just six epochs. Although four epochs were used 
for [10], it achieved a poor classification accuracy of about 
84.27%. The work introduced in [16] achieved an accu-
racy rate of 98.96 using MLP with GDX and 99.48% using 

GBC with SVM-RBF, where the rate of 99.48% is the clos-
est to that of the proposed work. However, using multi-
stage feature extraction, training algorithm and classifier 
adds more complexity to the system and consumes extra 
time. Therefore, the proposed method outperforms the 
related work regarding accuracy, simplicity, and number 
of training iterations.

6 Conclusion 
Deep learning is used in various medical applications 
to detect abnormal cases. This study proposes an appro-
priate neural network architecture with the following 
advantages:

1.	 achieving excellent performance,
2.	decreasing the processing time,
3.	 minimizing the capacity of memory usage.

Furthermore, this research has a potential impact on 
critical medical applications such as healthcare or safe-
ty-critical systems. ERNN has been used for OC detec-
tion using the mass spectrometry data on protein profiles, 
distinguishing between control patients and cancer states 
by selecting a short set of features. These features are the 
levels of ion intensity at specific mass values, which are 
used to produce neural network outputs 1 or 0 to indicate 
cancer or normal patient states, respectively. The ERNN 
model includes four layers:

•	 The input layer with 100 nodes;
•	 The context layer with five neurons;
•	 The hidden layer with five neurons;
•	 The output layer with two nodes.

Four backpropagation training algorithms were 
employed to train the ERNN: LM, GDA, GDX and RPROP. 
The experiments showed that the mentioned algorithms 
achieved 100% classification accuracy. Furthermore, using 
only six epochs, the LM algorithm achieved the lowest 
MSE, about 0.0035, 0.0045, and 0.0045 for training, vali-
dation, and test performances, respectively. The proposed 
LM-ERNN method is compared to other related work, 
showing the superiority of the proposed work among other 
approaches to detect OC.

The proposed method is expected to be able to detect dif-
ferent cancer types and diseases in future works. In addition, 
some improvements to the network structure will be useful 
in reducing the processing time and utilizing memory.

Table 1 Comparative results of ERNN performances using different 
training algorithms

Training algorithm LM GDA GDX RPROP

Training performance 0.0035 0.0433 0.0511 0.0715

Validation performance 0.0045 0.0686 0.0312 0.0401

Test performance 0.0045 0.0192 0.0159 0.0242

No. of epochs 6 119 124 9

Accuracy rate (%) 100 100 100 100

Table 2 Comparison between the proposed and related methods

Ref. No. Method Accuracy 
(%)

No. of 
epochs

[10] FNN 84.72 4

[11] EABC 91.2 200

[12] DCNN 78.2 NA

[13] 15-Neuron Feed Forward 98.7 10

[14] SOM and ORNN 96.27 10000

[15] CNN 95 30

[16]
MLP and GDX 98.96 NA

GBC and SVM-RBF 99.48 NA

[17] CEA 94.9 NA

[18] Random Forest 72 NA

[19] Random Forest 90.5 NA

[20] SVM 97.16 NA

[21] CART 98.2 NA

This work LM-ERNN 100 6
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