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Abstract

Reinforcement learning is a field with massive potential related to solving engineering problems without field knowledge. However, 

the problem of exploration and exploitation emerges when one tries to balance a system between the learning phase and proper 

execution. In this paper, a new method is proposed that utilizes autoencoders to manage the exploration rate in an epsilon-greedy 

exploration algorithm. The error between the real state and the reconstructed state by the autoencoder becomes the base of the 

exploration-exploitation rate. The proposed method is then examined in two experiments: one benchmark is the cartpole experiment 

while the other is a gridworld example created for this paper to examine long-term exploration. Both experiments show results such 

that the proposed method performs better in these scenarios.
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1 Introduction
Reinforcement learning is a quickly emerging field in these 
days. As computing performance increases, more and more 
problems are possible to solve by this domain, which is delib-
erately useful for tasks with either lacking prior knowledge, 
huge mathematical complexity or unplannable uncertainty.

Due to the initially unknown elements during reinforce-
ment learning, an efficient exploration is needed to discover 
the policies that are as close to the optimal policy as possi-
ble. An efficient exploration policy makes the agents explore 
while there is still a measurable possibility to find newer 
optimal policies, and tries to exploit the already acquired 
knowledge to get as high rewards as possible. This problem 
is examined in this paper and a new novel theory is proposed.

Probably the most influential algorithm, Q-learning, 
was created by Watkins [1]. Traditional Q-learning 
algorithms had a state-action table, increasing with the 
dimension of the state-space, which limited their usage 
on larger or continuous state-spaces. Mnih et al. made a 
huge advancement with Q-learning by successfully apply-
ing artificial networks on the problem [2]. The algorithm, 
DQN, or Deep Q-Learning, also had a so-called experi-
ence replay, a buffer containing previous memories, for 
better convergence, as well as multiple frames were fed to 

the network of the Atari games it played to provide a bet-
ter understanding of motion. Afterwards, this algorithm 
was improved by other researchers. Van Hasselt et al. cre-
ated a DQN variant with two separate Q-value estimators, 
the experiences are learning one of the estimators, and the 
two estimators update each other [3]. Wang et al. created 
a so-called dueling method with the state-values and the 
state-dependent action advantages [4]. Schaul et al. cre-
ated prioritizations in the experience replay to improve 
convergence [5]. Bellemare et al. took the value distribu-
tion into consideration [6]. Hessel et al. combined several 
previously mentioned improvements for better result [7].

As the full state is not always known, for example due 
to the limited possibility to explore the state due to the 
sensors, sometimes the Markov Decision Process prob-
lem becomes a Partially Observable Markov Decision 
Process. To solve such a problem, the system needs to 
have memory. Hausknecht et al. [8] solved this issue by 
applying a Long Short-Term Memory network (LSTM) 
on the inputs. Li et al. [9] merged Supervised Learning 
with Reinforcement Learning, with the former containing 
recurrent components, to deal with POMDPs.
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Exploration was also researched in the recent past. 
Stadle et al. [10] made experiments with Thompson sam-
pling and Boltzmann exploration and uses autoencoders 
to alter the reward. Oh et al. [11] created two systems that 
are able to predict the action-dependent frames that are 
useful for control. Osband et al. [12] uses a bootstrapped 
DQN also reliant on Thompson sampling to measure 
uncertainty in neural networks for better exploration. 
Fortunato et al. introduced parametric noise to the deep 
reinforcement learning agents' weights to let them explore 
the environment better [13]. Kulkarni et al. [14] cre-
ated Hierarchical DQN that is a framework for temporal 
decomposition of the value function. Houthooft et al. [15] 
implemented curiosity-driven reinforcement learning via 
bayesian neural networks. Bellemare et al. [16] unified 
count-based exploration and intrinsic motivation by trans-
forming the counts to exploration bonuses.

In this paper, first we take a look at the theoretical back-
ground. After this, a summary of the underlying theory is 
given to our algorithm. Later, we show the used bench-
marks for our tests, then we explain our experiments and 
the results obtained by them. At the end, we conclude our 
work and give suggestions on future research possibilities.

2 Theoretical background
2.1 Markov Decision Processes
Markov Decision Process is a discrete-time process for 
decision making modeling. Fig. 1 shows the basics of 
this mathematical framework [17]. It has the following 
elements: states of the whole environment, selectable 
actions by the agent, transition probabilities between the 
states with respect to the actions and rewards given to 
the agents [18]. Every timestep the process has the same 

method: starting at a specific state (s), it has an available 
action space. From that, the agent selects and action (a), 
and based on the state-action pair, it will receive a reward 
(r), then it arrives in a new state (s'). A stochastic process 
is called Markovian if 

P a a s a s a P a a st t t t t� �� � � �� ��| , , , , | ,1 0 0  (1)

which can be described such as state transitions depend only 
on the last state and the currently selected action. Due to 
this, only these two are important in the decision of the fol-
lowing state [19]. P is, in fact, a probability of the transitions.

The policy, a state-action assignment, is very important 
in Markov Decision Processes. Agents are trying to seek 
for an optimal one which can maximize the return, the 
sum of discounted expected rewards. Discount in this case 
means that agents prefer an immediate reward against one 
in the future, thus a coefficient determines how better a 
reward is with respect to the same amount of reward in 
the next state. A solution would mean a policy that is able 
to maximize the reward reached by the agent. To find a 
general solution for the policy, one have to seek for a fixed 
point of the Bellman equation via iterative search. The 
Bellman equation has the following form:

v s s a p s s a v sra s, max , ' | , ', ,*

'

*� � �� � � � � � � �� � �� �  (2)

where r (s, a) is the reward gained from selecting action a in 
state s, γ is the coefficient deciding how much more import-
ant are rewards of the present in comparison with the future 
rewards, and p (s'|s, a) is the transition probability function. 
It is concluded from this equation that if the agent is famil-
iar with the dynamics of the environment, meaning that it 
knows P and r, it can find the optimal values. 

2.2 Reinforcement learning
In the case of not knowing either the reward function or 
the state transition probabilities, the previously discussed 
Markov Decision Process problem becomes a Reinforcement 
learning problem. When this happens, the agent tries to famil-
iarize itself in the environment by trying actions and makes 
an environment model based on the rewards it receives.

The two main types of reinforcement learning are 
called value-based and policy-based. In the former, cer-
tain values are associated with the explorable states or its 
selectable actions. These values can be described as the 
achievable rewards when the playing agent transitions to a 
specific state or selects an action in a state.Fig. 1 Markov Decision Process
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The most known value-based reinforcement learning 
method is called Q-learning. In this case, the action-val-
ues are called Q-values, and they are linked to each 
state-action pairs of the system, and are the estimation 
of the cumulated reward one can achieve by selecting the 
aforementioned action from the specific state. The update 
of the Q-values is executed by the Eq. (3) [1]:

Q s a Q s a

r Q s a
a

', ,

max ', ' ,
'

� � � �� � � � �
� � � � � �� �

1 �

� �
 (3)

where α is the learning rate and γ is the discount for the 
reward. This algorithm is a temporal difference algorithm, 
and the followed policy is choosing the action that would 
currently maximize the Q-function in the current state.

Regarding the second type of reinforcement learning 
called policy-based reinforcement learning, the actions are 
calculated via a function of the state with a set of param-
eters. Regarding this kind, the most common method is 
policy gradient, where a set of θ parameters character-
ize a policy πθ, and the agent seeks to obtain the maxi-
mal expected reward for a specific trajectory, marked here 
by r(τ). We obtain the following payoff function:

J E r� ���
� � � � �� �  (4)

The process of tuning the parameters is performed with 
respect to the gradient of the payoff function:

� � � �k t tJ� � � � �1] �  (5)

Let's take a look on the advantages and disadvantages of 
policy-based reinforcement learning. While value-based 
systems cannot map huge or continuous action spaces due 
to the values rendered to each action, policy-based meth-
ods are able to do so due to the parametrization. Stochastic 
systems are also better suited to policy-based methods. On 
the contrary, it owns a disadvantage that it might stuck in 
local maxima much easier that value-based methods.

Another apportionment of reinforcement learning is based 
on the question whether it is following a model. In mod-
el-based reinforcement learning, the learning is basically a 
tuning of a suitable model. In model-free systems, however, 
there is no need for a model during the learning. Model-based 
methods usually require less training samples to achieve sim-
ilar performance as the model-free ones, but this performance 
is heavily determined by the model that is trained. The two 
methods can be combined to achieve better results by train-
ing a model-based system first to ensure convergence, then 
utilizing a model-free method to fine-tune the results.

2.3 Deep Reinforcement Learning
In the case when the reinforcement learning algorithm is 
aided by a neural network as a function approximator, the 
problem is called deep reinforcement learning [20].

The building blocks of a neural network are called neu-
rons. These are similar to the biological neurons that can 
be found in the brain, and their function can be character-
ized by the Eq. (6):

y Act wx b� � �� �  (6)

In this case, x corresponds to the input vector, w is the 
weight vector, and the dot product of these two are taken. 
b is the bias, which ensures that the dot product can be 
shifted from the value zero. It can also be characterized 
as a neuron input connecting to the value of constant one. 
The function marked with Act() is called activation func-
tion, this allows the system to have the nonlinearity that is 
required to make any kind of predictions. The algorithm for 
tuning the variables w and b is called backpropagation. In 
this case, the partial derivative errors of the inputs are cal-
culated by starting at the final error and propagating back-
wards through previous layers up until the input vector.

Vanishing gradients pose a significant problem in deep 
neural networks. In this case, several layers are stacked after 
each other, and the gradients of training decrease at every 
layer, thus layers that are closer to the input vector do not train 
expectedly. Due to this issue, one needs to find an appropriate 
activation function that is less prone to vanishing gradients. 
In this short summary of deep learning, three activation func-
tions are shown. A simple but frequent activation function is 
the so-called sigmoid or logistic activation function:

y
e x�

� �

1
1

 (7)

Due to its small gradients when moving away from the 
zero point, gradients vanish easily in this activation func-
tion. The Rectified Linear Unit (ReLU) solves this prob-
lem by setting a constant gradient in the positive area of 
the function, and is characterised by the Eq. (8):

y x x
y x
� �
� �

if

if

0

0 0
 (8)

The result aforementioned activation functions were 
only determined by the outcome of the singular neurons. 
On the other hand, the output of the softmax activation 
function is determined by the output of the whole layer of 
the network. The function is made such that the outputs 
are always nonnegative, while the sum of the outputs are 
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equal to one. This system is commonly used for classifi-
cation problems, but in reinforcement learning, the action 
space probability distributions are made from it. The 
behavior is described by the Eq. (9):

y e
e

x

j

x

i

j
�
�

,  (9)

where x are the inputs. Finally, let's talk about the differ-
ences between traditional and deep reinforcement learning 
systems. Generally, deep reinforcement learning has worse 
convergence than traditional algorithms due to the approxi-
mations of the states, which are not accurate, although sev-
eral improvements exist to overcome this obstacle. However, 
the multitude of advantages have made deep reinforce-
ment algorithms to be usually used. State table is no longer 
required, as it is approximated by neural networks, so sys-
tems with huge or continuous state spaces can be modeled.

2.4 DQN algorithm
The Deep Q Network (DQN) algorithm can be thought 
of as an adaptation of the Q-learning algorithm for deep 
reinforcement learning. It is suited for discrete action 
space, and the state space has no limitations. The input 
of the network is the state, while the output vector has 
as much elements as the action space. The output values 
are equal to the approximation of the Q-values for all of 
the actions, that is, the achievable reward from the state 
by taking the specific action. This method makes it pos-
sible to compute all of the Q-values of a state in only one 
inference run. The algorithm can be seen in Algorithm 1.

As mentioned before, deep reinforcement learning 
methods have the disadvantage of not converging as eas-
ily as regular reinforcement learning methods do. To have 
better results, an experience replay is utilized. The expe-
rience replay buffer holds the tuples of the states, selected 
actions, obtained rewards, the booleans of terminal states 
and the states where the agent have transitioned, marked 
as (s, a, r, d, s'). Upon learning (usually after episodes) an 
array of tuples are sampled from the buffer, and the learn-
ing is performed on this array. This ensures that earlier 
memories also appear in the learning, thus making more 
diversity and making the algorithm to converge better.

Another invention to achieve better convergence is the 
target model. During learning, not the normal model is used 
for inference, but a so-called target model, a model similar 
to the original model but it does not change that much as the 
original one. The updating of the target model is performed 
in some periods, and the update can be a hard update by 

cloning the values of the original model, or a soft update by 
approaching the target model's values to the original model's.

2.5 Autoencoders
Autoencoders are neural networks where the desired out-
put of the function approximator on the training set is the 
input. The networks have two distinct parts: one encoder 
and one decoder. First, the encoder encodes the input to 
the so-called latent space, then the decoder reconstructs 
the original value from the latent space. The latent space 
is a vector with different dimensions from the original 
input. Fig. 2 shows an autoencoder.

When the latent space is smaller than the input space, 
the encoder compresses the input in a way that it is decom-
pressable for the decoder. Apart from the compression 

Algorithm 1 DQN

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target model Q̂  with weights θ⁻ = θ

for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1)

for t = 1, T do

With probability ϵ select a random action at

otherwise select at = argmaxa Q (Φ (st), a; θ)

Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess Φt+1 = Φ(st+1)

Store transition (Φt, at, rt, Φt+1) in D

end for

Sample random minibatch of transitions (Φj, aj, rj, Φj+1) from D

Set
if episode ends at step

otherwis
y

r j

r Q a
j

j d j

�
�

� � ��
�

1

1� �max , ';� ee

�
�
�

��

Perform a gradient descent step on (yj − Q(Φj, aj; θ))2 with respect 
to the network parameters θ

Every C steps reset target model Q̂  = Q

end for

̂

Fig. 2 Autoencoder
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tasks, several other duties can be done by these systems, as 
the decoder will always decompress the latent space such 
that the output is "similar" to the training set. For exam-
ple, it can be used for anomaly detection, where we can 
assume, that if there is a significant difference between 
the input and the output, there is an anomaly. It is also 
suitable for interpolation, for example between two faces. 
IT can also be used for data generation if we feed the net-
work with random noise. If the training input is a distorted 
version of the input (and in this case, the output), the net-
works can be used for data reconstruction, for example, for 
de-noising or coloring a grayscale image. When the latent 
space is bigger than the original input space, the encoding 
is sparse, hence we call them as sparse autoencoders.

3 The proposed concept
The algorithm's hypothesis is based on the functioning of 
autoencoders. In general, an autoencoder's decoder tries to 
estimate the input based on the latent space. The encoder 
and the decoder are learned via the training set.

The starting point is that the autoencoder's estimates 
are 'closer' to the input data when it is equal to or similar to 
the training set, due to the fact that the autoencoder would 
be able to learn the characteristics of the training inputs 
that were introduced to the network. This closeness can be 
measured as an error, for example a Mean Squared Error.

The proposed idea is that we can set the training set of 
the autoencoder to be the set of states that the reinforce-
ment learning algorithm is trained on. In reality, this means 
the batches of samples from the replay buffer which are the 
same samples as the ones used in the DQN training, just 
without the other data in the tuple. The other data are not 
required for the method in this case, as only the states are 
the ones that the autoencoder system is trained on. In the 
Markov Decision Process loop, during the action selection 
the current state is fed to the autoencoder. We can assume 
that if the autoencoder has been trained on the same (or 
a similar) input as the state the system is currently visit-
ing, the error would be significantly lower compared to the 
states that are completely new to the autoencoder, and thus 
also compared to the states on which the reinforcement 
learning has been not trained on. Also, based on the general 
behavior of the autoencoders, we can assume that we can 
find an autoencoder architecture such that as the number of 
training increases on one state, the related error decreases.

Being able to make a distinction between previously 
'visited' (or in this case, 'trained' is a more precise defini-
tion) states, especially without directly recording the total 

trajectory, can make a difference in the reinforcement 
learning process. We propose the idea that it can be used 
as a tool to set the exploration-exploitation chance ratio, 
or in a shorter manner, epsilon.

The functioning of the proposed concept can also 
be derived from the method of how the human mind 
works [21]. The theory of active inference states that the 
brain is continuously making an inner replica of the envi-
ronment based on the beliefs and is selecting actions such 
that the action is leaning towards the most stable state, or in 
other words, towards the state that is inferred with the least 
reconstruction error. There have been researches upon this 
type of learning but as of the creation of this paper, uti-
lizing the full theory have not been successful enough to 
be used in real-world scenarios. We use only the modeling 
part and put it into a reinforcement learning algorithm.

Fig. 3 shows a drawing about the basics of the theory. 
The current state is fed to an autoencoder that is trained on 
previous states on which the DQN algorithm was trained. 
The weighted average (where the weights are based on 
a priori knowledge of the system) is taken of the error 
between the current and reconstructed state, where the 
weights have to be tuned to match the most important state 
variables based on the problem. Then, a constant product 
is taken of the average to match the problem, this scales 
the exploration-exploitation rate to the 0..1 interval.

To conclude, the proposed idea solves the problem of 
getting to know how well-known and well-practiced a 
state is. This should make the system perform better when 
there is a newly explored, distinct state or state ensemble 
which is not yet practiced.

4 Experiments
After setting the grounds of the algorithm, its justifica-
tion, the required modifications and the limitations of the 
theory need to be examined in experiments. Algorithm 2 
shows the proposed algorithm, where some parts will be 
different for the following two experiments. The loss of 
the autoencoder was the mean squared error between the 
sampled states and the inferred ones.

Fig. 3 Theory of the research
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The first and most important observation to make is 
that the weighting of the errors based on the states makes 
a measurable improvement on the performance. Thus, 
in both of the environments, it was utilized. In the algo-
rithm, the weighting is denoted by . These weights were 
designed such that they sum to one.

4.1 Cartpole
The first experiment was to use the error of the autoen-
coder as the greedy factor in the action selection process. 
For this experiment, a Cartpole environment with dis-
crete actions was used. The Cartpole environment used 
is a discrete-action benchmark environment, first used 
by Barto [22]. It is a useful benchmark due to the fact that 
it is related to classical control (representing a physical 
pole and a cart which is also possible to build), but it is 
more difficult in the discrete setting. Its observation space 
consists of four elements: the position and the velocity of 
the cart, in addition to the angle and the angular velocity 
of the pole. The action space consists of two actions: push-
ing the cart either to the left or to the right. The reward 
is +1 for every step taken, and the termination step is 
either at step 200 or the moment when the pole angle is 
greater than ±12 ° or the cart position is greater than ±2.4. 

For this experiment, the epsilon utilized by us is equal to 
the loss of the autoencoder, that is, that F() is equal to the 
weighted mean squared error, so

F x x� � � 2  (10)

The state weights w utilized by us for the Cartpole envi-
ronment were 1/28 for the position and 9/28 for the other 
three state elements. This is due to the fact that the posi-
tion itself has only a slight impact on the behavior of the 
system. The epsilon coefficient, c, is set to one.

This experiment was conducted with an autoen-
coder encoder layer dimension of [3, 2] and DQN layers 
of (32, 16). This experiment was run on 10 random seeds.

4.2 Gridworld
The next experiment was to check the performance of the 
proposed algorithms in situations where we can assume 
that it should be better suited to the situation than the tradi-
tional DQN algorithm due to its traits. To achieve this, we 
created an environment where there are always possibili-
ties of achieving more rewards by exploration. In theory, 
this means that the proposed algorithm should behave bet-
ter even when the algorithms with general epsilon-decay 
work with only a small amount of exploration. The envi-
ronment suited to this situation is a simple grid-world envi-
ronment. The agent starts at coordinate (0,0), while the col-
lectibles appear at (±3, ±3). After a time, the collectibles 
change position, this timing is (3, 4, 5 6) steps respectively, 
one after each other. After the collectible is collected, a 
new one appears at the next position in the clockwise order. 
The state consists of five elements: the x and y position of 
the agent, the number of previously collected collectibles, 
and the two states of timing: one corresponding to which 
state are we from the four states, and one corresponding to 
the number of steps taken since the last change of timing. 
The actions are the movements in the four directions. Fig. 4 
shows the basics of the grid-world environment. 

Algorithm 2 AutE-DQN

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂  with weights θ⁻ = θ

Initialize autoencoder A with random weights θa

for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1)

for t = 1, T do

calculate ϵa = F((st − A(st)) ∙ w) where F is defined as Eq. (10) 
or Eq. (11)

With probability max(c ∙ ϵ, ϵa) select a random action at

otherwise select at = argmaxaQ (Φ (st), a; θ)

Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess Φt+1 = Φ (st+1)

Store transition (Φt, at, rt, Φt+1) in D

end for

Sample random minibatch of transitions (Φj, aj, rj, Φj+1) from D

Set y
r j

r Q a
j

j d j

�
�

� � ��
�

if episode ends at step

otherwis

1

1� �max , ';� ee

�
�
�

��

Perform a gradient descent step on (yj − Q (Φj, aj; θ))2 with respect 
to the network parameters θ

Perform a gradient descent step on ((sj − A (sj, θa)) ∙ w)2 with 
respect to the network parameters θa

Every C steps reset Q̂ =Q

end for

̂

Fig. 4 The gridworld environment
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For this experiment, the w weights were set that the x, y 
and the steps since the last timing change were 1/15, the 
timing state was 1/5, and the number of collectibles taken 
was 3/5. The c coefficient for our epsilon was 0.001, this 
number is such low compared to the previous experiment 
because here we do not take the normal mean squared 
error for F(), but we take its square root, so here

F x x� � � 2  (11)

This ensures that there is a balance between the high 
spikes at the start of the learning and the learning improve-
ment later. Our ϵa is compared to a normal epsilon with a 
constant decay, and the maximum of these is taken. This also 
ensures a constant high-exploration learning without being 
unable to exploit the policy in the later stages of the learning.

This experiment was run with autoencoder layer 
dimensions of (8, 16). The DQN layers, just like in the 
Cartpole experiment, were (32, 16). This experiment was 
also run on 10 random seeds.

5 Results
Now let us see the results of the two previously mentioned 
experiments.

5.1 Cartpole results
Let us start with the Cartpole experiment. Fig. 5 shows the 
corresponding results. As it can be seen, the algorithm that 
utilized only the proposed autoencoder exploration even 
surpasses the original epsilon-decay algorithm. While the 
learning itself is significantly slower in the first 40 epi-
sodes, our algorithm gets higher rewards almost always in 
the following stages.

Fig. 6 shows the average epsilon values throughout the 
experiment. It can be seen that at the beginning, the epsilon 

value is very high, but unlike the regular epsilon-decay algo-
rithm, it gets higher when it encounters new experiences.

5.2 Gridworld results
Now let's look at the Gridworld experiment. As it can be 
seen from Fig. 7, our algorithm has significantly had bet-
ter performance throughout the whole period of 2000 epi-
sodes. The regular DQN with epsilon decay has only 
approached the average reward of our algorithm between 
episodes 500 and 1200, then it has started to perform 
worse. Our algorithm, however, has learned more rapidly 
than the normal DQN and has achieved its peak perfor-
mance much faster than the other one.

6 Conclusion
As the results prove it, the proposed modifications of the 
DQN algorithm are an improvement of the epsilon-greedy 
algorithm in cases where newly explorable states occur in 
the later stages of the learning. It is also a fine replacement 
for general cases where there is no real exploitation of the 
explorable states of late learning.

Fig. 5 Cartpole results

Fig. 6 Cartpole epsilon results

Fig. 7 Gridworld results
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