
Cite this article as: Arató, P., Markovits, T. G., Rácz, G. "Algorithmic Decomposition of Railway Objects for Distributed Interlocking System", Periodica
Polytechnica Electrical Engineering and Computer Science, 68(4), pp. 319–326, 2024. https://doi.org/10.3311/PPee.23363

https://doi.org/10.3311/PPee.23363
Creative Commons Attribution b |319

Periodica Polytechnica Electrical Engineering and Computer Science, 68(4), pp. 319–326, 2024

Algorithmic Decomposition of Railway Objects for Distributed
Interlocking System

Péter Arató1, Tibor Gergely Markovits1*, György Rácz1

1 Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics, Budapest
University of Technology and Economics, Magyar tudósok krt. 2., H-1117 Budapest, Hungary

* Corresponding author, e-mail: markovits@iit.bme.hu

Received: 04 September 2023, Accepted: 16 August 2024, Published online: 13 September 2024

Abstract

Railway interlocking systems can be implemented as distributed systems, where each part of a station is handled by a separate logical

unit. The logical units of such systems form a network and communicate by interchanging messages. Such distributed architectures

are well known in large industrial control systems. There are several design practices and also algorithmic task partitioning methods

that are applicable in distributed control systems. Some of such methods can also be adapted in designing of railway interlocking

systems as well. In the case of such systems, the communication time between components must be kept low. Namely each separate

controller in a given route must be able to exchange their internal state within a limited time in order to permit the train movement

authorization. This limitation could cause high traffic load, if every logical unit would be interconnected with each other. Therefore,

the main goal of the minimization is to reduce the number of connections between logical units. This can achieved by distributing and

assigning the topological railway objects to certain logical units.

Keywords

decomposition, interlocking, partitioning, distributed logic

1 Introduction
A distributed electronic railway interlocking subsystem
can have several different architectures, the main distinc-
tion between different products is whether their core logic
is implemented in a distributed or centralized way. In gen-
eral, the distributed core logic can be more scalable, than
the centralized one, thus it enables to use them for larger
stations, while centralized interlocking systems are suitable
for smaller stations, track sections. For this paper, we con-
sidered both homogeneous and heterogenous distributed
architectures, where the main interlocking logic is imple-
mented using several uniform, general purpose, internally
redundant and fault tolerant logical units referred to as LG
units or racks. In the homogeneous case, we assume, that
the program execution time is similar for all types of rail-
way objects. In the heterogeneous case, we also consider
the difference in the program execution time. The logical
units are interconnected by point-to-point network links.

The distributed system is responsible for controlling
all the railway objects of a station. The individual railway
objects such as light signals and switches are handled on a
topological unit basis. The topological units (TUs) are sets

of railway objects arranged according to the topology of
the station. This means that each separate TU, for example
a track or turnout encapsulates all kinds of its own light
signals (main or shunting) and possibly occupancy sen-
sors. In the case of axle counters, the counter logics are
integrated in the TUs and the train detection points trans-
mit the data to each affected TU.

In this sense there are four different TU to be handled:
• Track section
• Turnout
• Interval connection
• Buffer stop.

These four TUs are to be handled by so called applica-
tions on the proposed general purpose LG unit. Further
on, it will be estimated that each LG unit will be able to
handle at most some of these applications. This limit is
a mandatory requirement for the application distribution
algorithm. Therefore, for any given station all the TUs
must be assigned to LGs in a specific way, algorithmically.
Such distribution problems are usually considered as a

https://doi.org/10.3311/PPee.23363
https://doi.org/10.3311/PPee.23363
mailto:markovits%40iit.bme.hu?subject=markovits%40iit.bme.hu

320|Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024

form of graph decomposition problem, similar to those,
used in high level synthesis applications [1]. For this pur-
pose, a topology description graph should be constructed
according to the actual topology of the station.

To the best of our knowledge, no decomposition algo-
rithms exist, that were specifically designed for the pur-
pose of railway interlocking load distribution. The spec-
tral clustering is a well-known decomposition method for
image processing and also for task decomposition in grid
computing and in system level synthesis. The spectral
clustering calculates the spectrum of the graph in order to
decide which nodes belong to the same segment. The spec-
trum of the graph is basically the result of a linear map-
ping. This associates every graph node with a set of real
numbers. Usually, in graph segmentation only one dimen-
sional spectrum is used which means that every graph node
is associated with a single real number. The differences
between such numbers directly correspond to the "close-
ness" of the nodes. The more two nodes are connected, the
less is the difference between their spectral values.

Distribution of the TUs may be achieved by applying
the spectral clustering on the actual topology description
graph of the station.

2 Methods
The topology description graph (TDG) is an undi-
rected graph with simple, unweighted edges and nodes.
The nodes of the graph represent TUs, while the edges
represent the connections between them. Only the neigh-
bouring objects are connected by edges.

A simple example station is shown in Fig. 1 and its
TDG in Fig. 2.

The purpose of the decomposition is to create such a
so called segment graph by grouping the nodes for form-
ing the segments. The nodes of this segment graph will
correspond to the LG units, and the edges to the actual
communication channels between LG units. The decom-
position of the TDG can be performed by various meth-
ods [2–7]. However, most of these methods used in typ-
ical high level synthesis applications, mainly operate on
directed graphs, so they may not be universally applied
to an undirected graph. Furthermore, most of the exist-
ing techniques [3, 5, 6] rely on mainly iterative methods,

and therefore they are not suitable for practically large
graphs. On the other hand, the spectral clustering meth-
ods [2, 4, 7] such as our proposed solution can provide a
closed algebraic form for the high level problem.

First, the set of metrics and rules must be defined by
which the decomposition should be performed. The most
important rule is that each segment can contain at most
4 TUs, since this is the limit of the considered architec-
ture. Second, there are two metrics that must be optimized.
The number of outgoing connections from each LG unit
must be minimized. This means the maximal degree of the
segment graph. Then, the number of LG units communicat-
ing on the longest possible route must also be minimized.

2.1 Normalized Spectral clustering
In the case of homogeneous distributed logic, when the
other properties of the nodes are similar we can use the
simple Normalized Spectral clustering.

If the data flow graph is only available in the form of
an incidence matrix, it can be simply transformed into an
adjacency matrix with the following transformation:

W B B� � � � �G T G (1)

where B is the incidence matrix and W is the adjacency
matrix of graph G. For any railway station, determining
the incidence matrix is a systematic and straight forward
process, as it can be easily generated from any graph
description language.

In the following chapters it is assumed, that the verti-
ces (V) of graph G = (V, E) can be decomposed into two
disjoint sets: A, and B, where it is true, that A B V� �
and A B� �� by removing certain edges (E), that con-
nected the two parts.

By definition, the Normalized Cut [8] is a cut minimal-
ization process with a closed formula, that can consider
the isolated nodes against the whole graph:

Ncut
cut

assoc

cut

assoc
A B

A B
A V

A B
B V

,
,

,

,

,
,� � � � �

� �
�

� �
� � (2)

where

assoc A V w u t
u A t V

, ,
,

� � � � �
� �� (3)

and
cut A B w u v

u A v B

, , .
,

� � � � �
� �
� (4)

The spectral clustering calculates the spectrum of the
graph in order to decide which nodes belong to the same
segment. The spectrum of the graph is basically the result Fig. 1 A simple station topology

Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024 |321

of a linear mapping. This associates every graph node
with a set of real numbers. Usually, in graph segmenta-
tion only one dimensional spectrum is used which means
that every graph node is associated with a single real num-
ber. The differences between such numbers directly corre-
spond to the "closeness" of the nodes. The more two nodes
are connected, the less is the difference between their
spectral values. In order to calculate the spectrum, first
we must construct the Laplacian matrix (L) of the graph,
since from Eq. (2) it can derived to the form of:

D W y Dy�� � � � . (5)

where D is a diagonal matrix with d(i), where d(i) is

d i w i j
j� � � � �� , , (6)

λ is the main objective of the minimization and y is the vec-
tor, that will determine whether a specific node belongs to
group A or B as can be seen in [7].

Note, that the generalized eigenvalue system above is a
Rayleigh quotient, and we can minimize it by solving the
equation. By reorder the Eq. (5), the Laplacian matrix is
the following:

L D D W D� �� �
� �
1

2

1

2 (7)

Since L is positive-semidefinite, it always has non neg-
ative eigenvalues.

D D W D z z
� �

�� � �
1

2

1

2 � (8)

The eigenvector corresponding to the smallest non zero
eigenvalue is usually considered as the one-dimensional
spectrum:

y
y D W y
y Dyy D

1
01

� �
�� ��

�
��

�

�
���

arg min .
T

T

T
 (9)

As an example, Table 1 shows the first three eigenvec-
tors corresponding to the three smallest eigenvalues that
can be derived of the graph in Fig. 2.

The one-dimensional spectrum (y1 column from
Table 1) of the TDG related to the simple station shown
in Fig. 3.

The spectrum can also be calculated in multiple dimen-
sions. In this case, a vector is associated with each node,
instead of a real number. The coordinates of these N
dimensional vectors are the coordinates of the N eigenvec-
tors corresponding to the first N smallest non zero eigen-
values. In the case of multidimensional vectors, the dis-
tances between points can still be calculated based on the
Euclidean distances of the spectrum vectors.

The 2-dimensional spectrum of the TDG in Fig. 2 is
shown in Fig. 4.

The 3-dimensional spectrum of the TDG in Fig. 2 is
shown in Fig. 5.

Fig. 2 A simple station topology

322|Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024

After the spectrum is calculated for a specific TDG, the
spectrum values are used as input to a multidimensional
k-means algorithm, which sorts the values into clusters
based on Euclidian distance [9].

Since k-means may be used in multiple dimensions,
it was found that the 3 dimensional spectrum was usu-
ally enough to provide a suitable clustering, therefore the
first 3 eigenvectors were chosen only. The main problem
in k-means is that the resulting cluster sizes will not be

uniform. There are some solutions for constraining the
minimum cluster size for k-means [10], one is already
implemented in Matlab [11]. This kind of constraint how-
ever does not fit our needs, since the TDG nodes will form
the applications running on LGs. However, LGs have a
limited computational capacity which is a maximum con-
strain on cluster sizes. Therefore, we've adapted the solu-
tion in [11] similarly to [12] to take into account the maxi-
mum cluster size instead, and create new clusters whenever
an existing one would exceed the given maximum size.

The resulting algorithm can provide clusters close to
but always less than the preferred maximum size.

2.2 Weighted Normalized Spectral clustering
In the case of the heterogenous version of distributed inter-
locking core logic, we should consider the different type of
TUs take different execution time and different amount of
resources to control. Therefore assigning the same num-
ber of TUs to every LG will not result a balanced distribu-
tion of load. This can be handled by adding weights to the
nodes of the different types of TUs.

The NCut algorithm is originally only suitable for image
segmentation in which the gradient between the pixels is
represented by the weight of the edges. The nodes them-
selves in the original problem have no properties, there-
fore they are not represented in the normalized cut equa-
tion. This problem can be solved by using the Weighted
Normalized Cut algorithm, that is a modified version of
the original spectral clustering algorithm [13].

The main idea behind the Weighted Normalized Cut
is extending the TDG with full subgraphes (cliques) on
the desired nodes as seen in Fig. 6. This can be ensured
by adding weight of the edges in the different cliques
attached to the original nodes.

Fig. 3 One dimensional spectrum of the simple station

Table 1 Solution of the eigenvalue problem of Fig. 2

TU identifier y1 y2 y3

1OutOfScopeConnection 0.4057 0.2797 −0.3848

2BufferStop 0.2901 0.1879 0.0868

3BlockConnection 0.0385 −0.5739 −0.3313

4BlockConnection −0.4967 0.2320 −0.3840

5Switch 0.0796 0.0292 0.2531

6Track −0.0347 0.0416 0.3486

9Switch 0.0112 −0.1180 0.2508

8Track 0.0239 −0.3274 0.0418

10Track −0.0713 −0.0380 0.3471

13Switch −0.1444 0.0477 0.2907

12Track −0.3080 0.1324 0.0485

17Switch 0.2516 0.1596 0.0486

16Track 0.3520 0.2376 −0.2155

18Track 0.0334 −0.4874 −0.1855

19Track −0.4309 0.1971 −0.2151

Eigenvalues 0.1324 0.1508 0.44

Fig. 4 Two dimensional spectrum of the simple station

Fig. 5 Three dimensional spectrum of the simple station

Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024 |323

The weight of the edges in the full subgraphs can be
determined by using the trace of the extended diagonal
matrix Dext, the weights of the nodes and therefore the
number of edges in the full subgraphs as the following:

w
v i tr

Ejk K
i

K i
i,�

,

(max)

.�
� � � � � �

�

2 1

1

Dext
 (10)

After extending the original TDG, the generated
graph can be called ETDG (extended topology descrip-
tion graph). The Normalized Spectral Clustering can be
applied to the ETDG, thus the following steps are identical
to the previous steps, that described in Section 2.1.

In the following example, the station is the same as it
was before, the layout shown in Fig. 1. Additionally, the
weights for the different types of TUs are:

• Track section: 4
• Turnout: 3
• Interval connection: 1
• Buffer stop: 1.

The ETDG of Fig. 1 is shown in Fig. 7.
The spectrum of the ETDG is shown in Fig. 8 which

is similar, but not identical as the original one, without
weights. The differences are definitely visible between
Fig. 3 and Fig. 7, because TUs with weight of 1 are much

closer to other TUs. Weights are also taken into account by
the modified k-means clustering algorithm.

3 Results
In order to test the method on an actual large example,
Budapest Kelenföld railway station was chosen as it is one
of the busiest and most complex railway stations in Hungary.

The topology of this station is shown in Fig. 9.
In the case of this large example The number of TUs

is 244 and the number of required LG units is 61. The
resulting decomposition is shown in Fig. 10.

The metrics for this decomposition show that the maxi-
mal number of communication channels between any two
LG units is 8 which is sufficiently low. Also, the longest
communication path contains 10 LG units, but can be fur-
ther improved simply by looking at the resulting graph.

In order to further improve the decomposition for
such large stations, a simple local refinement method was
applied as shown below.

3.1 Local refinement
Many decomposition and most hardware-software partition-
ing methods apply some sort of simple local refinement algo-
rithm [13] in order to improve the initial results of a more
complex global algorithm. By analysing the results of the
above decompositions, it is apparent that simply by swap-
ping some TUs between LG units will provide better results.

Based on this idea a simple local refinement strategy
can be used:

1. Take a list of all pairs of TUs that are assigned to dif-
ferent LG units.

2. Check each item (TU pair) on the list in sequence
and do the following iteration:
a. If neither TU in a given pair have neighbours in

the other segment, do nothing and try another pair.
b. Else, exchange the two TU between the segments.

Fig. 6 Extension of the Pi node

Fig. 7 The ETDG of Fig. 1

Fig. 8 The spectrum of the ETDG

324|Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024

c. Recalculate metrics, and undo the exchange if
neither metric improves or either of them gets worse
because of it. Otherwise keep the TUs exchanged.

d. If the exchange was not withdrawn, recreate the
whole list and start a new iteration.
3. Stop if all the exchanges were withdrawn in an

iteration.

Obviously, this algorithm cannot guarantee the globally
optimal result and can take much time on a randomly par-
titioned graph. However, after an aforementioned spectral

decomposition has already been performed, only a few of the
possible exchanges will improve the metrics. Because of this,
the execution time of this algorithm will not be excessive.

3.2 Results of the local refinements
As an illustrative example of the local refinement, Fig. 11.
shows the result of the weighted spectral clustering methods,
where the TUs are allocated to 4 LGs (rack1 through rack4).

It can be seen on Fig. 12, that locking a route through
this station requires communication between all four LG
units. However a much better solution can be obtained just

Fig. 9 Kelenföld Railway station

Fig. 10 TDG of Kelenföld Railway station

Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024 |325

by swapping the LG assignment of just two TUs. Such a
solution is provided by our local refinement algorithms,
and the end result can be seen in Fig. 13.

Similarly, the results of the large railway station of
Kelenföld can be seen after this local refinement algo-
rithm in Fig. 11.

Applying the local refinement to the previous example
reduces the maximal number of communication channels
from 8 to 7 and also reduces the longest communication
path from 10 to 8 LG units. Thus, only 442 exchanges
were attempted comparing with the possible 59292 ran-
dom combinations.

The resulting decomposition for this station could not be
improved further by trivial measures. The execution time of
these algorithms implemented in MATLAB on a contem-
porary PC (Intel i7 2640m, 8GB RAM) required approxi-
mately 24 min from which the local refinement needed 22
min. This is because the spectral clustering algorithm sim-
plifies most parts of the minimization in an exact mathemat-
ical formula, where only the eigensolver requires iteration.

4 Conclusion
We have proposed a new algorithm for task partitioning
of distributed railway interlocking subsystems. The new

Fig. 11 Refinement of the TDG, where the most visible differences are marked with the black boxes

Fig. 12 Weighted normalized cut result for a simple station Fig. 13 Result of the local refinement applied on Fig. 12

326|Arató et al.
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 319–326, 2024

algorithm uses the multidimensional spectral clustering
method completed with a new local refinement. This algo-
rithm can provide close to optimal decompositions with
respect to the defined metrics even for station with practi-
cal size. The execution time of the algorithm could still be
optimized by a better implementation, although it provides
results in an acceptable time-frame for typical station sizes.

The use of distributed logic in an interlocking system
is very important, because of the railway RAM (reliabil-
ity, availability, maintainability) requirements, described in

EN 50126-1:2018 [14]. The distributed logic is proven more
reliable then a centralized interlocking system, as a fallback
of a single LG unit won’t cause shutdown of the entire station.

Properly implemented distributed logic [15] will
ensure a highly scalable interlocking system, because the
same kind of LG units can be used in different quantities
depending on the station size and topology. This algorithm
can provide a cost effective interlocking logic distribution
method for the locking dependencies.

References
[1] Arató, P., Drexler, D., Rácz, Gy. "Analyzing the Effect of

Decomposition Algorithms on the heterogeneous Multiprocessing
Architectures in System Level Synthesis", Scientific Bulletin of
Politechnica University of Timisoara Transactions on Automatic
Control and Computer Science, 60(74), pp. 39–46, 2015.

[2] Hendrickson, B., Leland, R. "The Chaco User's Guide Version 2.0",
Sandia National Laboratories, Albuquerque, NM, USA, Technical
Report SAND94-2692, 1994.

 https://doi.org/10.2172/10106339
[3] Hendrickson, B., Leland, R. "A Multilevel Algorithm for

Partitioning Graphs", In: Supercomputing '95: Proceedings of the
1995 ACM/IEEE conference on Supercomputing, San Diego, CA,
USA, 1995, 28. ISBN 978-0-89791-816-9

 https://doi.org/10.1145/224170.224228
[4] Hendrickson, B, Leland, R. "An Improved Spectral Graph

Partitioning Algorithm for Mapping Parallel Computations",
SIAM Journal of Scientific Computing, 16(2), pp. 452–469, 1995.

 https://doi.org/10.1137/0916028
[5] Karypis, G., Kumar, V. "Metis - Unstructured Graph Partitioning

and Sparse Matrix Ordering System, Version 2.0", University of
Minnesota, Minneapolis, MN, USA, 1995.

[6] Trifunovic, A., Knottenbelt, W. J. "Parkway 2.0: A Parallel
Multilevel Hypergraph Partitioning Tool", In: Aykanat, C.,
Dayar, T., Körpeoğlu, İ. (eds.) Computer and Information Sciences
- ISCIS 2004, Kemer-Antalya, Turkey, 2004, pp. 789–800.
ISBN 978-3-540-23526-2

 https://doi.org/10.1007/978-3-540-30182-0_79
[7] Rácz, Gy., Arató, P. "A Decomposition-Based System

Level Synthesis Method for Heterogeneous Multiprocessor
Architectures", In: Alioto, M., Li, H., Becker, J., Schlichtmann, U.,
Sridhar, R. (eds.) 2017 30th IEEE International System on Chip
Conference (SOCC), Munich, Germany, 2017, pp. 381–386.
ISBN 978-1-5386-4034-0

 https://doi.org/10.1109/SOCC.2017.8226082

[8] Shi, J., Malik, J. "Normalized Cuts and Image Segmentation",
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8), pp. 888–905, 2000.

 https://doi.org/10.1109/34.868688
[9] Lloyd, S. "Least squares quantization in PCM", In: IEEE

Transactions on Information Theory, 28(2), pp. 129–137, 1982.
 https://doi.org/10.1109/TIT.1982.1056489
[10] Bradley, P. S., Bennett, K. P., Demiriz, A. "Constrained k-means

clustering", Microsoft Research, Redmond, WA, USA, Technical
Report MSR-TR-2000-65, 2000.

[11] Polk, S. "Constrained K-Means (1.0.0)", [computer pro-
gram] Available at: https://www.mathworks.com/mat-
l a b c e n t r a l / f i l e exch a nge /117355 - c on s t r a i ne d -k-me a n s
[Accessed: 19 September 2022]

[12] Ganganath, N., Cheng, C., Tse, C. K. "Data Clustering with
Cluster Size Constraints Using a Modified K-Means Algorithm",
In: 2014 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Shanghai, China, 2014,
pp. 158–161. ISBN 78-1-4799-6236-5

 https://doi.org/10.1109/CyberC.2014.36
[13] Arató, P., Markovits, T. G. "Utilizing the spectral properties of the

data flow graph in system level synthesis", In: Szirmay-Kalos, L.
(ed.) Proceedings of the Workshop on the Advances of Information
Technology 2020: WAIT 2020, Budapest, Hungary, pp. 154–159.
ISBN 9789634218029

[14] Comité Européen de Normalisation Electrotechnique "EN
50126-1:2018, Railway Applications – The Specification and
Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS)", CEN-CENELEC, Brussels, Belgium, 2018.

[15] Markovits, T. G., Arató, P., Rácz, Gy. "Implementation of an SoC
architecture with built-in safety features", In: 2021 IEEE 34th

International System-on-Chip Conference (SOCC), Las Vegas,
NV, USA, 2021, pp. 95–100. ISBN 978-1-6654-2931-3

 https://doi.org/10.1109/SOCC52499.2021.9739573

https://doi.org/10.2172/10106339
https://doi.org/10.1145/224170.224228
https://doi.org/10.1137/0916028
https://doi.org/10.1007/978-3-540-30182-0_79
https://doi.org/10.1109/SOCC.2017.8226082
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/TIT.1982.1056489
https://www.mathworks.com/matlabcentral/fileexchange/117355-constrained-k-means
https://www.mathworks.com/matlabcentral/fileexchange/117355-constrained-k-means
https://doi.org/10.1109/CyberC.2014.36
https://doi.org/10.1109/SOCC52499.2021.9739573

	1 Introduction
	2 Methods
	2.1 Normalized Spectral clustering
	2.2 Weighted Normalized Spectral clustering

	3 Results
	3.1 Local refinement
	3.2 Results of the local refinements

	4 Conclusion
	References

