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Abstract

Railway interlocking systems can be implemented as distributed systems, where each part of a station is handled by a separate logical 

unit. The logical units of such systems form a network and communicate by interchanging messages. Such distributed architectures 

are well known in large industrial control systems. There are several design practices and also algorithmic task partitioning methods 

that are applicable in distributed control systems. Some of such methods can also be adapted in designing of railway interlocking 

systems as well. In the case of such systems, the communication time between components must be kept low. Namely each separate 

controller in a given route must be able to exchange their internal state within a limited time in order to permit the train movement 

authorization. This limitation could cause high traffic load, if every logical unit would be interconnected with each other. Therefore, 

the main goal of the minimization is to reduce the number of connections between logical units. This can achieved by distributing and 

assigning the topological railway objects to certain logical units.

Keywords

decomposition, interlocking, partitioning, distributed logic

1 Introduction
A distributed electronic railway interlocking subsystem 
can have several different architectures, the main distinc-
tion between different products is whether their core logic 
is implemented in a distributed or centralized way. In gen-
eral, the distributed core logic can be more scalable, than 
the centralized one, thus it enables to use them for larger 
stations, while centralized interlocking systems are suitable 
for smaller stations, track sections. For this paper, we con-
sidered both homogeneous and heterogenous distributed 
architectures, where the main interlocking logic is imple-
mented using several uniform, general purpose, internally 
redundant and fault tolerant logical units referred to as LG 
units or racks. In the homogeneous case, we assume, that 
the program execution time is similar for all types of rail-
way objects. In the heterogeneous case, we also consider 
the difference in the program execution time. The logical 
units are interconnected by point-to-point network links.

The distributed system is responsible for controlling 
all the railway objects of a station. The individual railway 
objects such as light signals and switches are handled on a 
topological unit basis. The topological units (TUs) are sets 

of railway objects arranged according to the topology of 
the station. This means that each separate TU, for example 
a track or turnout encapsulates all kinds of its own light 
signals (main or shunting) and possibly occupancy sen-
sors. In the case of axle counters, the counter logics are 
integrated in the TUs and the train detection points trans-
mit the data to each affected TU.

In this sense there are four different TU to be handled:
• Track section
• Turnout
• Interval connection
• Buffer stop.

These four TUs are to be handled by so called applica-
tions on the proposed general purpose LG unit. Further 
on, it will be estimated that each LG unit will be able to 
handle at most some of these applications. This limit is 
a mandatory requirement for the application distribution 
algorithm. Therefore, for any given station all the TUs 
must be assigned to LGs in a specific way, algorithmically. 
Such  distribution problems are usually considered as a 
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form of graph decomposition problem, similar to those, 
used in high level synthesis applications [1]. For this pur-
pose, a topology description graph should be constructed 
according to the actual topology of the station.

To the best of our knowledge, no decomposition algo-
rithms exist, that were specifically designed for the pur-
pose of railway interlocking load distribution. The spec-
tral clustering is a well-known decomposition method for 
image processing and also for task decomposition in grid 
computing and in system level synthesis. The spectral 
clustering calculates the spectrum of the graph in order to 
decide which nodes belong to the same segment. The spec-
trum of the graph is basically the result of a linear map-
ping. This associates every graph node with a set of real 
numbers. Usually, in graph segmentation only one dimen-
sional spectrum is used which means that every graph node 
is associated with a single real number. The differences 
between such numbers directly correspond to the "close-
ness" of the nodes. The more two nodes are connected, the 
less is the difference between their spectral values.

Distribution of the TUs may be achieved by applying 
the spectral clustering on the actual topology description 
graph of the station.

2 Methods
The topology description graph (TDG) is an undi-
rected graph with simple, unweighted edges and nodes. 
The nodes of the graph represent TUs, while the edges 
represent the connections between them. Only the neigh-
bouring objects are connected by edges.

A simple example station is shown in Fig. 1 and its 
TDG in Fig.  2.

The purpose of the decomposition is to create such a 
so called segment graph by grouping the nodes for form-
ing the segments. The nodes of this segment graph will 
correspond to the LG units, and the edges to the actual 
communication channels between LG units. The decom-
position of the TDG can be performed by various meth-
ods [2–7]. However, most of these methods used in typ-
ical high level synthesis applications, mainly operate on 
directed graphs, so they may not be universally applied 
to an undirected graph. Furthermore, most of the exist-
ing techniques [3, 5, 6] rely on mainly iterative methods, 

and therefore they are not suitable for practically large 
graphs. On the other hand, the spectral clustering meth-
ods [2, 4, 7] such as our proposed solution can provide a 
closed algebraic form for the high level problem.

First, the set of metrics and rules must be defined by 
which the decomposition should be performed. The most 
important rule is that each segment can contain at most 
4 TUs, since this is the limit of the considered architec-
ture. Second, there are two metrics that must be optimized. 
The number of outgoing connections from each LG unit 
must be minimized. This means the maximal degree of the 
segment graph. Then, the number of LG units communicat-
ing on the longest possible route must also be minimized.

2.1 Normalized Spectral clustering
In the case of homogeneous distributed logic, when the 
other properties of the nodes are similar we can use the 
simple Normalized Spectral clustering.

If the data flow graph is only available in the form of 
an incidence matrix, it can be simply transformed into an 
adjacency matrix with the following transformation:

W B B� � � � �G T G  (1)

where B is the incidence matrix and W is the adjacency 
matrix of graph G. For any railway station, determining 
the incidence matrix is a systematic and straight forward 
process, as it can be easily generated from any graph 
description language.

In the following chapters it is assumed, that the verti-
ces (V) of graph G = (V, E) can be decomposed into two 
disjoint sets: A, and B, where it is true, that A B V� �
and A B� ��  by removing certain edges (E), that con-
nected the two parts.

By definition, the Normalized Cut [8] is a cut minimal-
ization process with a closed formula, that can consider 
the isolated nodes against the whole graph:
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The spectral clustering calculates the spectrum of the 
graph in order to decide which nodes belong to the same 
segment. The spectrum of the graph is basically the result Fig. 1 A simple station topology
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of a linear mapping. This associates every graph node 
with a set of real numbers. Usually, in graph segmenta-
tion only one dimensional spectrum is used which means 
that every graph node is associated with a single real num-
ber. The differences between such numbers directly corre-
spond to the "closeness" of the nodes. The more two nodes 
are connected, the less is the difference between their 
spectral values. In order to calculate the spectrum, first 
we must construct the Laplacian matrix (L) of the graph, 
since from Eq. (2) it can derived to the form of:

D W y Dy�� � � � .  (5)

where D is a diagonal matrix with d(i), where d(i) is

d i w i j
j� � � � �� , ,  (6)

λ is the main objective of the minimization and y is the vec-
tor, that will determine whether a specific node belongs to 
group A or B as can be seen in [7].

Note, that the generalized eigenvalue system above is a 
Rayleigh quotient, and we can minimize it by solving the 
equation. By reorder the Eq. (5), the Laplacian matrix is 
the following:

L D D W D� �� �
� �
1

2

1

2  (7)

Since L is positive-semidefinite, it always has non neg-
ative eigenvalues.
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The eigenvector corresponding to the smallest non zero 
eigenvalue is usually considered as the one-dimensional 
spectrum:
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As an example, Table 1 shows the first three eigenvec-
tors corresponding to the three smallest eigenvalues that 
can be derived of the graph in Fig. 2.

The one-dimensional spectrum (y1 column from 
Table 1) of the TDG related to the simple station shown 
in Fig. 3.

The spectrum can also be calculated in multiple dimen-
sions. In this case, a vector is associated with each node, 
instead of a real number. The coordinates of these N 
dimensional vectors are the coordinates of the N eigenvec-
tors corresponding to the first N smallest non zero eigen-
values. In the case of multidimensional vectors, the dis-
tances between points can still be calculated based on the 
Euclidean distances of the spectrum vectors.

The 2-dimensional spectrum of the TDG in Fig. 2 is 
shown in Fig. 4.

The 3-dimensional spectrum of the TDG in Fig. 2 is 
shown in Fig. 5.

Fig. 2 A simple station topology
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After the spectrum is calculated for a specific TDG, the 
spectrum values are used as input to a multidimensional 
k-means algorithm, which sorts the values into clusters 
based on Euclidian distance [9].

Since k-means may be used in multiple dimensions, 
it was found that the 3 dimensional spectrum was usu-
ally enough to provide a suitable clustering, therefore the 
first 3 eigenvectors were chosen only. The main problem 
in k-means is that the resulting cluster sizes will not be 

uniform. There are some solutions for constraining the 
minimum cluster size for k-means [10], one is already 
implemented in Matlab [11]. This kind of constraint how-
ever does not fit our needs, since the TDG nodes will form 
the applications running on LGs. However, LGs have a 
limited computational capacity which is a maximum con-
strain on cluster sizes. Therefore, we've adapted the solu-
tion in [11] similarly to [12] to take into account the maxi-
mum cluster size instead, and create new clusters whenever 
an existing one would exceed the given maximum size. 

The resulting algorithm can provide clusters close to 
but always less than the preferred maximum size.

2.2 Weighted Normalized Spectral clustering
In the case of the heterogenous version of distributed inter-
locking core logic, we should consider the different type of 
TUs take different execution time and different amount of 
resources to control. Therefore assigning the same num-
ber of TUs to every LG will not result a balanced distribu-
tion of load. This can be handled by adding weights to the 
nodes of the different types of TUs.

The NCut algorithm is originally only suitable for image 
segmentation in which the gradient between the pixels is 
represented by the weight of the edges. The nodes them-
selves in the original problem have no properties, there-
fore they are not represented in the normalized cut equa-
tion. This problem can be solved by using the Weighted 
Normalized Cut algorithm, that is a modified version of 
the original spectral clustering algorithm [13].

The main idea behind the Weighted Normalized Cut 
is extending the TDG with full subgraphes (cliques) on 
the desired nodes as seen in Fig. 6. This can be ensured 
by adding weight of the edges in the different cliques 
attached to the original nodes.

Fig. 3 One dimensional spectrum of the simple station

Table 1 Solution of the eigenvalue problem of Fig. 2

TU identifier y1 y2 y3

1OutOfScopeConnection 0.4057 0.2797 −0.3848

2BufferStop 0.2901 0.1879 0.0868

3BlockConnection 0.0385 −0.5739 −0.3313

4BlockConnection −0.4967 0.2320 −0.3840

5Switch 0.0796 0.0292 0.2531

6Track −0.0347 0.0416 0.3486

9Switch 0.0112 −0.1180 0.2508

8Track 0.0239 −0.3274 0.0418

10Track −0.0713 −0.0380 0.3471

13Switch −0.1444 0.0477 0.2907

12Track −0.3080 0.1324 0.0485

17Switch 0.2516 0.1596 0.0486

16Track 0.3520 0.2376 −0.2155

18Track 0.0334 −0.4874 −0.1855

19Track −0.4309 0.1971 −0.2151

Eigenvalues 0.1324 0.1508 0.44

Fig. 4 Two dimensional spectrum of the simple station

Fig. 5 Three dimensional spectrum of the simple station
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The weight of the edges in the full subgraphs can be 
determined by using the trace of the extended diagonal 
matrix Dext, the weights of the nodes and therefore the 
number of edges in the full subgraphs as the following:

w
v i tr

Ejk K
i

K i
i,�

,

(max )

.�
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�

2 1

1

Dext
 (10)

After extending the original TDG, the generated 
graph can be called ETDG (extended topology descrip-
tion graph). The Normalized Spectral Clustering can be 
applied to the ETDG, thus the following steps are identical 
to the previous steps, that described in Section 2.1.

In the following example, the station is the same as it 
was before, the layout shown in Fig. 1. Additionally, the 
weights for the different types of TUs are:

• Track section: 4
• Turnout: 3
• Interval connection: 1
• Buffer stop: 1.

The ETDG of Fig. 1 is shown in Fig. 7.
The spectrum of the ETDG is shown in Fig. 8 which 

is similar, but not identical as the original one, without 
weights. The differences are definitely visible between 
Fig. 3 and Fig. 7, because TUs with weight of 1 are much 

closer to other TUs. Weights are also taken into account by 
the modified k-means clustering algorithm.

3 Results
In order to test the method on an actual large example, 
Budapest Kelenföld railway station was chosen as it is one 
of the busiest and most complex railway stations in Hungary.

The topology of this station is shown in Fig. 9.
In the case of this large example The number of TUs 

is 244 and the number of required LG units is 61. The 
resulting decomposition is shown in Fig. 10. 

The metrics for this decomposition show that the maxi-
mal number of communication channels between any two 
LG units is 8 which is sufficiently low. Also, the longest 
communication path contains 10 LG units, but can be fur-
ther improved simply by looking at the resulting graph.

In order to further improve the decomposition for 
such large stations, a simple local refinement method was 
applied as shown below.

3.1 Local refinement
Many decomposition and most hardware-software partition-
ing methods apply some sort of simple local refinement algo-
rithm [13] in order to improve the initial results of a more 
complex global algorithm. By analysing the results of the 
above decompositions, it is apparent that simply by swap-
ping some TUs between LG units will provide better results.

Based on this idea a simple local refinement strategy 
can be used:

1. Take a list of all pairs of TUs that are assigned to dif-
ferent LG units.

2. Check each item (TU pair) on the list in sequence 
and do the following iteration:
a. If neither TU in a given pair have neighbours in 

the other segment, do nothing and try another pair.
b. Else, exchange the two TU between the segments.

Fig. 6 Extension of the Pi node

Fig. 7 The ETDG of Fig. 1

Fig. 8 The spectrum of the ETDG
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c. Recalculate metrics, and undo the exchange if 
neither metric improves or either of them gets worse 
because of it. Otherwise keep the TUs exchanged.

d. If the exchange was not withdrawn, recreate the 
whole list and start a new iteration.
3. Stop if all the exchanges were withdrawn in an 

iteration.

Obviously, this algorithm cannot guarantee the globally 
optimal result and can take much time on a randomly par-
titioned graph. However, after an aforementioned spectral 

decomposition has already been performed, only a few of the 
possible exchanges will improve the metrics. Because of this, 
the execution time of this algorithm will not be excessive.

3.2 Results of the local refinements
As an illustrative example of the local refinement, Fig. 11. 
shows the result of the weighted spectral clustering methods, 
where the TUs are allocated to 4 LGs (rack1 through rack4). 

It can be seen on Fig. 12, that locking a route through 
this station requires communication between all four LG 
units. However a much better solution can be obtained just 

Fig. 9 Kelenföld Railway station

Fig. 10 TDG of Kelenföld Railway station
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by swapping the LG assignment of just two TUs. Such a 
solution is provided by our local refinement algorithms, 
and the end result can be seen in Fig. 13.

Similarly, the results of the large railway station of 
Kelenföld can be seen after this local refinement algo-
rithm in Fig. 11.

Applying the local refinement to the previous example 
reduces the maximal number of communication channels 
from 8 to 7 and also reduces the longest communication 
path from 10 to 8 LG units. Thus, only 442 exchanges 
were attempted comparing with the possible 59292 ran-
dom combinations.

The resulting decomposition for this station could not be 
improved further by trivial measures. The execution time of 
these algorithms implemented in MATLAB on a contem-
porary PC (Intel i7 2640m, 8GB RAM) required approxi-
mately 24 min from which the local refinement needed 22 
min. This is because the spectral clustering algorithm sim-
plifies most parts of the minimization in an exact mathemat-
ical formula, where only the eigensolver requires iteration.

4 Conclusion
We have proposed a new algorithm for task partitioning 
of distributed railway interlocking subsystems. The new 

Fig. 11 Refinement of the TDG, where the most visible differences are marked with the black boxes

Fig. 12 Weighted normalized cut result for a simple station Fig. 13 Result of the local refinement applied on Fig. 12
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algorithm uses the multidimensional spectral clustering 
method completed with a new local refinement. This algo-
rithm can provide close to optimal decompositions with 
respect to the defined metrics even for station with practi-
cal size. The execution time of the algorithm could still be 
optimized by a better implementation, although it provides 
results in an acceptable time-frame for typical station sizes.

The use of distributed logic in an interlocking system 
is very important, because of the railway RAM (reliabil-
ity, availability, maintainability) requirements, described in 

EN 50126-1:2018 [14]. The distributed logic is proven more 
reliable then a centralized interlocking system, as a fallback 
of a single LG unit won’t cause shutdown of the entire station. 

Properly implemented distributed logic [15] will 
ensure a highly scalable interlocking system, because the 
same kind of LG units can be used in different quantities 
depending on the station size and topology. This algorithm 
can provide a cost effective interlocking logic distribution 
method for the locking dependencies.
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