
Cite this article as: Alsaffar, Q. S., Ben Ayed, L. "Implementation of Parallel Applications on Linear Systolic and Star Topologies by Using Multistage Omega
Network", Periodica Polytechnica Electrical Engineering and Computer Science, 2024. https://doi.org/10.3311/PPee.37547

https://doi.org/10.3311/PPee.37547
Creative Commons Attribution b |1

Periodica Polytechnica Electrical Engineering and Computer Science

Implementation of Parallel Applications on Linear Systolic
and Star Topologies by Using Multistage Omega Network

Qusay Samir Alsaffar1*, Leila Ben Ayed2

1 National School of Electronics and Telecommunications of Sfax, University of Sfax, 3029 Sfax, P.O.B. 1169, Tunisia
2 National School of Computer Science Tunisia, University of Manouba, Campus Universitaire de La Manouba, 2010 Manouba,

Tunisia
* Corresponding author, e-mail: qusay_saffar@mohesr.gov.iq

Received: 27 May 2024, Accepted: 18 October 2024, Published online: 28 October 2024

Abstract

Contemporary computer architecture comprises multicomputer settings. Multiple computers provide the facility of high performance

to implement multiple threads that are faster and concurrently with different processors that can execute tasks simultaneously.

The challenges are as follows: cost and high performance. Certain firms have to provide funding to establish data centers that need

locations, hardware, and technicians. After the passage of a period of time, such equipment requires maintenance (updating and

upgrading) to take place on it. This paper tackles these challenges by passing the drawbacks of data centers. It provides an algorithm that

simulates a virtual machine, as one client is to be connected with eight servers to implement two applications namely convolution and

mathematical operations. To represent different topologies, the algorithm simulates supercomputer systems by applying multistage

omega network topology and parallel processing. Two types of topologies execute linear systolic and star, and is implemented on

transmission control protocol (TCP) and user datagram protocol (UDP) protocols. The goal of this paper is to provide a kernel that draws

near a cloud computing system by exploiting the JAVA programming language with its techniques (threading, socket, socket server,

Datagram socket, and datagram packet). The results offer the connection between the client and servers to be successfully simulated

by using multistage omega network. The linear systolic and star topologies are simulated in virtual parallel processing.

Keywords

multistage omega network, linear systolic topology, star topology, parallel processing, JAVA, threading, cloud system

1 Introduction
Multistage interconnection networks (MINs) are con-
structed to be a path to implement several missions simul-
taneously, and they make the rate of cost a lessor one.
It allows a variety of applications to be processed by using
parallel processing in real-time applications which need
many processors as the processing power of a single pro-
cessor which isn't enough for meet the requests of these
applications [1, 2].

The P size of MINs is composed of log2 P stages,
each stage of which consists of P/2 nodes of size 2 × 2
and provides fascinating utilities such as a small number
of switches, an effective algorithm of routing, and parti-
tion ability. Some models of topologies are represented
by log2 P stages and these are multistage omega network,
Butterfly, and Baseline [3].

Omega relates to banyan-type MINs [4], and has the
primary properties of banyan such as self-routing devices,

where one input port is connected to one output port
through a path. The routing algorithm (perfect shuffle) is
provided in Omega networks. A switch receives a packet
in its in-port and redirects the packet to a destination
through it's out-porting according to packet address. This
operation is called (self-routing). This routing algorithm
works by rotating to the left destination of the packets.
The connection permutation continues as it goes through
the stages of the Omega network [5].

The main benefit of utilizing multiprocessors is to pro-
vide sturdy processing through connecting the multi-pro-
cessors. The fastest single-processor can't reach the power
of a multiprocessor [6]. The construction of a powerful
single processor is with some costs, so the constructing of
a multiprocessor includes many single processors which
is more of cost-effectiveness. Moreover, fault tolerance is
regarded as another advantage of a multiprocessor system.

https://doi.org/10.3311/PPee.37547
https://doi.org/10.3311/PPee.37547
mailto:qusay_saffar@mohesr.gov.iq

2|Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci.

If a processor is down, then it can convert the task of this
processor into another processor [7].

Parallel processing consists of different types, the
most common of which are single instruction multi-
ple data (SIMD) and multiple instructions multiple data
(MIMD) [8]. SIMD is a type of parallel processing where
the system consists of more than one processor and each
of which executes diverse types of data and corresponds
to the same group of instructions. MIMD is a system con-
sisting of more than one processor, and each one of which
processes its routine and gets data from various flows [9].

Transmission control protocol (TCP) transfers the data
in a two-directional network and guarantees a successful
delivery, and it can control congestion facility. The user
datagram protocol (UDP) transfers the data from a cer-
tain source to its destination in a one-directional network,
yet still there is no acknowledgment whether it can be
obtained when data is received [10, 11].

This research presents two models that are proposed to
overcome the data center problems (cost saving, hardware,
etc.), namely the simulates multistage omega network and
parallel processing. The first model is convolution and
is implemented by using linear systolic topology and is
executed on TCP protocol. The second model, however,
is 8 mathematical operations and is implemented by the use
of star topology and is executed on UDP protocol. The two
models use JAVA (threading, socket server, socket, data-
gram socket, and datagram packet). The application data
is split into threads and then is sent from a specific client
to 8 computers(servers) to achieve the task. The connec-
tion between a selected client and servers is enabled by the
use of switching of multistage omega network and parallel
processing, and the communication is then implemented
by using liner systolic (a convolution application) and star
(mathematical operations) topology simultaneously.

This research attempts to reach the cloud computing
systems by introducing a small sample to represent the
multiple topologies.

The research is organized as follows: the Related works
are stated in Section 2, while the convolution and mathemat-
ical operations are illustrated in Section 3. The parallel con-
nection using the multistage omega network is explained
in details in Section 4, leaving the space for Section 5 to
describe the distributed system topologies. In Section 6 the
cloud system is briefly defined. The proposed system and
algorithms are detailed in Section 7. The results that are
obtained are illustrated in details in Section 8, and Section 9
of the research reveals the conclusions.

2 Related works
Zheng et al. [12], developed a simulator that depends on the
tracing parallel discrete events. It simulates a completed
paradigm for processing and communication (processors
and network) with rational detailing. The simulator per-
mits the valuation of a variety of levels of details in the
IN: from small latency to the detailed paradigms consist-
ing of d-ary m-trees, d-ary, and m-cubes of the network.
The best characteristics of the simulator are the utmost
modularity that is to be at work with a simple technique
to model specific modern routing algorithms and topolo-
gies. The system permits the processing of big simulations
of existing and future models in parallel implementation
form, and surveys the actions of applications that are built
for those same models. The system is formatted at the time
of processing, which means that any update in the para-
digm is obligated to reprocess the destination units.

Keshk [13], used RMI based on JAVA threads to mul-
tiply the matrix in parallel. He used four computers; that
were divided into one RMI for the server and three ones as
clients. 2-matrices of size n × n are created by the server
and every client gets the first matrix that is connected via
a particular row (relying on client ID). The output rows
are sent by the clients to the server. The output of mul-
tiplying two rows is gathered by the server to give the
result. The output demonstrates that using matrices of size
(256 × 256) causes a speedup of up to 2.2 (reducing the
amount of multiplication time to 52.5). Such work can be
developed by providing more than one server.

Argollo et al. simulated an entire system environ-
ment [14]. This system uses a network-switching simulator
and it is an open source which can simulate a group of sys-
tems multi-core. The method is very simple for network
modelling and cannot simulate a bigger network.

Denzel et al. developed a simulation of parallel sys-
tems [15], the main function of which is to evaluate the
parallel applications. The system consists of detailed para-
digms of nodes and communication. The system provides
different types of routing and switching functions with
many multistage topologies. There are multi-processing
cores that are supported by this system and each core of
which has a MPI stack. The system is executed in parallel
and is regarded as powerful in corresponding with MPI,
yet it is not scalable and can support a few thousand nodes.

Badia et al. [16] designed a simulator to evaluate the
applications behavior. It utilizes the parallel application
for tracing in any architecture for remodelling the running
of that application. The model is designed to compute the

Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci. |3

interconnection network in a simple method with accu-
racy in computing element models. The payloads that
are used with the simulator are designed in details, with
many important states that are provided for the application
thread. The problem with this simulator is that it is sophis-
ticated to get the traces with a convenient level of detail
and that needs a provided kernel. The model is designed
to seek unbalances that can affect the execution of parallel
applications, and this means that the bottlenecks that hap-
pen in the network cannot be identified [16].

Zhou et al. developed a simulator as a supercomputer.
The simulator is precision cycle-driven and is accurate in
its setting as a real system. The system is not scalable and
is caused by restricted to a 32-destination node [17].

3 Convolution and mathematical operations
This research applies the convolution and mathemati-
cal (addition, multiplication, subtraction, division, mod,
power, max, and min) operations in a multistage omega
network. In convolution, there are two arrays: the F is
called filter and the A is called input, and consisting of N
and M integers respectively. The task is to construct a con-
volution array C of size (N + M − 1). The convolution of
two arrays is defined as in the following Eq. (1). [18]:

C i j a i b jk
�� � � � � � �� ���0

1

* , (1)

where a[] and b[] are two arrays and C is the result, i, j are
the elements of arrays.

4 Parallel connection using multistage omega network
To execute the algorithm, the researchers chose the omega
network which is a type of MIN. The XOR between the
source and destination binary number nodes represents
the path. The Omega network is constructed by multiple
stages. Each stage consists of S/2 switching elements [19].
A single switch consists of two ports (crossover and
passthrough) for connection status. In the passthrough
state, input is sent straight path to the output, in the cross-
over state, the exchange of the path from input to out-
put [20] as it is shown in Fig. 1 [21].

The log2 P represents the stages of the Omega network.
The P inputs are connected to the outputs through an inter-
connection mode for every stage. The connection between
input i and output j can be explained in Eq. (2), [22],
as illustrated in Fig. 2:

j
i i P

i P P i P
�

� � �

� � � � �

�

�
��

�
�
�

2 0
2
1

2 1
2

1

,

,

, (2)

where j input the ID to the next stage, i is the node ID to
input to switch and P is the number of clients and servers.

5 Distributed system topologies
In this research, the linear systolic topology is chosen to
execute the communication on the convolution operation.
The filter array elements are sent from the selected client
to the servers where each element is sent to each server,
while all the input array elements are sent to each server
as it will be explained in algorithm section. The filter and
input array elements are sent as threads. This mechanism
represents the SIMD parallel processing. The transmission
threads between the client and servers and between serv-
ers themselves are achieved simultaneously. Fig. 3 demon-
strates this mechanism. The TCP protocol is exploited to
execute the communication.

The star topology is chosen to execute the communi-
cation on the mathematical operations. The selected client
sends a request to a specific server to do the operation (send-
ing two numbers as threads), and the threads are then trans-
mitted simultaneously. Fig. 4 demonstrates the star topology.
The UDP protocol is applied to execute the communication.

6 Cloud system
Cloud computing introduces cloud services to different
users, and these services are provided by remote locations
from third parties [23].

These services are classified as IaaS (Infrastructure
as a Service), PaaS (Platform as a Service), and SaaS
(Software as a Service) [24]. These three technologies can
offer cost-effective and optimal use of resources to a great
extent [25]. In this research, the SaaS cloud computing sys-
tem for parallel processing network topology is designed.

7 Proposed system
This research classifies the proposed algorithm into three
parts: (connection between client and server algorithm, con-
volution algorithm, and mathematical operations algorithm).Fig. 1 2 × 2 switching connection [21]

4|Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci.

7.1 Connection between client and server algorithm
To attain the connection between a client and server in the
multistage omega network, the path between the source
and destination nodes has to be determined. The path

passes through three stages and each stage consists of
four switches. At first of four clients, the entrance into
each switch is port 0, while in the second four clients,
the entrance of which is port 1, as follows in Algorithm 1.

Fig. 2 The multistage omega network [22]

Fig. 3 Communication using linear systolic topology

Fig. 4 Communication using star topology

Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci. |5

7.2 The convolution algorithm
Algorithm 2 selects one client and 8 servers. There are two
arrays: the first one is filter F. It convolutes on the second
array A to get the results. The client sends one value from
F elements to each server as a thread and then sends all
elements of A to each server as threads. There is a queue in
each server. The results are accumulated at the last server.

The process of sending the threads (F and A) between
the client and servers and (Snew ) between servers them-
selves is performed concurrently in parallel processing
that is applied on linear systolic topology through the use
of socket, socket server and TCP protocol.

7.3 The mathematical operations algorithm
There are eight mathematical operations that are imple-
mented in Algorithm 3, namely: (addition, multiplication,

subtraction, division, mod, power, maximal and mini-
mal value). By using the parallel processing to simulate
the star topology, the servers work simultaneously to exe-
cute the operation and send the results back to the client
through the use of the datagram socket, datagram packet
and UDP protocol.

Fig. 5 demonstrates the activity diagram of the connec-
tion process between the client and server.

Fig. 6 (activity diagram) reflects the parallel processing
of the convolution by transmitting threads by using the
socket and socket server.

Fig. 7 activity diagram explains the parallel processing
of the mathematical operations by transmitting threads
using the Datagram packet and datagram socket.

8 Illustration and experimental results
Section 8 explains the results that were obtained, the
first part related to the connection process, the second
part explains the convolution process, and the third part
explains the mathematical operations.

8.1 The connection between client and server process
The enabling of a successful connection from client no. (6)
that will send a thread to the server no. (7) that will pro-
vide a specific task, as it is illustrated in Fig. 8:

1. The number of nodes(P) = 8, Client no. (Cid ) = 6,
server no. (Sid ) = 7.

2. Convert Cid and Sid numbers from decimal to binary
form where Cid = 110 and Sid = 111.

3. The number of stages M = log2(P) → M log2 (8) = 3.
4. (110) XOR (111) = (001).
5. (P/2 ≤ i ≤ P−1) → (8/2) ≤ 6 ≤ 8−1 → ID = 2 × i + 1−P

→ ID = 2 × 6 + 1−8 → ID = 5 (the first stage entrance
is 5 as illustrated in Fig. 8).

6. The significant bit of the XOR result is 0 port, the
switch operates in straight mode (Fig. 8).

7. (P/2 ≤ i ≤ P−1) → (8/2) ≤ 5 ≤ 8−1 → ID = 2 × i + 1−P
→ ID = 2 × 5 + 1−8 → ID = 3 (the second stage
entrance is 3 as illustrated in (Fig. 8).

8. The second bit of the XOR result is 0 port, the switch
operates in a straight.

9. (0 ≤ i ≤ P/2−1) → (0 ≤ 3 ≤ 8/2−1) → ID = 2 × i →
ID = 2 × 3 = 6 (the third stage entrance is 6).

10. The least significant bit of the XOR result is 1 port,
the switch operates in exchange mode.

11. The destination server is (111) and the connection is
done.

Algorithm 1 The connection between client and server

1. Input: i, P, client Cid, server Sid
2. Output: Destination server
3. Calculate the number of stages M = log2(P)
4. Convert Cid to 3-bit binary form (C[  ]id ) and Sid to 3-bit binary form
 (S[  ]id )
5. L[  ]id = (C[  ]id ) XOR (S[  ]id ), the most significant bit represents the
     first stage, the least significant bit represents the M stage
6. Determine port IDs of switches from 0 to P − 1 according to

If (0 ≤ i ≤ P/2 − 1) Then ID = 2 × i
Else If (P/2≤ i ≤ P − 1) Then ID = 2 × i + 1 − P

7. If L [the significant bit] = 0 Then the switch operates in Straight
        mode
8. If L [the significant bit] = 1 Then the switch operates in Exchange
     mode
9. The next stage starts returning from step 6 until you reach the final
 stage M

End

Algorithm 2 The convolution

1. Input: F (i0, i1, …, i7 ), A(   j0,  j1, …,  j7 ), 1 client and 8 servers
2. Output: Convolution array C
3. Foreach (x = 0 to 7) do

Scurrent = F × A[x]
Put Scurrent into q
Take Scurrent from the q
Snew = Scurrent + Sprevious //in server 0 the Sprevious is 0
Send Snew to the next server and it will be the Sprevious

End

Algorithm 3 The mathematical operation

1. Input: first value, second value, 1 client and the server that is
    exclusive for the operation
2. Output: a result of the operation
3. The client sends 2 numbers to the specific server as a threads
4. The server processes the mathematical operation and sends back the
    result to the connected client as a thread.
End

6|Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci.

Fig. 5 The connection process between the client and the server

Fig. 6 The parallel processing of the convolution

Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci. |7

Fig. 7 The parallel processing of the mathematical operations

Fig. 8 Connection between client no. 6 and server no. 7

8|Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci.

8.2 Linear systolic topology and parallel processing for
convolution
Section 8.2 explains the use of linear systolic topology to
achieve the parallel processing and simultaneous com-
munication between processors to calculate the results
through sending and processing the threads, as it is illus-
trated in Fig. 9:

1. Select 1 client and 8 servers.
2. Input F (1, 2, 3, …, 8), A (9, 10, 11, …, 16).
3. Apply the connection algorithm.
4. The selected client sends the first value of the fil-

ter (1) to server_0 the second value (2) to server 2,
last value (8) to server 7 as a thread, by using socket
('localhost', port no.).

5. The selected client sends the array values (9, 10,
11, …, 16) to each server as threads, using a socket
('localhost', port no.).

6. The servers receive all threads of (F and A) by using
the Socket server ('localhost', port no.).

7. Server_0 processes the threads by multiplying the
thread (1 × 9 = 9) and then putting the result in the
queue (9).

8. Server_0 takes (9) from the queue, then add 9 + 0 = 9.
9. Then repeat the process by multiplying F (1) with

the rest of the (A) threads and putting them into the
queue, then take them from the queue and add to 0.

10. Server_0 sends the results of summation to the next
server as threads using a socket('localhost', port no.).

11. Server_1 receives the threads from the selected cli-
ent and server_0, using the socket server ('localhost',
port no.).

12. The next server repeats the same process from
point (7), but F will be (2), and the queue has two
indexes then put the thread that received from
server_0 in the first queue index, then put the multi-
plication result in the second index (9 × 2 = 18), then
it repeats the process.

13. The final results of the summation are aggregated at
server_7.

8.3 Star topology and parallel processing for the
mathematical operations
Section 8.3 explains the using of star topology to achieve the
parallel processing of the 8 mathematical operations, where
each server processes a specific operation, and Fig. 10 illus-
trates the communication between the client and servers:

1. Select 1 client and 1 server.
2. Input 6 and 5 values.
3. Apply the connection algorithm.
4. The client sends the values (6 and 5) to the servers

as threads by using DatagramPacket (value, length,
'host', port).

Fig. 9 The linear systolic topology of parallel processing to execute the convolution

Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci. |9

5. The servers receive the threads by using
DatagramPacket (value, length) and socket.receive().

6. Each server achieves the specific task and gives the
result.

9 Conclusions
This research makes a simulation of the parallel process-
ing of a virtual network as a physical network. The connec-
tion between the client and servers is successfully enabled
through the use of a multistage omega network. The JAVA
programming language and its techniques (threading,
socket, socket server, datagram packet, and datagram
socket) are used to execute the system. The linear sys-
tolic topology is applied to execute the convolution. Star

topology is applied to execute the mathematical operations.
In these two topologies, the connection between the cli-
ent and servers, in addition to the communication between
servers are successfully applied through transmitting the
threads and all servers process them concurrently. The TCP
and UDP protocols are used to achieve the communication.
The virtualization and variety of topologies and protocols
that are applied in this research give a sample of cloud com-
puting systems. The trend towards virtual machines and the
cloud system provides the most recent resources and is con-
sidered the best choice to be done. It is also by passing the
drawbacks of data centers since it saves costs. Later on, the
data centers become outdate. The amount of resources that
is provided in the cloud system is increased when the users
become in need for more and it decreases when the users
need less. The system uses 3 stages omega network and
this can extend to more stages, and thus the system is scal-
able. This research discussed the construction of a super-
computer that can be done by applying 8 virtual clients and
8 virtual servers in a single physical machine.

The algorithm can be developed by further future work
in providing a special mechanism by converting the task
of a server to another one when the first server is down
(fault tolerance) and by the use of another type of intercon-
nection network topology.

References
[1] Amodu, O. A., Othman, M., Yunus, N. A. M., Hanapi, Z. M.

"A Primer on Design Aspects and Recent Advances in Shuffle
Exchange Multistage Interconnection Networks", Symmetry,
13(3), 378, 2021.

 https://doi.org/10.3390/sym13030378
[2] Prakash, A., Yadav, D. K., Choubey, A. "A Survey of Multistage

Interconnection Networks", Recent Advances in Electrical &
Electronic Engineering, 13(2), pp. 165–183, 2020.

 https://doi.org/10.2174/1872212113666190215145815
[3] Izzi, D., Massini, A. "Realizing Optimal All-to-All Personalized

Communication Using Butterfly-Based Networks", IEEE Access,
11, pp. 51064–51083, 2023.

 https://doi.org/10.1109/ACCESS.2023.3279494
[4] Stergiou, E., Garofalakis, J., Liarokapis, D., Margariti, S. V.

"A Study of Multilayer Omega Networks Operating with Cut-
Through Mechanism under Uniform Traffic", In: 2020 5th
South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-
CECNSM), Corfu, Greece, 2020, pp. 1–7. ISBN 978-1-7281-6446-5

 https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221819

[5] Md Yunus, N. A., Othman, M., Hanapi, Z. M., Kweh, Y. L.
"Evaluation of Replication Method in Shuffle-Exchange Network
Reliability Performance", In: Advances in Data and Information
Sciences: Proceedings of ICDIS 2017, Amarkantak, India, 2017, pp.
271–281. ISBN 978-981-13-0276-3

 https://doi.org/10.1007/978-981-13-0277-0_22
[6] Shukla, S. K., Murthy, C. N. S., Chande, P. K. "A Survey of

Approaches used in Parallel Architectures and Multi-core
Processors, For Performance Improvement", In: Progress
in Systems Engineering: Proceedings of the Twenty-Third
International Conference on Systems Engineering, Las Vegas, NV,
USA, 2015, pp. 537–545. ISBN 978-3-319-08421-3

 https://doi.org/10.1007/978-3-319-08422-0_77
[7] Eijkhout, V. "Parallel Programming in MPI and OpenMP", Lulu.com,

2017. ISBN 1387400282
[8] Tino, A., Collange, C., Seznec, A. "SIMT-X: Extending Single-

Instruction Multi-Threading to Out-of-Order Cores", ACM
Transactions on Architecture and Code Optimization, 17(2), 15,
2020.

 https://doi.org/10.1145/3392032

Fig. 10 The star topology of parallel processing to execute the
mathematical operation

https://doi.org/10.3390/sym13030378
https://doi.org/10.2174/1872212113666190215145815
https://doi.org/10.1109/ACCESS.2023.3279494
https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221819
https://doi.org/10.1007/978-981-13-0277-0_22
https://doi.org/10.1007/978-3-319-08422-0_77
https://doi.org/10.1145/3392032

10|Alsaffar and Ben Ayed
Period. Polytech. Elec. Eng. Comp. Sci.

[9] Xiao, F., Zhan, C., Lai, H., Tao, L., Qu, Z. "New parallel pro-
cessing strategies in complex event processing systems with data
streams", International Journal of Distributed Sensor Networks,
13(8), 1550147717728626, 2017.

 https://doi.org/10.1177/1550147717728626
[10] Soomro, M. A., Channa, M. I., Zardari, B. A., Nizamani, S. Z.,

Arain, A. A., Ahmed, M. "Performance Evaluation of TCP and
UDP Protocols under EPLAODV Routing Protocol in Emergency
Situations", Quaid-E-Awam University Research Journal of
Engineering, Science & Technology, 20(1), pp. 29–36, 2022.

 https://doi.org/10.52584/QRJ.2001.05
[11] Kanellopoulos, D. N., Wheeb, A. H. "Simulated Performance of

TFRC, DCCP, SCTP, and UDP Protocols Over Wired Networks",
International Journal of Interdisciplinary Telecommunications
and Networking (IJITN), 12(4), pp. 88–103, 2020.

 https://doi.org/10.4018/IJITN.2020100107
[12] Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L. V.

"Simulation-Based Performance Prediction for Large Parallel
Machines", International Journal of Parallel Programming, 33(2),
pp. 183–207, 2005.

 https://doi.org/10.1007/s10766-005-3582-6
[13] Keshk, A. E. "Implementation of Distributed Application using

RMI Java threads", In: 2007 IEEE International Symposium on
Signal Processing and Information Technology, Giza, Egypt,
2007, pp. 1017–1022. ISBN 978-1-4244-1834-3

 https://doi.org/10.1109/ISSPIT.2007.4458214
[14] Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., Ortega, D.

"COTSon: Infrastructure for full system simulation", ACM
SIGOPS Operating Systems Review, 43(1), pp. 52–61, 2009.

 https://doi.org/10.1145/1496909.1496921
[15] Denzel, W. E., Li, J., Walker, P., Jin, Y. "A Framework for End-

to-End Simulation of High-performance Computing Systems",
Simulation, 86(5–6), pp. 331–350, 2010.

 https://doi.org/10.1177/0037549709340840
[16] Badia, R. M., Labarta, J., Gimenez, J., Escalé, F. "DIMEMAS:

Predicting MPI Applications Behavior in Grid Environments",
Workshop on Grid Applications and Programming Tools (GGF8),
86, pp. 52–62, 2003. [online] Available at: https://www.research-
gate.net/publication/242562299_DIMEMAS_Predicting_MPI_
applications_behavior_in_Grid_environments [Accessed: 05
November 2023]

[17] Zhou, W., Chen, J., Cui, C., Wang, Q., Dong, D., Tang, Y. "Detailed
and clock-driven simulation for HPC interconnection network",
Frontiers of Computer Science, 10(5), pp. 797–811, 2016.

 https://doi.org/10.1007/s11704-016-5035-3

[18] Gonzalez, R. C., Woods, R. E. "Digital Image Processing", Pearson,
2018. ISBN 0-201-18075-8

[19] Stergiou, E., Garofalakis, J., Liarokapis, D., Margariti, S.
"Investigating Multilayer Omega-Type Networks Operating with
the Cut-Through Technique under Uniform or Hotspot Traffic
Conditions", International Journal of Computer Networks &
Communications (IJCNC), 13(5), pp. 89–109, 2021. [online]
Available at: https://ssrn.com/abstract=3960712 [Accessed: 05
November 2023]

[20] Stergiou, E., Liarokapis, D., Margariti, S., Bobotsaris, I.
"Omega Multistage Interconnection Network with High-speed
Forwarding Technique Handling a Double-pattern Load", In: 2022
International Conference on Information Technologies (InfoTech),
Varna, Bulgaria, 2022, pp. 1–4. ISBN 978-1-6654-6871-8

 https://doi.org/10.1109/InfoTech55606.2022.9897116
[21] Md Yunus, N. A., Othman, M., Mohd Hanapi, Z., Lun, K. Y.

"Reliability Review of Interconnection Networks", IETE Technical
Review, 33(6), pp. 596–606, 2016.

 https://doi.org/10.1080/02564602.2015.1130595
[22] Hamarsheh A. "Exploiting Omega Networks to Hide Text-in-

Text Messages", International Journal of Computer Science
and Network Security (IJCSNS), 15(5), pp. 39–43, 2015.
[online] Available at: https://www.researchgate.net/publica-
tion/277547179_Exploiting_Omega_Networks_to_Hide_Text-
in-Text_Messages#fullTextFileContent [Accessed: 05 November
2023]

[23] Rashid, A., Chaturvedi, A. "Cloud Computing Characteristics
and Services: A Brief Review", International Journal of Computer
Sciences and Engineering, 7(2), pp. 421–426, 2019.

 https://doi.org/10.26438/ijcse/v7i2.421426
[24] Wulf, F., Lindner, T., Westner, M., Strahringer, S. "IaaS, PaaS, or

SaaS? The Why of Cloud Computing Delivery Model Selection
– Vignettes on The Post-Adoption of Cloud Computing",
In: Proceedings of the 54th Hawaii International Conference on
System Sciences, Honolulu, HI, USA, 2021, pp. 6285–6294. ISBN
978-0-9981331-4-0

 https://doi.org/10.24251/HICSS.2021.758
[25] Bani Baker, Q., Hammad, M., Al-Rashdan, W., Jararweh, Y.,

AL-Smadi, M., Al-Zinati, M. "Comprehensive comparison of
cloud-based NGS data analysis and alignment tools", Informatics
in Medicine Unlocked, 18, 100296, 2020.

 https://doi.org/10.1016/j.imu.2020.100296

https://doi.org/10.1177/1550147717728626
https://doi.org/10.52584/QRJ.2001.05
https://doi.org/10.4018/IJITN.2020100107
https://doi.org/10.1007/s10766-005-3582-6
https://doi.org/10.1109/ISSPIT.2007.4458214
https://doi.org/10.1145/1496909.1496921
https://doi.org/10.1177/0037549709340840
https://www.researchgate.net/publication/242562299_DIMEMAS_Predicting_MPI_applications_behavior_in_Grid_environments
https://www.researchgate.net/publication/242562299_DIMEMAS_Predicting_MPI_applications_behavior_in_Grid_environments
https://www.researchgate.net/publication/242562299_DIMEMAS_Predicting_MPI_applications_behavior_in_Grid_environments
https://doi.org/10.1007/s11704-016-5035-3
https://ssrn.com/abstract=3960712
https://doi.org/10.1109/InfoTech55606.2022.9897116
https://doi.org/10.1080/02564602.2015.1130595
https://www.researchgate.net/publication/277547179_Exploiting_Omega_Networks_to_Hide_Text-in-Text_Messages#fullTextFileContent
https://www.researchgate.net/publication/277547179_Exploiting_Omega_Networks_to_Hide_Text-in-Text_Messages#fullTextFileContent
https://www.researchgate.net/publication/277547179_Exploiting_Omega_Networks_to_Hide_Text-in-Text_Messages#fullTextFileContent
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.24251/HICSS.2021.758
https://doi.org/10.1016/j.imu.2020.100296

	1 Introduction
	2 Related works
	3 Convolution and mathematical operations
	4 Parallel connection using multistage omega network
	5 Distributed system topologies
	6 Cloud system
	7 Proposed system
	7.1 Connection between client and server algorithm
	7.2 The convolution algorithm
	7.3 The mathematical operations algorithm

	8 Illustration and experimental results
	8.1 The connection between client and server process
	8.2 Linear systolic topology and parallel processing for convolution
	8.3 Star topology and parallel processing for the mathematical operations

	9 Conclusions
	References

