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Abstract

Axial flux motors have some significant advantages over radial flux motors in high torque-density applications. However, the 

optimization of axial flux permanent magnet synchronous motors is a challenging task; the analysis usually requires 3D finite element 

analysis or the application of the 2D multi-slice method. In this paper a novel single-surrogate multi-slice method (SS-MSM) is proposed 

for modeling anisotropic rotor axial flux permanent magnet motors. However, the general methodology can be applied to other axial 

flux motors as well. A model calibration methodology has been described where the SS-MSM parameters have been determined using 

a 2D finite element approach as a reference. The SS-MSM was found to be suitable for a fast and reasonably accurate approximation 

of the motor performance. Based on the described analysis method, an efficient optimization approach is proposed.
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1 Introduction
This paper summarizes the research on the metamod-
el-based optimization method of anisotropic rotor axial flux 
permanent magnet synchronous motors (AnR-AFPMSM). 
Machine learning  (deep  learning) based methods have 
been in the focus of research on e-motor optimization 
recently. However, the method is mostly applied on radial 
flux motors, or in case of axial flux motors, mostly on sim-
ple 2D equivalents or complete 3D models. The  method 
proposed here has the novelty of training the surrogate 
model on a general parametric 2D model (slice) and assem-
ble the multi-slice equivalent from separate parameter-
ized surrogate results. These  results can be used directly 
through optimization, or a second layer of surrogate model 
can be built and used for optimization. The  optimiza-
tion methods described in the literature are mostly devel-
oped for axial flux surface-mounted permanent magnet 
motors (AF-SPMSM) [1, 2]. However, as presented in [3], 
the axial flux permanent magnet motors with anisotropic 
rotor designs have a more complex geometry according 
to Figs. 1–3 and a larger number of parameters. In addi-
tion, in the case of the AnR-AFPMSM, due to the magnetic 
anisotropy of the motor, the d- and q-axis inductances are 
different and not constant [4]. The optimal current angle, 

assuming MTPA control strategy, may change during 
geometry optimization and is also a function of the stator 

Fig. 1 Main geometrical parameters of the AnR-AFPMSM
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current due to saturation effects. Therefore, the optimiza-
tion procedure of AnR-AFPMSMs is more complex than 
the simple AFPMSMs and would require large computa-
tional resources if direct optimization approaches using 
3D [5] or 2D multi-slice methods [6] were used.

Therefore, the AnR-AFPMSM optimization problem 
incorporates all the difficulties of both radial flux IPM and 
axial flux motor designs. To efficiently optimize this type 
of motor, a metamodel-based approach, the single-surro-
gate multi-slice method (SS-MSM), has been proposed. 
This approach ensures that the optimizer can compute an 
appropriate number of design points in a reasonable time, 
given the otherwise computationally expensive simulation 
and the relatively large number of input parameters.

1.1 Design description
The reference design is described in [3]. In general, axial 
flux electric motors have advantages over radial flux topol-
ogies such as higher torque density, modular design, and a 
higher diameter to length ratio, which can be an advanta-
geous in some cases for drive system packaging [7].

Electric traction applications require a wide operat-
ing speed range for a given DC link voltage available to 
the inverter from the vehicle battery  [8]. Therefore,  sur-
face permanent magnet motors (SPM) have the major dis-
advantage of having a magnetically non-salient (isotropic) 
rotor structure, where there is only a negligible reluctance 
effect. The  field-weakening capability of SPMs is limited. 
On  the other hand, the electromagnetic torque of aniso-
tropic  (salient) structures consists of two components: the 
alignment (PM) torque and the reluctance torque. By chang-
ing the current angle, it is possible to operate these kinds of 
motors above the base speed, in the field-weakening region. 
In this operating range, the magnet flux is weakened, so a 
high-speed operating point does not violate the voltage limit. 
However, a suitable winding is required to achieve different 
quadrature- and direct-axis inductances: an axial flux motor 
topology with anisotropic rotor geometry and fractional slot 
distributed winding has been proposed in [3].

In this study, the proposed method is presented through 
a simplified example. The basic design parameters are 
given in Table 1. The motor has a dual-rotor (single sta-
tor) arrangement. It has 24 slots (or stator segments) and 
10 poles, while using a fractional-slot distributed winding. 
The rotor has 2 magnet layers.

Fig. 3 Stator segment geometrical parameters of the AnR-AFPMSM

Fig. 2 Flux barrier geometrical parameters of the AnR-AFPMSM
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1.2 Geometric parameters
The geometric parameters of the AnR-AFPMSM can 
be represented in the real 3D form or by the 2D slices. 
Therefore, the 2D representation has a different geometry 
for each slice. The main 2D geometrical parameters are 
shown in Fig. 1, such as the stator and rotor lengths, the air-
gap length and the dimensions and positions of the perma-
nent magnets. The detailed rotor geometry and stator seg-
ment dimensions are shown in Figs. 2 and 3. The absolute 
values of the geometry parameters of the reference design 
are defined in Table  2. During the metamodeling phase 
and optimization, the parametrization was used indirectly 
through a ratio-based approach as described in Section 3.1.

2 Modeling of the AnR-AFPMSM
The electromagnetic modeling of axial flux motors is a 
geometrically three-dimensional problem. However, sev-
eral methods exist to reduce the problem to two dimen-
sions [9–13]. A detailed description of the AnR-AFPMSM 
and its modeling methods is given in [3]. An analytical mag-
netic equivalent circuit model and a finite element model of 
the motor with anisotropic rotor design were also presented. 
In  the present study, the 2D multi-slice method based on 
finite element analysis was applied to generate the training 
dataset for the metamodeling. Applying this method, the 3D 
geometry of the motor was represented by a number (n) of 
2D models (Fig. 4). The 2D part-models (slices) together are 
the 2D equivalent model which needs to be evaluated in case 
of all the design points. The actual parameters of the slices 
can be calculated by the following equation [3]:

P r P r
r
rn i mean
i

mean

� � � � � � .

The number of slices was selected to be 5 during the 
analysis of the example geometry. The FEA model was 
built in ANSYS Maxwell.

Table 2 Absolute geometric parameters of the AnR-AFPMSM reference 
design

ID Reference value Description

DSo 400 mm Stator outer diameter

DSi 260 mm Stator inner diameter

lS 59 mm Stator active length

lR 67.5 mm Rotor active length

lg 1.1 mm Airgap length

wpm1 29.5 mm Magnet width, layer 1

wpm2 50.6 mm Magnet width, layer 2

lpm1 4.9 mm Magnet length, layer 1

lpm2 10.8 mm Magnet length, layer 2

dpm1 42.1 mm Magnet position, layer 1

dpm2 68.7 mm Magnet position, layer 2

wS 16.2 mm Slot width

τS 43.2 mm Slot pitch

τP 103.7 mm Pole pitch

p1x1 31.4 mm Flux barrier, layer 1 (Fig. 2)

p1x2 38.5 mm Flux barrier, layer 1 (Fig. 2)

p1x3 33.5 mm Flux barrier, layer 1 (Fig. 2)

p1x4 40.6 mm Flux barrier, layer 1 (Fig. 2)

p2x1 59.1 mm Flux barrier, layer 1 (Fig. 2)

p2x2 72.4 mm Flux barrier, layer 1 (Fig. 2)

p2x3 70.3 mm Flux barrier, layer 1 (Fig. 2)

p2x4 84.6 mm Flux barrier, layer 1 (Fig. 2)

p1y 1.8 mm Flux barrier (Fig. 2)

p2y 22.4 mm Flux barrier (Fig. 2)

Table 1 Motor topology and basic parameters

Motor type AnR-AFPMSM

Motor arrangement Dual rotor

Number of slots 24

Number of poles 10

Winding type FSDW

Winding layers 2

Winding configuration
AA│bb│aC│Ba│cc│
AA│Cb│aC│BB│cc│

bA│Cb│…

Magnet layers 2

Fig. 4 Multi-slice decomposition of the 3D axial flux motor geometry
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2.1 Metamodeling approaches
The basic idea of metamodeling is to create a mathemat-
ical model (metamodel or surrogate model), that can be 
quickly evaluated on the design space and can approximate 
the responses (output parameters) with reasonable accuracy. 
Using the metamodel, an optimization algorithm can work 
more efficiently, allowing a greater number of iterations on 
a smoother response surface. Recently, several researchers 
have focused on metamodel-based approaches in electric 
motor design. An optimization method for cogging torque 
minimization of axial flux motors is proposed in [14]. Multi-
objective, metamodel-based optimization approaches of 
different motor types are described in [15–17] and a meta-
model-based robust design approach is presented in  [18]. 
Some of the main advantages of using metamodeling in 
electric motor design are reduction of complexity (parame-
ter reduction), evaluation of parameter sensitivity, computa-
tionally less expensive re-evaluation of the metamodel than 
the original (FEM) model and better understanding of the 
design (evaluation of parameter importance).

However, it is necessary to evaluate the approxima-
tion quality of the surrogate models to decide whether the 
model is suitable for further analysis, such as parametric 
variational analysis or optimization, based on its approx-
imations. In  general, the complexity of the surrogate 
model depends on the complexity of the physical phenom-
ena to be approximated and the parameter ranges (design 
space) that need to be covered. Obviously, even a com-
plex physical problem can have an almost linear behav-
ior in a small design space. Therefore,  it is not obvious 
which mathematical model and parametrization to choose 
to obtain a reasonably accurate surrogate model and an 
overall efficient process. To automatically select the best 
metamodel for a given problem, an objective metamodel 
quality measure was proposed in [19].

An important feature of metamodeling is the ability 
to reduce the number of input parameters. To determine 
which input parameters are significant, linear, or quadratic 
correlation coefficients can be calculated:

�
� �

� �ij
k

N k
i y i j

k
x

y x xN

y x x x
j

i j

�
�

� � �� � �� ��

� � � �

� �

�1

1

1

. 	 (1)

It is assumed that a correlation coefficient ρij < 0.3 indi-
cates a weak correlation between parameters i and j. A cor-
relation coefficient ρij < 0.7 indicates a strong correlation. 
The correlation coefficients can be summarized in a cor-
relation matrix. The significance of the input parameters 
is determined based on the calculated correlations, and 

the insignificant parameters can be filtered out. In  gen-
eral, the sum of squares is used as a statistical measure 
of variability. The total variability consists of two parts: 
the variability explained by the regression model and 
the variability that cannot be explained. For example, in 
the case of a simple polynomial regression, to evaluate 
the approximation quality, the coefficient of determina-
tion (CoD) metric introduced in [20] can be used to eval-
uate the quality of the approximation:
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squared errors). Therefore:

� �� � � � �� � � � �� �� � �i
N

i Y i
N

i Y i
N

i iy y y y
1

2

1

2

1

2� � .̂ ̂̂ 	 (3)

To penalize overfitting that can occur when using an 
increased amount of model coefficients  p compared to 
the number of data points N, the adjusted CoD was intro-
duced in [20]:

R N
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1� �
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�

�� �. 	 (4)

After the significance filtering of the input parameters, 
the importance of the remaining input parameters can be 
determined by calculating the difference between the coef-
ficient of determination of the full and the reduced model. 
The coefficient of importance was in introduced in [21]:
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The coefficient of prognosis (CoP) is a model-indepen-
dent metric introduced by Most and Will in [19] and calcu-
lated on the test data set:

CoP � �1
SS
SS
E

T

Pred

. 	 (6)

This approach is an error estimation using a cross-val-
idation method. The  dataset is divided into k sub-
sets. The  metamodel is trained on each combination 
of  k  −  1  subsets. The  remaining subset in each itera-
tion (validation set) is used to calculate the model predic-
tion error  ( SSE

Pred ). In  the automatic process, the meta-
model CoP is calculated for each metamodel generated. 
The  model with the highest CoP value is selected and 
called the metamodel of optimal prognosis (MOP).
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2.2 Single-Surrogate Multi-Slice Method
In this study, a single-surrogate multi-slice method is pro-
posed. The flowchart of the method is shown in Fig.  5. 
The method is based on a 2D multi-slice decomposition 
of the 3D geometry of the AnR-AFPMSM. In general, the 
multi-slice method alone can be applied to both analytical 
and numerical (FEM) models. In the proposed method, the 
multi-slice decomposition method is used in combination 
with a parametric finite element model, controlled by an 
algorithm to generate a surrogate model. The methodol-
ogy consists of the following steps:

1.	 Parametrization of geometry and material properties;
2.	Definition of the parameter range;
3.	 Selection of the parameter space sampling algorithm;
4.	 Selection of the algorithms used to create a surro-

gate model;
5.	 Generate a parameter space sampling and run the 

parametric numerical model;
6.	 Collect the results and fit/train the different models;
7.	 Evaluate the surrogate model prognosis qualities;
8.	 Select the best surrogate model (metamodel of opti-

mal prognosis).

2.3 MOP results
The motor optimization approach was tested in the base 
speed region of the described machine. The  optimiza-
tion workflow was built in ANSYS optiSLang software. 
The   MOP was calculated after two different sensitiv-
ity analyses. In the first attempt, a rough model was cre-
ated based on 300 design point simulations and using the 
input parameter reduction approach. The  response sur-
face plots of the average torque, MTPA current angle and 
torque ripple as a function of the most important input 
parameters are shown in Figs.  6, 7 and 8, respectively. 

The torque-current angle curves of the design points are 
shown in Fig. 9. The reference design curve is highlighted 
in blue color. The CoP matrix of the resulting metamodel 
is shown in  Fig.  10. The total CoP values of the output 
parameters are marked in red, the most important input 
parameters for the different output parameters are marked 
in blue color. The overall (total) quality of the model is sat-
isfactory for testing reasons even with the relatively small 
number of design points: the lowest value of the total CoP 
is 73.7% in the case of the current angle output parameter, 
which is acceptable. The  value increased to 82.1% after 
the second attempt with 600 design points.

The selected metamodel (highest CoP) was the 
Deep Infinite Mixture Gaussian Processes algorithm 
(DIM-GP) included in the optiSLang software (developed 
by PI Probaligence). 

Fig. 5 Single-Surrogate Multi-Slice Method (SS-MSM)

Fig. 6 Response surface plot of average torque in function of the total 
current and parameter R1
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The algorithm works with neural networks and Gaussian 
processes simultaneously and can predict the mean value 
and variance of the output parameters (responses), there-
fore there is no need for hyperparameter tuning. The algo-
rithm can be used for regression analysis. It is suitable for 
predicting the noise of the data through training a noise 
parameter which will result in an automatic detection 
of outliers. The proposed SS-MSM (Fig.  11) is a general 
method to model and approximate the 3D electromagnetic 
properties of the axial flux motor through a single sur-
rogate model which is trained in a series of 2D analyses. 
The method does not have any restrictions on the machine 
learning model applied. The method was tested with the 
common ML models, such as deep neural networks, sup-
port vector machines or simple polynomial regression mod-
els. However, in the recent study, the DIM-GP algorithm 
was found to perform the best on the example dataset based 
on the automatic model evaluation described in Section 2.1. 

3 Metamodel-based optimization of the AnR-AFPMSM
Based on the created metamodel, a geometry optimization 
was performed. Obviously, the design space must be a sub-
space of the input parameter space of the metamodel, other-
wise less accurate extrapolation algorithms are required. In 
this study, the entire parameter space of the metamodel was 
used in the optimization: the optimization parameter ranges 
are therefore the same as in the sensitivity study step.

To efficiently model the motor with reasonable accuracy, 
the previously described SS-MSM approach was applied. 
The metamodel was created using data from an electro-
magnetic model parameterized using the ratio-based 
approach, described in the next section. In this example, 
an evolutionary algorithm was chosen as the optimization 
algorithm. Genetic algorithms are usually a good choice 
for multi-objective optimization problems, especially 
where there are many input parameters. However, an 
advantage of the metamodel-based optimization approach 
is, that the mathematical functions (metamodels) that 
form the basis of the optimization are smoother functions 
compared to the original direct data. Therefore, the meta-
model can efficiently filter the noise, that otherwise limits 
the applicable optimization algorithms. In the case of the 
metamodel-based optimization approach, a wider range of 

Fig. 7 Response surface plot of the torque ripple in function of R2 and 
parameter R3

Fig. 8 Response surface plot of the optimum current angle in function 
of parameters R2 and R7

Fig. 9 Torque – current angle curves of the different design points

Fig. 10 CoP matrix
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optimization algorithms can be selected, also considering 
the shorter design point evaluation time. Since optimiza-
tion is performed on a metamodel without direct phys-
ics-based simulations, the optimal designs need to be val-
idated by real solver executions (Fig. 11).

3.1 Ratio-based geometry parametrization
To efficiently reduce the number of failed designs during 
the optimization due to infeasible geometry, the ratio-
based parametrization has been implemented. To  define 
the necessary ratio parameters, some parameters must be 
selected as reference. In  this optimization case, the sta-
tor outer diameter DSo, the stator active length lS, the rotor 
active length lR have been selected. The airgap length lg is 
kept as a direct dimensional parameter.

The ratios are formulated by Eqs. (7)–(27). R1 is the 
ratio of the stator outer and inner diameters:

R
D
D
Si

So
1
= . 	 (7)

R2 is the magnet width ratio in layer 1:

R
wpm

s
2

1�
�

. 	 (8)

R2 is the magnet width ratio in layer 2:

R
wpm

p
3

2�
�

. 	 (9)

R4 is the magnet length ratio in layer 1:

R
l
l
pm

R
4

1= . 	 (10)

R5 is the magnet length ratio in layer 2:

R
l
l
pm

R
5

2= . 	 (11)

R6 is the ratio controlling the axial position of the per-
manent magnet in layer 1:

R
d l l

l
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R
6

1
0 5
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R7 is the ratio controlling the radial position of the per-
manent magnet in layer 2:

R
d d l
l l l d l

pm pm pm

S g R pm pm
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2 1 1

1 1
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�
� �
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. 	 (13)

R8 is the tooth width ratio:

R
wt
s

8
�
�
. 	 (14)

Ratios R9–R12 define the flux barrier geometry accord-
ing to Eqs. (15)–(18):

R
p x w

w
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p pm
9

1

1

1 2
�

�

��
; 	 (15)

Fig. 11 SS-MSM-based optimization method of the AnR-AFPMSM
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Table 3 Geometrical ratios as optimization input parameters of the 
AnR-AFPMSM

ID Ref. Description Range

DSo 400 Stator outer diameter [mm] 400

lS 60 Stator active length [mm] 50-70

lR 55 Rotor active length [mm] 45-65

lg 0.8 Airgap length [mm] 0.80-1.10

R1 0.6 Diameter ratio, Eq. (6) 0.55-0.75

R2 0.250 PM width ratio (1), Eq. (7) 0.17-0.33

R3 0.488 PM width ratio (2), Eq. (8) 0.43-0.63

R4 0.089 PM length ratio (1), Eq. (9) 0.05-0.13

R5 0.196 PM length ratio (2), Eq. (10) 0.08-0.22

R6 0.065 PM location (1), Eq. (11) 0.03-0.11

R7 0.559 PM location (2), Eq. (12) 0.25-0.65

R8 0.625 Tooth width ratio, Eq. (13) 0.50-0.65

R9 0.060 Flux barrier (1) ratio, Eq. (14) 0.02-0.10

R10 0.480 Flux barrier (1) ratio, Eq. (15) 0.38-0.58

R11 0.150 Flux barrier (1) ratio, Eq. (16) 0.10-0.20

R12 0.810 Flux barrier (1) ratio, Eq. (17) 0.71-0.91

R13 0.410 Flux barrier (2) ratio, Eq. (18) 0.31-0.51

R14 0.390 Flux barrier (2) ratio, Eq. (19) 0.30-0.48

R15 0.640 Flux barrier (2) ratio, Eq. (20) 0.54-0.74

R16 0.580 Flux barrier (2) ratio, Eq. (21) 0.48-0.68

R17 0.790 Flux barrier (1) ratio, Eq. (22) 0.69-0.89

R18 0.970 Flux barrier (2) ratio, Eq. (23) 0.95-0.99

R19 0.275 Tooth tip ratio 1, Eq. (24) 0.15-0.40

R20 0.030 Tooth tip ratio 2, Eq. (25) 0.02-0.04

R21 0.030 Tooth tip ratio 3, Eq. (26) 0.02-0.04

Table 4 Optimization problem: constraints and objectives

ID Type Formulation Description

DSo Constraint DSo < x Max. stator outer diameter

DSi Constraint DSi > y Min. stator inner diameter

l Constraint (lS + lR + lg) < x Max. active length

ISlot Constraint ISlot < x Max. slot current density

TRP Constraint TRP < x Max. torque ripple

TEM Objective max. TEM Maximize EM torque
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Ratios R13–R16 define the flux barrier geometry accord-
ing to Eqs. (19)–(22):

R
p x w

w
pm

p pm
13

2

2

2 2
�

�

��
; 	 (19)

R
p x w
p x w

pm

pm
14

2

2

2 1

2 2
�

�

�
; 	 (20)

R
p x w

w
pm

p pm
15

2

2

2 4
�

�

��
; 	 (21)

R
p x w
p x w

pm

pm
16

2

2

2 3

2 4
�

�

�
. 	 (22)

Ratios R17 and R18 define the magnet axial positions in 
layers 1 and 2 according to Eqs. (23)–(24):
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Ratios R19, R20 and R21 control the tooth tip (and slot open-
ing) dimensions of the stator according to Eqs. (25)–(27).
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3.2 Optimization problem definition
The input parameter ranges are presented in Table  3, 
and the motor requirements are summarized in Table  4. 
The optimization constraints and objectives are a reduced 
set of motor requirements to keep the optimization 

problem reasonably simple for this study. Therefore, con-
tinuous power requirements are not included, and the ther-
mal model has not been coupled to the simulation model 
in this case.

3.3 Optimization method
The geometric optimization of an electric motor with 
anisotropic (salient) rotor design is a nested optimization 
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problem. Since the geometry changes during the opti-
mization, the optimal current angle is not constant. 
Depending on the control method used, the optimal cur-
rent angle needs to be determined at each step. 

Therefore, a large number of iterations are required. In 
this study, a two-step method is proposed, as shown in Fig. 
11. As shown in the figure, the process starts with a simple 
magnetostatic analysis to determine the static torque-cur-
rent angle curve for the given geometry. In the proposed 
method, an approximation curve was fitted to the magne-
tostatic analysis data at each iteration. The optimum cur-
rent angle was determined by an optimization algorithm 
based on the curve and the control algorithm applied.

The optimization algorithm used for geometry opti-
mization is a general-purpose evolutionary algorithm 
(genetic algorithm, [22]), but other algorithms can also 
be used. The optimized geometry parameters are shown 
in Table 5 and illustrated in Fig. 12.

4 Conclusion
The study presents a metamodel-based (surrogate mod-
el-based) optimization method for an anisotropic rotor axial 
flux permanent magnet synchronous motor. The single sur-
rogate multi-slice method was proposed and described in 
detail. This new method allows for the creation of a single 
surrogate model and evaluation of multiple parameter-sets 
based on the number of 2D slices used in the model. This 
method requires only one training set, but allows for an 
unlimited number of slices, minimizing the approximation 
error of the 2D model. In the proposed method, the current 
angle is optimized according to the MTPA condition in the 
base-speed region. This method enables reasonably accu-
rate numerical optimization of axial flux motors with com-
plex anisotropic rotor designs using normal computational 
resources. The optimization example considers a reduced 
set of electromagnetic design aspects to simplify the prob-
lem. However, additional electromagnetic constraints and 
objectives can be included without major modifications 
to the workflow. To analyze continuous working perfor-
mance, an analytical or numerical thermal model must be 
coupled, which will be described in a later article.

Table 5 Optimized absolute geometric parameters of the AnR-
AFPMSM reference design

ID Reference value Description

DSo 400 mm Stator outer diameter

DSi 260 mm Stator inner diameter

lS 57 mm Stator active length

lR 65 mm Rotor active length

lg 1.0 mm Airgap length

wpm1 31.4 mm Magnet width, layer 1

wpm2 49.5 mm Magnet width, layer 2

lpm1 6.1 mm Magnet length, layer 1

lpm2 14.3 mm Magnet length, layer 2

dpm1 37.6 mm Magnet position, layer 1

dpm2 71.1 mm Magnet position, layer 2

wS 17.25 mm Slot width

τS 43.1 mm Slot pitch

τP 103.7 mm Pole pitch

p1x1 33.43 mm Flux barrier, layer 1 (Fig. 2)

p1x2 35.68 mm Flux barrier, layer 1 (Fig. 2)

p1x3 40.11 mm Flux barrier, layer 1 (Fig. 2)

p1x4 42.17 mm Flux barrier, layer 1 (Fig. 2)

p2x1 58.14 mm Flux barrier, layer 1 (Fig. 2)

p2x2 71.64 mm Flux barrier, layer 1 (Fig. 2)

p2x3 69.54 mm Flux barrier, layer 1 (Fig. 2)

p2x4 84.05 mm Flux barrier, layer 1 (Fig. 2)

p1y 1.54 mm Flux barrier (Fig. 2)

p2y 26.49 mm Flux barrier (Fig. 2)

Fig. 12 Original and optimized geometry of the AnR-AFPMSM
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