
Cite this article as: Paczolay, G., Harmati, I. "Improving Reinforcement Learning Exploration by Autoencoders", Periodica Polytechnica Electrical
Engineering and Computer Science, 68(4), pp. 335–343, 2024. https://doi.org/10.3311/PPee.36789

https://doi.org/10.3311/PPee.36789
Creative Commons Attribution b |335

Periodica Polytechnica Electrical Engineering and Computer Science, 68(4), pp. 335–343, 2024

Improving Reinforcement Learning Exploration by
Autoencoders

Gabor Paczolay1*, Istvan Harmati1

1 Department of Control Engineering, Budapest University of Technology and Economics, Magyar Tudósok körútja 2.,
H-1117 Budapest, Hungary

* Corresponding author, e-mail: paczolay@iit.bme.hu

Received: 29 February 2024, Accepted: 09 June 2024, Published online: 01 July 2024

Abstract

Reinforcement learning is a field with massive potential related to solving engineering problems without field knowledge. However,

the problem of exploration and exploitation emerges when one tries to balance a system between the learning phase and proper

execution. In this paper, a new method is proposed that utilizes autoencoders to manage the exploration rate in an epsilon-greedy

exploration algorithm. The error between the real state and the reconstructed state by the autoencoder becomes the base of the

exploration-exploitation rate. The proposed method is then examined in two experiments: one benchmark is the cartpole experiment

while the other is a gridworld example created for this paper to examine long-term exploration. Both experiments show results such

that the proposed method performs better in these scenarios.

Keywords

reinforcement learning, DQN, autoencoders, exploration, AutE-DQN

1 Introduction
Reinforcement learning is a quickly emerging field in these
days. As computing performance increases, more and more
problems are possible to solve by this domain, which is delib-
erately useful for tasks with either lacking prior knowledge,
huge mathematical complexity or unplannable uncertainty.

Due to the initially unknown elements during reinforce-
ment learning, an efficient exploration is needed to discover
the policies that are as close to the optimal policy as possi-
ble. An efficient exploration policy makes the agents explore
while there is still a measurable possibility to find newer
optimal policies, and tries to exploit the already acquired
knowledge to get as high rewards as possible. This problem
is examined in this paper and a new novel theory is proposed.

Probably the most influential algorithm, Q-learning,
was created by Watkins [1]. Traditional Q-learning
algorithms had a state-action table, increasing with the
dimension of the state-space, which limited their usage
on larger or continuous state-spaces. Mnih et al. made a
huge advancement with Q-learning by successfully apply-
ing artificial networks on the problem [2]. The algorithm,
DQN, or Deep Q-Learning, also had a so-called experi-
ence replay, a buffer containing previous memories, for
better convergence, as well as multiple frames were fed to

the network of the Atari games it played to provide a bet-
ter understanding of motion. Afterwards, this algorithm
was improved by other researchers. Van Hasselt et al. cre-
ated a DQN variant with two separate Q-value estimators,
the experiences are learning one of the estimators, and the
two estimators update each other [3]. Wang et al. created
a so-called dueling method with the state-values and the
state-dependent action advantages [4]. Schaul et al. cre-
ated prioritizations in the experience replay to improve
convergence [5]. Bellemare et al. took the value distribu-
tion into consideration [6]. Hessel et al. combined several
previously mentioned improvements for better result [7].

As the full state is not always known, for example due
to the limited possibility to explore the state due to the
sensors, sometimes the Markov Decision Process prob-
lem becomes a Partially Observable Markov Decision
Process. To solve such a problem, the system needs to
have memory. Hausknecht et al. [8] solved this issue by
applying a Long Short-Term Memory network (LSTM)
on the inputs. Li et al. [9] merged Supervised Learning
with Reinforcement Learning, with the former containing
recurrent components, to deal with POMDPs.

https://doi.org/10.3311/PPee.36789
https://doi.org/10.3311/PPee.36789
mailto:paczolay%40iit.bme.hu?subject=paczolay%40iit.bme.hu

336|Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024

Exploration was also researched in the recent past.
Stadle et al. [10] made experiments with Thompson sam-
pling and Boltzmann exploration and uses autoencoders
to alter the reward. Oh et al. [11] created two systems that
are able to predict the action-dependent frames that are
useful for control. Osband et al. [12] uses a bootstrapped
DQN also reliant on Thompson sampling to measure
uncertainty in neural networks for better exploration.
Fortunato et al. introduced parametric noise to the deep
reinforcement learning agents' weights to let them explore
the environment better [13]. Kulkarni et al. [14] cre-
ated Hierarchical DQN that is a framework for temporal
decomposition of the value function. Houthooft et al. [15]
implemented curiosity-driven reinforcement learning via
bayesian neural networks. Bellemare et al. [16] unified
count-based exploration and intrinsic motivation by trans-
forming the counts to exploration bonuses.

In this paper, first we take a look at the theoretical back-
ground. After this, a summary of the underlying theory is
given to our algorithm. Later, we show the used bench-
marks for our tests, then we explain our experiments and
the results obtained by them. At the end, we conclude our
work and give suggestions on future research possibilities.

2 Theoretical background
2.1 Markov Decision Processes
Markov Decision Process is a discrete-time process for
decision making modeling. Fig. 1 shows the basics of
this mathematical framework [17]. It has the following
elements: states of the whole environment, selectable
actions by the agent, transition probabilities between the
states with respect to the actions and rewards given to
the agents [18]. Every timestep the process has the same

method: starting at a specific state (s), it has an available
action space. From that, the agent selects and action (a),
and based on the state-action pair, it will receive a reward
(r), then it arrives in a new state (s'). A stochastic process
is called Markovian if

P a a s a s a P a a st t t t t� �� � � �� ��| , , , , | ,1 0 0 (1)

which can be described such as state transitions depend only
on the last state and the currently selected action. Due to
this, only these two are important in the decision of the fol-
lowing state [19]. P is, in fact, a probability of the transitions.

The policy, a state-action assignment, is very important
in Markov Decision Processes. Agents are trying to seek
for an optimal one which can maximize the return, the
sum of discounted expected rewards. Discount in this case
means that agents prefer an immediate reward against one
in the future, thus a coefficient determines how better a
reward is with respect to the same amount of reward in
the next state. A solution would mean a policy that is able
to maximize the reward reached by the agent. To find a
general solution for the policy, one have to seek for a fixed
point of the Bellman equation via iterative search. The
Bellman equation has the following form:

v s s a p s s a v sra s, max , ' | , ', ,*

'

*� � �� � � � � � � �� � �� � (2)

where r (s, a) is the reward gained from selecting action a in
state s, γ is the coefficient deciding how much more import-
ant are rewards of the present in comparison with the future
rewards, and p (s'|s, a) is the transition probability function.
It is concluded from this equation that if the agent is famil-
iar with the dynamics of the environment, meaning that it
knows P and r, it can find the optimal values.

2.2 Reinforcement learning
In the case of not knowing either the reward function or
the state transition probabilities, the previously discussed
Markov Decision Process problem becomes a Reinforcement
learning problem. When this happens, the agent tries to famil-
iarize itself in the environment by trying actions and makes
an environment model based on the rewards it receives.

The two main types of reinforcement learning are
called value-based and policy-based. In the former, cer-
tain values are associated with the explorable states or its
selectable actions. These values can be described as the
achievable rewards when the playing agent transitions to a
specific state or selects an action in a state.Fig. 1 Markov Decision Process

Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024 |337

The most known value-based reinforcement learning
method is called Q-learning. In this case, the action-val-
ues are called Q-values, and they are linked to each
state-action pairs of the system, and are the estimation
of the cumulated reward one can achieve by selecting the
aforementioned action from the specific state. The update
of the Q-values is executed by the Eq. (3) [1]:

Q s a Q s a

r Q s a
a

', ,

max ', ' ,
'

� � � �� � � � �
� � � � � �� �

1 �

� �
 (3)

where α is the learning rate and γ is the discount for the
reward. This algorithm is a temporal difference algorithm,
and the followed policy is choosing the action that would
currently maximize the Q-function in the current state.

Regarding the second type of reinforcement learning
called policy-based reinforcement learning, the actions are
calculated via a function of the state with a set of param-
eters. Regarding this kind, the most common method is
policy gradient, where a set of θ parameters character-
ize a policy πθ, and the agent seeks to obtain the maxi-
mal expected reward for a specific trajectory, marked here
by r(τ). We obtain the following payoff function:

J E r� ���
� � � � �� � (4)

The process of tuning the parameters is performed with
respect to the gradient of the payoff function:

� � � �k t tJ� � � � �1] � (5)

Let's take a look on the advantages and disadvantages of
policy-based reinforcement learning. While value-based
systems cannot map huge or continuous action spaces due
to the values rendered to each action, policy-based meth-
ods are able to do so due to the parametrization. Stochastic
systems are also better suited to policy-based methods. On
the contrary, it owns a disadvantage that it might stuck in
local maxima much easier that value-based methods.

Another apportionment of reinforcement learning is based
on the question whether it is following a model. In mod-
el-based reinforcement learning, the learning is basically a
tuning of a suitable model. In model-free systems, however,
there is no need for a model during the learning. Model-based
methods usually require less training samples to achieve sim-
ilar performance as the model-free ones, but this performance
is heavily determined by the model that is trained. The two
methods can be combined to achieve better results by train-
ing a model-based system first to ensure convergence, then
utilizing a model-free method to fine-tune the results.

2.3 Deep Reinforcement Learning
In the case when the reinforcement learning algorithm is
aided by a neural network as a function approximator, the
problem is called deep reinforcement learning [20].

The building blocks of a neural network are called neu-
rons. These are similar to the biological neurons that can
be found in the brain, and their function can be character-
ized by the Eq. (6):

y Act wx b� � �� � (6)

In this case, x corresponds to the input vector, w is the
weight vector, and the dot product of these two are taken.
b is the bias, which ensures that the dot product can be
shifted from the value zero. It can also be characterized
as a neuron input connecting to the value of constant one.
The function marked with Act() is called activation func-
tion, this allows the system to have the nonlinearity that is
required to make any kind of predictions. The algorithm for
tuning the variables w and b is called backpropagation. In
this case, the partial derivative errors of the inputs are cal-
culated by starting at the final error and propagating back-
wards through previous layers up until the input vector.

Vanishing gradients pose a significant problem in deep
neural networks. In this case, several layers are stacked after
each other, and the gradients of training decrease at every
layer, thus layers that are closer to the input vector do not train
expectedly. Due to this issue, one needs to find an appropriate
activation function that is less prone to vanishing gradients.
In this short summary of deep learning, three activation func-
tions are shown. A simple but frequent activation function is
the so-called sigmoid or logistic activation function:

y
e x�

� �

1
1

 (7)

Due to its small gradients when moving away from the
zero point, gradients vanish easily in this activation func-
tion. The Rectified Linear Unit (ReLU) solves this prob-
lem by setting a constant gradient in the positive area of
the function, and is characterised by the Eq. (8):

y x x
y x
� �
� �

if

if

0

0 0
 (8)

The result aforementioned activation functions were
only determined by the outcome of the singular neurons.
On the other hand, the output of the softmax activation
function is determined by the output of the whole layer of
the network. The function is made such that the outputs
are always nonnegative, while the sum of the outputs are

338|Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024

equal to one. This system is commonly used for classifi-
cation problems, but in reinforcement learning, the action
space probability distributions are made from it. The
behavior is described by the Eq. (9):

y e
e

x

j

x

i

j
�
�

, (9)

where x are the inputs. Finally, let's talk about the differ-
ences between traditional and deep reinforcement learning
systems. Generally, deep reinforcement learning has worse
convergence than traditional algorithms due to the approxi-
mations of the states, which are not accurate, although sev-
eral improvements exist to overcome this obstacle. However,
the multitude of advantages have made deep reinforce-
ment algorithms to be usually used. State table is no longer
required, as it is approximated by neural networks, so sys-
tems with huge or continuous state spaces can be modeled.

2.4 DQN algorithm
The Deep Q Network (DQN) algorithm can be thought
of as an adaptation of the Q-learning algorithm for deep
reinforcement learning. It is suited for discrete action
space, and the state space has no limitations. The input
of the network is the state, while the output vector has
as much elements as the action space. The output values
are equal to the approximation of the Q-values for all of
the actions, that is, the achievable reward from the state
by taking the specific action. This method makes it pos-
sible to compute all of the Q-values of a state in only one
inference run. The algorithm can be seen in Algorithm 1.

As mentioned before, deep reinforcement learning
methods have the disadvantage of not converging as eas-
ily as regular reinforcement learning methods do. To have
better results, an experience replay is utilized. The expe-
rience replay buffer holds the tuples of the states, selected
actions, obtained rewards, the booleans of terminal states
and the states where the agent have transitioned, marked
as (s, a, r, d, s'). Upon learning (usually after episodes) an
array of tuples are sampled from the buffer, and the learn-
ing is performed on this array. This ensures that earlier
memories also appear in the learning, thus making more
diversity and making the algorithm to converge better.

Another invention to achieve better convergence is the
target model. During learning, not the normal model is used
for inference, but a so-called target model, a model similar
to the original model but it does not change that much as the
original one. The updating of the target model is performed
in some periods, and the update can be a hard update by

cloning the values of the original model, or a soft update by
approaching the target model's values to the original model's.

2.5 Autoencoders
Autoencoders are neural networks where the desired out-
put of the function approximator on the training set is the
input. The networks have two distinct parts: one encoder
and one decoder. First, the encoder encodes the input to
the so-called latent space, then the decoder reconstructs
the original value from the latent space. The latent space
is a vector with different dimensions from the original
input. Fig. 2 shows an autoencoder.

When the latent space is smaller than the input space,
the encoder compresses the input in a way that it is decom-
pressable for the decoder. Apart from the compression

Algorithm 1 DQN

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target model Q̂ with weights θ⁻ = θ

for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1)

for t = 1, T do

With probability ϵ select a random action at

otherwise select at = argmaxa Q (Φ (st), a; θ)

Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess Φt+1 = Φ(st+1)

Store transition (Φt, at, rt, Φt+1) in D

end for

Sample random minibatch of transitions (Φj, aj, rj, Φj+1) from D

Set
if episode ends at step

otherwis
y

r j

r Q a
j

j d j

�
�

� � ��
�

1

1� �max , ';� ee

�
�
�

��

Perform a gradient descent step on (yj − Q(Φj, aj; θ))2 with respect
to the network parameters θ

Every C steps reset target model Q̂ = Q

end for

̂

Fig. 2 Autoencoder

Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024 |339

tasks, several other duties can be done by these systems, as
the decoder will always decompress the latent space such
that the output is "similar" to the training set. For exam-
ple, it can be used for anomaly detection, where we can
assume, that if there is a significant difference between
the input and the output, there is an anomaly. It is also
suitable for interpolation, for example between two faces.
IT can also be used for data generation if we feed the net-
work with random noise. If the training input is a distorted
version of the input (and in this case, the output), the net-
works can be used for data reconstruction, for example, for
de-noising or coloring a grayscale image. When the latent
space is bigger than the original input space, the encoding
is sparse, hence we call them as sparse autoencoders.

3 The proposed concept
The algorithm's hypothesis is based on the functioning of
autoencoders. In general, an autoencoder's decoder tries to
estimate the input based on the latent space. The encoder
and the decoder are learned via the training set.

The starting point is that the autoencoder's estimates
are 'closer' to the input data when it is equal to or similar to
the training set, due to the fact that the autoencoder would
be able to learn the characteristics of the training inputs
that were introduced to the network. This closeness can be
measured as an error, for example a Mean Squared Error.

The proposed idea is that we can set the training set of
the autoencoder to be the set of states that the reinforce-
ment learning algorithm is trained on. In reality, this means
the batches of samples from the replay buffer which are the
same samples as the ones used in the DQN training, just
without the other data in the tuple. The other data are not
required for the method in this case, as only the states are
the ones that the autoencoder system is trained on. In the
Markov Decision Process loop, during the action selection
the current state is fed to the autoencoder. We can assume
that if the autoencoder has been trained on the same (or
a similar) input as the state the system is currently visit-
ing, the error would be significantly lower compared to the
states that are completely new to the autoencoder, and thus
also compared to the states on which the reinforcement
learning has been not trained on. Also, based on the general
behavior of the autoencoders, we can assume that we can
find an autoencoder architecture such that as the number of
training increases on one state, the related error decreases.

Being able to make a distinction between previously
'visited' (or in this case, 'trained' is a more precise defini-
tion) states, especially without directly recording the total

trajectory, can make a difference in the reinforcement
learning process. We propose the idea that it can be used
as a tool to set the exploration-exploitation chance ratio,
or in a shorter manner, epsilon.

The functioning of the proposed concept can also
be derived from the method of how the human mind
works [21]. The theory of active inference states that the
brain is continuously making an inner replica of the envi-
ronment based on the beliefs and is selecting actions such
that the action is leaning towards the most stable state, or in
other words, towards the state that is inferred with the least
reconstruction error. There have been researches upon this
type of learning but as of the creation of this paper, uti-
lizing the full theory have not been successful enough to
be used in real-world scenarios. We use only the modeling
part and put it into a reinforcement learning algorithm.

Fig. 3 shows a drawing about the basics of the theory.
The current state is fed to an autoencoder that is trained on
previous states on which the DQN algorithm was trained.
The weighted average (where the weights are based on
a priori knowledge of the system) is taken of the error
between the current and reconstructed state, where the
weights have to be tuned to match the most important state
variables based on the problem. Then, a constant product
is taken of the average to match the problem, this scales
the exploration-exploitation rate to the 0..1 interval.

To conclude, the proposed idea solves the problem of
getting to know how well-known and well-practiced a
state is. This should make the system perform better when
there is a newly explored, distinct state or state ensemble
which is not yet practiced.

4 Experiments
After setting the grounds of the algorithm, its justifica-
tion, the required modifications and the limitations of the
theory need to be examined in experiments. Algorithm 2
shows the proposed algorithm, where some parts will be
different for the following two experiments. The loss of
the autoencoder was the mean squared error between the
sampled states and the inferred ones.

Fig. 3 Theory of the research

340|Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024

The first and most important observation to make is
that the weighting of the errors based on the states makes
a measurable improvement on the performance. Thus,
in both of the environments, it was utilized. In the algo-
rithm, the weighting is denoted by . These weights were
designed such that they sum to one.

4.1 Cartpole
The first experiment was to use the error of the autoen-
coder as the greedy factor in the action selection process.
For this experiment, a Cartpole environment with dis-
crete actions was used. The Cartpole environment used
is a discrete-action benchmark environment, first used
by Barto [22]. It is a useful benchmark due to the fact that
it is related to classical control (representing a physical
pole and a cart which is also possible to build), but it is
more difficult in the discrete setting. Its observation space
consists of four elements: the position and the velocity of
the cart, in addition to the angle and the angular velocity
of the pole. The action space consists of two actions: push-
ing the cart either to the left or to the right. The reward
is +1 for every step taken, and the termination step is
either at step 200 or the moment when the pole angle is
greater than ±12 ° or the cart position is greater than ±2.4.

For this experiment, the epsilon utilized by us is equal to
the loss of the autoencoder, that is, that F() is equal to the
weighted mean squared error, so

F x x� � � 2 (10)

The state weights w utilized by us for the Cartpole envi-
ronment were 1/28 for the position and 9/28 for the other
three state elements. This is due to the fact that the posi-
tion itself has only a slight impact on the behavior of the
system. The epsilon coefficient, c, is set to one.

This experiment was conducted with an autoen-
coder encoder layer dimension of [3, 2] and DQN layers
of (32, 16). This experiment was run on 10 random seeds.

4.2 Gridworld
The next experiment was to check the performance of the
proposed algorithms in situations where we can assume
that it should be better suited to the situation than the tradi-
tional DQN algorithm due to its traits. To achieve this, we
created an environment where there are always possibili-
ties of achieving more rewards by exploration. In theory,
this means that the proposed algorithm should behave bet-
ter even when the algorithms with general epsilon-decay
work with only a small amount of exploration. The envi-
ronment suited to this situation is a simple grid-world envi-
ronment. The agent starts at coordinate (0,0), while the col-
lectibles appear at (±3, ±3). After a time, the collectibles
change position, this timing is (3, 4, 5 6) steps respectively,
one after each other. After the collectible is collected, a
new one appears at the next position in the clockwise order.
The state consists of five elements: the x and y position of
the agent, the number of previously collected collectibles,
and the two states of timing: one corresponding to which
state are we from the four states, and one corresponding to
the number of steps taken since the last change of timing.
The actions are the movements in the four directions. Fig. 4
shows the basics of the grid-world environment.

Algorithm 2 AutE-DQN

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ⁻ = θ

Initialize autoencoder A with random weights θa

for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1)

for t = 1, T do

calculate ϵa = F((st − A(st)) ∙ w) where F is defined as Eq. (10)
or Eq. (11)

With probability max(c ∙ ϵ, ϵa) select a random action at

otherwise select at = argmaxaQ (Φ (st), a; θ)

Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess Φt+1 = Φ (st+1)

Store transition (Φt, at, rt, Φt+1) in D

end for

Sample random minibatch of transitions (Φj, aj, rj, Φj+1) from D

Set y
r j

r Q a
j

j d j

�
�

� � ��
�

if episode ends at step

otherwis

1

1� �max , ';� ee

�
�
�

��

Perform a gradient descent step on (yj − Q (Φj, aj; θ))2 with respect
to the network parameters θ

Perform a gradient descent step on ((sj − A (sj, θa)) ∙ w)2 with
respect to the network parameters θa

Every C steps reset Q̂ =Q

end for

̂

Fig. 4 The gridworld environment

Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024 |341

For this experiment, the w weights were set that the x, y
and the steps since the last timing change were 1/15, the
timing state was 1/5, and the number of collectibles taken
was 3/5. The c coefficient for our epsilon was 0.001, this
number is such low compared to the previous experiment
because here we do not take the normal mean squared
error for F(), but we take its square root, so here

F x x� � � 2 (11)

This ensures that there is a balance between the high
spikes at the start of the learning and the learning improve-
ment later. Our ϵa is compared to a normal epsilon with a
constant decay, and the maximum of these is taken. This also
ensures a constant high-exploration learning without being
unable to exploit the policy in the later stages of the learning.

This experiment was run with autoencoder layer
dimensions of (8, 16). The DQN layers, just like in the
Cartpole experiment, were (32, 16). This experiment was
also run on 10 random seeds.

5 Results
Now let us see the results of the two previously mentioned
experiments.

5.1 Cartpole results
Let us start with the Cartpole experiment. Fig. 5 shows the
corresponding results. As it can be seen, the algorithm that
utilized only the proposed autoencoder exploration even
surpasses the original epsilon-decay algorithm. While the
learning itself is significantly slower in the first 40 epi-
sodes, our algorithm gets higher rewards almost always in
the following stages.

Fig. 6 shows the average epsilon values throughout the
experiment. It can be seen that at the beginning, the epsilon

value is very high, but unlike the regular epsilon-decay algo-
rithm, it gets higher when it encounters new experiences.

5.2 Gridworld results
Now let's look at the Gridworld experiment. As it can be
seen from Fig. 7, our algorithm has significantly had bet-
ter performance throughout the whole period of 2000 epi-
sodes. The regular DQN with epsilon decay has only
approached the average reward of our algorithm between
episodes 500 and 1200, then it has started to perform
worse. Our algorithm, however, has learned more rapidly
than the normal DQN and has achieved its peak perfor-
mance much faster than the other one.

6 Conclusion
As the results prove it, the proposed modifications of the
DQN algorithm are an improvement of the epsilon-greedy
algorithm in cases where newly explorable states occur in
the later stages of the learning. It is also a fine replacement
for general cases where there is no real exploitation of the
explorable states of late learning.

Fig. 5 Cartpole results

Fig. 6 Cartpole epsilon results

Fig. 7 Gridworld results

342|Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024

References
[1] Watkins, C. J. C. H. "Learning from Delayed Rewards", PhD thesis,

King's College, Oxford, 1989.
[2] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., Riedmiller, M. "Playing atari with deep reinforce-
ment learning", [preprint] arXiv preprint, 19 December 2013.

 https://doi.org/10.48550/arXiv.1312.5602
[3] Van Hasselt, H., Guez, A., Silver, D. "Deep reinforcement learning

with double q-learning", In: AAAI'16: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Phoenix, Arizona
USA, 2015, pp. 2094–2100. ISBN 9781713856566

 https://dl.acm.org/doi/10.5555/3016100.3016191
[4] Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., de Freitas, N.,

Lanctot, M. "Dueling network architectures for deep reinforce-
ment learning", In: ICML'16: Proceedings of the 33rd International
Conference on International Conference on Machine Learning, New
York City, NY, USA, 2015, pp. 1995–2003. ISBN 9781510829008

 https://dl.acm.org/doi/10.5555/3045390.3045601
[5] Schaul, T., Quan, J., Antonoglou, I., Silver, D. "Prioritized experi-

ence replay", In: ICLR 2016, San Juan, Puerto Rico, 2016.
 https://doi.org/10.48550/arXiv.1511.05952
[6] Bellemare, M. G., Dabney, W., Munos, R. "A Distributional

Perspective on Reinforcement Learning", In: ICML'17: Proceedings
of the 34th International Conference on Machine Learning, Sydney,
NSW, Australia, 2017, pp. 449–458. ISBN 9781510855144

 https://dl.acm.org/doi/10.5555/3305381.3305428
[7] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski,

G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., David Silver,
D. "Rainbow: Combining improvements in deep reinforcement
learning", In: Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2017, pp. 3215–3222.

 https://doi.org/10.1609/aaai.v32i1.11796
[8] Hausknecht, M., Stone, P. "Deep recurrent q-learning for partially

observable mdps", [preprint] ArXiv, 11 January 2017.
 https://doi.org/10.48550/arXiv.1507.06527
[9] Li, X., Li, L., Gao, J., He, X., Chen, J., Deng, L., He, J. "Recurrent

reinforcement learning: A hybrid approach", [preprint] ArXiv,
19 November 2015.

 https://doi.org/10.48550/arXiv.1509.03044
[10] Stadie, B. C., Levine, S., Abbeel, P. "Incentivizing Exploration In

Reinforcement Learning With Deep Predictive Models", [preprint]
ArXiv, 19 November 2015.

 https://doi.org/10.48550/arXiv.1507.00814

[11] Oh, J., Guo, X., Lee, H., Lewis, R. L., Singh, S. "Action-conditional
video prediction using deep networks in Atari games", In: NIPS’15:
Proceedings of the 28th International Conference on Neural
Information Processing Systems, Cambridge, MA, USA, 2015,
pp. 2863–2871. ISBN 9781510825024

 https://dl.acm.org/doi/10.5555/2969442.2969560
[12] Osband, I., Blundell, C., Pritzel, A., Van Roy, B. "Deep explo-

ration via bootstrapped DQN", In: NIPS'16: Proceedings
of the 30th International Conference on Neural Information
Processing Systems, Barcelona, Spain, 2016, pp. 4033–4041.
ISBN 978-1-5108-3881-9

 https://dl.acm.org/doi/10.5555/3157382.3157548
[13] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves,

A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., … Legg, S.
"Noisy networks for exploration", [preprint] ArXiv, 30 June 2017.

 https://doi.org/10.48550/arXiv.1706.10295
[14] Kulkarni, T. D., Narasimhan, K., Saeedi, A., Tenenbaum, J. B.

"Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation", In: NIPS'16: Proceedings
of the 30th International Conference on Neural Information
Processing Systems, Barcelona, Spain 2016, pp. 3682–3690.
ISBN 978-1-5108-3881-9

 https://dl.acm.org/doi/10.5555/3157382.3157509
[15] Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,

F., Abbeel, P. "Curiosity-driven exploration in deep rein-
forcement learning via bayesian neural networks", [preprint],
ArXiv, 31 May 2016. [online] Available at: https://arxiv.org/
pdf/1605.09674v1 [Accessed: 29 January 2024]

[16] G. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., Munos, R. "Unifying count-based exploration and intrin-
sic motivation", In: NIPS'16: Proceedings of the 30th International
Conference on Neural Information Processing System, Barcelona,
Spain, 2016, pp. 1479–1487. ISBN 978-1-5108-3881-9

 https://dl.acm.org/doi/10.5555/3157096.3157262
[17] Paczolay, G. Harmati, I. "A New Advantage Actor-Critic Algorithm

For Multi-Agent Environments", In: 2020 23rd International
Symposium on Measurement and Control in Robotics (ISMCR),
Budapest, Hungary, 2020, pp. 1–6. ISBN 9781665404792

 https://doi.org/10.1109/ISMCR51255.2020.9263738
[18] Littman, M. L. "Markov games as a framework for multi-

agent reinforcement learning", In: ICML'94: Proceedings of the
Eleventh International Conference on Machine Learning, New
Brunswick, NJ USA, 1994, pp. 157–163. [online] Available at:
https://courses.cs.duke.edu/cps296.3/spring07/littman94markov.
pdf [Accessed: 29 January 2024]

There are many ways to further improve upon the algo-
rithm. For example, its relevance in image-based states can
be seen, as well as in partially observable MDP-s, where
only an observation is known instead of the real states.
Multiagent systems might also be improved with a similar
technique, to have a distinction between the agent's and
the other agents' state variables. Curiosity-driven algo-
rithms, such as [23] could also be seen for merging the
intrinsic reward and the adaptive exploration rate.

Acknowledgement
The research reported in this paper is part of project no.
BME-NVA-02, implemented with the support provided
by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation
Fund, financed under the TKP2021 funding scheme.
Support by the the European Union project RRF-2.3.1-
21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory.

https://doi.org/10.48550/arXiv.1312.5602
https://dl.acm.org/doi/10.5555/3016100.3016191
https://dl.acm.org/doi/10.5555/3045390.3045601
https://doi.org/10.48550/arXiv.1511.05952
https://dl.acm.org/doi/10.5555/3305381.3305428
https://doi.org/10.1609/aaai.v32i1.11796
https://doi.org/10.48550/arXiv.1507.06527
https://doi.org/10.48550/arXiv.1509.03044
https://doi.org/10.48550/arXiv.1507.00814
https://dl.acm.org/doi/10.5555/2969442.2969560
https://dl.acm.org/doi/10.5555/3157382.3157548
https://doi.org/10.48550/arXiv.1706.10295
https://dl.acm.org/doi/10.5555/3157382.3157509
https://dl.acm.org/doi/10.5555/3157096.3157262
https://doi.org/10.1109/ISMCR51255.2020.9263738
https://courses.cs.duke.edu/cps296.3/spring07/littman94markov.pdf
https://courses.cs.duke.edu/cps296.3/spring07/littman94markov.pdf

Paczolay and Harmati
Period. Polytech. Elec. Eng. Comp. Sci., 68(4), pp. 335–343, 2024 |343

[19] Paczolay, G., Harmati, I. "A simplified pursuit-evasion game
with reinforcement learning", Periodica Polytechnica Electrical
Engineering and Computer Science, 65(2), pp. 160–166, 2021.

 https://doi.org/10.3311/PPee.16540
[20] Paczolay, G., Harmati, I. "A2cm: a new multi-agent algorithm",

Acta IMEKO, 10(3), pp. 28–35, 2021.
 https://doi.org/10.21014/ACTA_IMEKO.V10I3.1023
[21] Friston, K. J., Parr, T., de Vries, B. "The graphical brain: Belief

propagation and active inference", Network Neuroscience, 1(4),
pp. 381–414, 2017.

 https://doi.org/10.1162%2FNETN_a_00018

[22] Barto, A. G., Sutton, R. S., Anderson, C. W. "Neuronlike adap-
tive elements that can solve difficult learning control problems",
IEEE Transactions of Systems, Man, and Cybernetics, SMC-13,
pp. 834–846, 1983.

 https://doi.org/10.1109/TSMC.1983.6313077
[23] Pathak, D., Agrawal, P., Efros, A. A., Darell, T. "Curiosity-driven

Exploration by Self-supervised Prediction", ICML'17: Proceedings
of the 34th International Conference on Machine Learning,
Sydney, NSW, Australia, 2017, pp. 2778–2787. [online] Available
at: https://proceedings.mlr.press/v70/pathak17a/pathak17a.pdf
[Accessed: 29 January 2024]

https://doi.org/10.3311/PPee.16540
https://doi.org/10.21014/ACTA_IMEKO.V10I3.1023
https://doi.org/10.1162%2FNETN_a_00018
https://doi.org/10.1109/TSMC.1983.6313077
https://proceedings.mlr.press/v70/pathak17a/pathak17a.pdf

	1 Introduction
	2 Theoretical background
	2.1 Markov Decision Processes
	2.2 Reinforcement learning
	2.3 Deep Reinforcement Learning
	2.4 DQN algorithm
	2.5 Autoencoders

	3 The proposed concept
	4 Experiments
	4.1 Cartpole
	4.2 Gridworld

	5 Results
	5.1 Cartpole results
	5.2 Gridworld results

	6 Conclusion
	Acknowledgement
	References

