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Abstract

The	most	 commonly	used	 technique	 in	 time-frequency	analysis	 is	 the	 short-time	Fourier	 transform.	 It	 can	be	used	 to	determine	

the	 spectral	 components	 as	 they	 change	 over	 time	 by	 computing	 the	 Fourier	 transform	 of	 a	 windowed	 segment	 of	 the	 signal.	

A fundamental	constraint	of	this	method	is	that	the	frequency	resolution	of	the	representation	in	the	time-frequency	domain	will	

be	 linear	by	design.	The	frequency	adaptive	nonstationary	discrete	Gabor	transform	offers	an	alternative	 that	does	not	have	this	

limitation.	A	Luenberger	observer	is	capable	of	the	implementation	of	the	short-time	Fourier	transform,	and	its	numerical	advantages	

are	already	established	based	on	the	work	of	Hostetter	and	Péceli.	Here,	we	introduce	the	family	of	discrete	Gabor	transforms	and	its	

properties	along	with	a	constructive	method	to	define	such	transforms.	Furthermore,	we	show	that	they	are	realizable	by	Luenberger	

observers	which	are	capable	of	the	error-free	reconstruction	of	the	observed	signal	in	finite	steps.	The	dead-beat	property	is	derived	

for	the	state	variables	as	well	which	estimate	the	transform	of	the	windowed	signal.
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1 Introduction
Signal transforms play a key role in several digital sig-
nal processing algorithms. They can be used to highlight 
important signal characteristics. Virtually all signals are 
generated in the time domain, but their harmonic content 
is not readily apparent from that description of the signal. 
With the help of the Fourier transform, it can be trans-
formed into the frequency domain. To preserve some of 
the time domain information, the short-time Fourier trans-
form [1] and the Gabor transform [2] were developed.

The former can be implemented efficiently in a recursive 
manner with the help of an observer. This idea was first 
elaborated by Hostetter [3] and then by Péceli [4]. Since 
then, the field of the recursive discrete Fourier-transform 
has been well established [5, 6]. However, the resolution 
of the time-frequency plane cannot be adjusted with the 
granularity dictated by real-world applications. Therefore, 
a family of generalized Gabor transforms was developed 
based on frame theory [7] and successfully applied [8]. 
This paper gives a brief review of such transforms and as 
a novelty, it lays the theoretical foundations needed for the 
recursive implementation of them.

Sections 2 and 3 give the review of the necessary the-
ory of frames and Gabor transforms, while Section 4 

introduces the observer and the corresponding conceptual 
signal model and then proves that it is usable for the imple-
mentation of Gabor transforms. Section 4 also contains an 
example and illustrates the correctness. Section 5 details 
the computational benefits of the observer-based imple-
mentation compared to the naive FIR filter based one and 
proves asymptotic stability and the absence of limit cycles. 
Finally, Section 6 concludes the paper.

2 Frames
2.1 Definition
Signal transforms - like the Fourier transform - can be used 
to decompose a time domain signal into a weighted sum 
of components. The evaluation of the transform is noth-
ing more than the computation of these weighting coef-
ficients. A signal transform can be thought of as a pair of 
the set of components and the algorithm used to compute 
the weighting coefficients. The aforementioned set cannot 
be chosen freely, it needs to satisfy certain constraints, for 
example, to ensure that all elements of the time domain 
signal space can be expressed as a weighted sum.

Frame theory [9] is concerned with the study of signal 
transforms in the sense described above. In the general case, 
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the signals to be transformed are continuous and square-in-
tegrable. The remainder of this article will only discuss the 
discrete periodic case because this choice lets us use linear 
algebra to model the stated problems and it suits practical 
implementations, but the main result of the paper remains 
valid for nonperiodic signals as well. This means that the 
space of the signals is N, while the set of the components 
used in the reconstruction is a subset of N.

The elements of this set are called atoms denoted by φl. 
If the signal to be reconstructed is v ∈ N, then 

v �
�

�

��l l
l

L

��
0

1

,  (1)

where L is the total number of atoms and αl is the weight-
ing coefficient corresponding to the lth atom. These atoms 
can be arranged into a L×N matrix as row vectors 

�� � � ���� �� ��
0 1 1

 L
H
.  (2)

Likewise, the αl coefficients can be organized into a 
vector, so the sum in Eq. (1) can be rewritten in a compact 
form as 

v � ��H��.  (3)

An additional advantage of this notation is that it gives 
a hint for the computation of the weighting coefficients 
because 

�� � � ����H v,  (4)

where (∙)+ denotes the Moore-Penrose pseudoinverse. This 
choice leads to the 

v v v� � � � �
�

�� �� ��H H H��  (5)

identity, which might be true only if we have a right pseu-
doinverse. The condition for that to happen is the follow-
ing. The rows of the Φ matrix - the φl vectors - must span 
the space N, so as a consequence L ≥ N. Let's denote 

� � � ���� �� �� �� ��� � � � � � � � �� �

�
H H

L
H1

0 1 1
�� �� �� ,  (6)

which is the matrix containing the so-called dual atoms. 
Using this new definition the dual atoms can be derived 
with the help of the atoms as 

�� ��l
H

l� � ���� ��
1

.  (7)

This leads to a more general definition of the computa-
tion of the weighting coefficients 

� l l
H

l� � � � �� ��v v, ,  (8)

which can be substituted back into Eq. (1) 

v v�
�

�

� , .�� ��l l
l

L

0

1

 (9)

This form makes it apparent that the theory of frames 
intends to generalize the idea of bases. The weighting 
coefficients are the results of a projection, but not onto the 
"basis vector", but onto a dual. Knowing this, a frame can 
be defined as a matrix Φ with a pseudoinverse Φ̃ , which 
can be thought of as a transformation. In this sense, the 
evaluation of the transformation is the computation of 
the coefficients, while the inverse transformation is the 
weighted summation of the φl components. The matrix Φ 
in itself is a frame candidate because if (ΦH Φ)−1 exists, 
then Φ̃ can be computed.

2.2 Properties of frames
During the generalization of the notion of a basis, an 
important property is lost. As previously mentioned, L ≥ N 
must hold. If the inequality is strict, then the total number 
of atoms is larger than the dimension of the space they 
span, which leads to more than one expansion of the 0 sig-
nal because the φl atoms will be linearly dependent. This 
creates an ambiguity in the representations, by adding a 
nontrivial expansion of 0 to another set of coefficients, the 
value of the coefficients will change, but the sum weighted 
by them won't.

This problem can be resolved by observing that the 
coefficients are determined by the result of a projection 
(Eq. (8)) 

�� �� ��� � � �� ����v PH ,  (10)

where α is the calculated expansion, and β is an arbitrary 
one. P is indeed a projection because by using Eq. (6) 

P P2
2

� � � � � � � �   ���� �� �� �� �� ����H H H H
.  (11)

This projection defines an N-dimensional subspace of 
L. The coefficient vectors will be mapped into this sub-
space, which is the range of P by definition, whose basis 
can be calculated easily. Inside this subspace the recon-
struction will be unambiguous. To prove it, first assume 
that it is ambiguous, which means that there exists α ≠ β 
for which 

v � ��� ��H H�� ��  (12)

holds. But because α and β are in the subspace, the P pro-
jection will leave them unchanged, which leads to 
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�� �� �� �� �� ��� � � � � �P v P  ���� �� ����H H .  (13)

But this is a contradiction, our initial assumption was false.
Duality is another important property of frames. 

It states that the roles of the atoms and dual atoms can be 
interchanged 

v v v v v� � � �
�

�

�

�

� �, , .

 

�� �� �� ��l l
l

L
H H

l l
l

L

0

1

0

1

�� �� �� ��  (14)

The third equality holds as a consequence of Eq. (6), 
while the rest due to previous definitions. Later, this will 
prove useful because if we determine the dual atoms, we 
can calculate the atoms from them so that the design pro-
cess can be executed in a reversed order.

3 Discrete Gabor transforms
Section 2.2 showed a general framework and assumed 
the existence of suitable atoms that can serve as a base 
for a frame. The goal is to present a constructive method 
that can generate the atoms for us based on a frequency 
domain specification. But before that, we give a con-
crete example of a frame that corresponds to the discrete 
Fourier transform.

3.1 Discrete Fourier transform
The unitary definition of the discrete Fourier transform is 

�
�

l
N

v n e
j
N

n

N

l� � � � � �
�

�

�

�1
2

0

1 ln
v f, ,  (15)

which can be viewed as a scalar product. Based on this 
equivalence we can define the  ∈ L×N matrix where 
L = N, and organize the transformed values into a vector 

�� � � � ��v f f f v
0 1 1

 L
H
,  (16)

where 

f n
N
el

j
N� � � 1
2� ln
.  (17)

The inverse transform is 

v n
N

l e f n
j
N
nl

l

L

l l
l

L

� � � � � � � �
�

�

�

�

� �1
2

0

1

0

1

�
�

v f, .  (18)

It is similar to Eq. (9), we can assert that the fl vectors are 
good candidates to be atoms and dual atoms.

Considering Eq. (8) and Eq. (15), we can observe that 
they can be described mathematically in an identical way, 
but we interpreted them differently. By evaluating the sca-
lar product, we computed the weighting coefficients in the 

first case, while in the second case, we computed one ele-
ment of the signal transform. Likewise, there is a similarity 
between Eq. (9) and Eq. (18). This leads to a correspondence 
between transforms and frames. It's important to note, that 
this notion of transforms is not compatible with the one 
in linear algebra, but it helps us to define frames by trans-
forms and vice versa and this is exactly what happens in 
Section 3.1. It only remains to show that the fl vectors are the 
atoms and dual atoms, and this is indeed the case because 

� …f f fl
H

l l l L� � � � � �
�

 
1

0 1, , , .  (19)

In subsequent derivations, we will use the translation 
and modulation theorems of the Fourier transform, which 
can be summarized as 

 T M� �� � ,  (20)

 M T� �� ,  (21)

where Tτ is a circular time shift by τ, and Mω is a modula-
tion by ω. Their definition for an arbitrary v ∈ N is 

T� �v n v n N� � � �� ��� ��mod , ,  (22)

M�

� �
v n v n e

j
N

n
� � � � �

2

.  (23)

3.2 Discrete Gabor transform
The Fourier transform of a signal is a purely frequency 
domain representation, thus the time evolution of the fre-
quency components is not readily apparent. The obvious 
solution to this problem is to partition the signal in the 
time domain into several segments and apply the Fourier 
transform to those.

By realizing that the segments can overlap one can 
define the short-time Fourier transform [1]. The Gabor 
transform [3] is a generalization of this idea. The result of 
the transform is a function of time and frequency, in the 
discrete case 

� �
�

m k v n n am e
j
N
bkn

n

N

bk am, , .� � � � � �� � �
�

�

�

�
2

0

1

v M T ��  (24)

The ϕ[n] window function is slid over the signal in steps 
determined by the a time hop parameter, which means 
m = 0, …, N/a − 1. Then, the discrete Fourier transform 
is computed for every bth frequency, so k = 0, …, N/b − 1. 
Consequently, the total number of α coefficients is 

L N
ab

=
2

.  (25)
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As a remark, by choosing a = b = 1 we get the short-
time Fourier transform as a special case when the coeffi-
cient number is maximal. Fig. 1 illustrates the meaning of 
the m and k indices. They can be used to specify a point in 
the time-frequency plane, where the set of possible points - 
which has cardinality L - can be seen in Fig. 1. It is called 
a sampling grid because it samples the time-frequency 
plane in the sense explained in the following paragraphs.

First, we need to assert some properties of this plane, 
considering that we have constrained the signals to be dis-
crete and periodic. Due to the discretization the time axis 
will be discrete, and the frequency axis will be periodic, 
and due to the periodicity, the time axis will be periodic 
and the frequency axis discrete. This means that both the 
time and frequency axes are discrete and periodic. If the 
axes of Fig. 1 are scaled in a way that the period is N both 
in time and frequency, then the discrete points are exactly 
the integers 0, …, N − 1.

One could assume that we would have a perfect under-
standing of the signal's behavior in both domains if we 
knew all N2 points of the plane. To compute them, we 
could use a short-time Fourier transform with a window 
function that has a support small enough on the time-fre-
quency plane to filter out all but one point of the signal, 
let's say at (m*,k*). Unfortunately, the Gabor uncertainty 
principle states that the window cannot be perfectly local-
ized in time and frequency simultaneously. In practical 
terms, multiple points of the plane will affect the compu-
tation of the sought-after signal component. If the window 
function is chosen well, then these points will be localized 
around (m*,k*), which means that neighboring coefficients 
will be dependent.

This dependence introduces redundancy into the signal 
representation, and by increasing a and b, it can be reduced. 
In Fig. 1 the window function is better localized in time 
than in frequency, which means that the dependence will 

be larger in the frequency domain, so we can skip more 
samples there. It's worth mentioning that sampling is not 
mandatory but beneficial because we can save computa-
tional resources without losing information about the sig-
nal. But this raises the question of how large a and b can 
be. If the transform defined in Eq. (24) is invertible that 
means we have a complete description of the signal.

To investigate invertibility, first we need to organize the 
α[m,k] coefficients into a L vector. By choosing a row-ma-
jor order, the linear index is 

l m N
a
k� � .�  (26)

Likewise, with this ordering the translated and modu-
lated window functions can be organized into a matrix. 
These can be thought of as the dual atoms of a frame. 
By using duality (Eq. (14)), the existence of the atoms can 
be checked with Eq. (6), which proves the invertibility of 
the transform, but a more practical set of conditions can be 
given with a further generalization.

3.3 Nonstationary discrete Gabor transform
Section 3.2 presented the family of Gabor transforms. 
Fig. 1 illustrates that all transforms from this family have 
a linear temporal and frequency resolution, i.e. the sam-
ples are equally spaced. This is by design, the exact dis-
tances are a and b, respectively.

By choosing the transform to be 

� �m k v n n a mk k
n

N

a m kk
, , ,� � � � � �� � �

�

�

�
0

1

v T ��  (27)

that is, we have K distinct ϕk[n] window functions and cor-
responding ak time hop parameters. This way the modula-
tion is essentially built into the window, so the frequency 
axis is partitioned by them into potentially nonlinearly 
distributed domains. The ak parameters should be chosen 
to be integers, but N/ak must also be an integer. By choos-
ing the window functions to be the modulation of ϕ[n] and 
setting ak = a for all k, we get back Eq. (24), so the new 
transform is indeed a generalization of the Gabor trans-
form, called the frequency adaptive nonstationary Gabor 
transform [7].

In the frame theoretic interpretation of the transform 
we have the atoms in the form 

�� ��l a m kk
�T ,  (28)

where k = 0, …, K − 1 and m = 0, …, N/ak − 1, so 
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Fig. 1 Example sampling grid of the time-frequency plane for a Gabor 
transform when N = 24, a = 3, b = 6, and L = 32. The gray boxes 

visualize the supports of the ideal translated and modulated windows 
corresponding to the transform coefficients inside them.
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L N
akk

K

�
�

�

�
0

1

 (29)

is the total number of atoms. The linear l index is given by 

l m N
aki

k

� �
�

�

�
0

1

.  (30)

So, the matrix containing the atoms takes the form 

�� � � �� ��� �� �� �� ��
0 0 0 10 0

T T Ta N a N a a

H

k k
  .  (31)

3.4 Proof of invertibility
Section 3.4 states the precise conditions for the invertibility 
of the nonstationary Gabor transform and then proves it [10].

Let the φl atoms of the frame be generated by the ϕk pro-
totype atoms like in Eq. (28). If the lengths of the supports 
of ϕk are finite with values Nk ≤ N and ak ≤ N/Nk such that 
ak and N/ak are integers, and for all n = 0, …, N − 1 

S n N
a

n
k

k
k

K

� � � � �� � �
�

�

� ��
2

0

1

0  (32)

then the dual atoms exist, so the transform is invertible.
The outline of the proof is the following. First, we intro-

duce an auxiliary frame candidate Ψ which is a frame if 
and only if Φ is. We show that Ψ is a frame by invert-
ing ΨHΨ and by computing it's dual atoms using Eq. (7), 
which in turn can be used to determine the φ̃l dual atoms. 
By showing the existence of these, we prove the invertibil-
ity of the transform.

Let's introduce auxiliary prototypes as 

�� ��k k� .  (33)

An auxiliary frame can be derived with Eq. (20) as

�� ��� � � �� � � H
a N a a

H

k k
�� �� ��
0 00

M M ,  (34)

and this leads to 

�� �� �� ��

�� �� �� ��

H H H H

H H H H H

� � � � �
� � � � � �

� �

� �

1 1

1 1

   

     
 (35)

as a consequence, which means that ΦHΦ is invertible if 
and only if ΨHΨ is. So, by computing (ΨHΨ)−1, we can 
calculate the φ̃l dual atoms. This matrix will be diagonal: 

�� ��H k k
k

K j
N
a m p q

m

N
a

k k

p q p q e

p

k
k

� �� � � � � � �

� � �

�

� �� �

�

�

� �, � �

� �

�

0

1 2

0

1

qq N
a

p q N
ak kk

K
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�

�
�

�

�
�

�

�


�

�



�

�

� 	 mod , .
0

1

 (36)

The first equality uses the definitions Eq. (34) and 
Eq. (23), while the second can be derived with the formula 
of the sum of finite terms of a geometric series. The δ[n] 
denotes the unit impulse, so the sum depends only on ak 
and ψk. For the off-diagonal elements, there are two cases. 
If the impulse is zero, then the sum is zero as well, but 
when the impulse is not zero, then the sum will be zero 
because in that case |p − q| ≥ Nk ≤ N/ak, so either ψk[p] or 
ψk[q] or both will lie outside of the support of ψk. But this 
result means that ΨHΨ is diagonal, with elements S[n] on 
the diagonal. Due to Eq. (32), they will be nonzero, so the 
inverse is a diagonal matrix with elements S−1[n].

Based on Eq. (7) and Eq. (28) the dual atoms are 

�� �� ��

��

l
H

a m k
H H

a m k

H
a m

H
k a m

k k

k k

� � � � � �
� � � �

� �

�

�

�

�� �� �� ��

�� ��

1 1

1

T M

M T

 

  ��k .
 (37)

The derivations use the translation and modulation the-
orems (Eq. (20) and Eq. (21)) throughout. The third equal-
ity is explainable using the definition of the modulation 
operator and the fact that the inverse is diagonal. This 
result means that the dual atoms are generated by the duals 
of the prototypes, but by definition they are the inverse 
Fourier transform of the dual auxiliary prototypes, so 
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i
i
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S n
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N
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n
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� �
�
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� �� �

�

�

�
�

2

0

1
.  (38)

But by this, we have concluded the proof.

3.5 Useful properties
By observing Eq. (38), it is apparent that S[n] is a non-
negative real function. The dual atoms are identical to the 
atoms, if for all n 

S n� � �1.  (39)

But this can always be ensured with proper normaliza-
tion if Eq. (32) holds. This is a useful property because in 
a practical implementation the memory requirements can 
be halved. Another advantage is that

�� �� �� ��H H� � I  (40)

by definition which means that the Parseval identity holds 
for the frame [9], which states the equality of the time and 
in this case the time-frequency representation's energy, i.e. 

v n m k
n

N

m

N
a

k

K k
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�

�

�

�

�

�

� ��2

0

1
2

0

1

0

1

� , .  (41)
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If we define 

�
�

�
k

k

i
i

i

K
n

n
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n
� � � � �
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� 2

0

1
,  (42)

where χk are prototype atoms satisfying the invertibility 
conditions, then we can prove that Eq. (40) holds because 
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� .  (43)

There is another useful condition that can be used to 
constrain the L number of atoms. It was stated previously 
that for a frame L ≥ N always holds, but if the biorthogo-
nality condition [11] can be satisfied, then L = N. It can be 
derived from Eq. (29) by dividing both sides by N so 

1
1

0

1

akk

K

�

�

� � .  (44)

In this case, the number of atoms is definitionally equal 
to the dimension of the signal space, and they span it as 
well, so they form a basis of N. This will be true for the 
dual atoms as well and they will form a biorthogonal basis. 
This makes the signal representation unambiguous, but it 
has the practical benefit of reducing the necessary com-
putational resources by minimizing the number of atoms. 
It must be noted that this is a quite restrictive constraint 
because ak and N/ak need to be integers.

3.6 Examples
A wide range of transforms can be designed by the intro-
duction of the nonstationary Gabor transform. The sim-
plest of these, from a mathematical standpoint, is the iden-
tity which gives the original signal as a result. It can be 
acquired by setting K = 1, a0 = 1 and ϕ0 = e0 which is the 
first standard basis vector. Trivially, L = N and the dual 
atoms are equal to the atoms. The Fourier transform of e0 
is a constant, so it is not localized in frequency at all.

The first nontrivial example is the Fourier transform as 
a special case. The parameters should be K = N, ak = N and 
ψk = ek, so the ϕk prototypes will be complex exponentials. 
The choice of ak ensures that L = N. The equality of the 
atoms and the dual atoms holds by definition.

The main example is a general nonstationary Gabor 
transform. The frequency domain specifications of the 
atoms are given by ϕk shown in Fig. 2, while the result-
ing atoms and the sampling grid in Fig. 3 and Fig. 4 

respectively. The center frequencies of the specified win-
dow functions lie exactly on the sampling points. To sat-
isfy Eq. (32), hence invertibility, the value of the ak time 
hop parameters should be chosen as the largest integer less 
than the support of ϕk, while ensuring that N/ak is an 
integer. This is the number of samples that correspond to a 
frequency band in Fig. 4. They can be calculated with the 
atoms depicted in Fig. 3 which refers to them with their 
linear indices. The φ0[n] corresponds to the symmetrical 
frequency region around 0, so its value is real, while for a 
similar reason φ28[n] is also real. Their support in the time 
domain is not finite but they are localized. The remaining 
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Fig. 2 Frequency domain specification of K = 10 window functions for the 
example. The ones forming complex conjugate pairs have the same color.
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Fig. 3 The value of some of the atoms in the example
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Fig. 4 The sampling grid of the time-frequency plane in the example. 
Note that N = 60 so two identical periods can be seen in time, the 

second starts at n = 60.
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two atoms are only different by a translation, and it can 
be seen that their approximate supports overlap, which 
means that this frequency region's neighboring samples 
in the time-frequency plane will be dependent. Another 
thing to note is that the samples form complex conjugate 
pairs, so if the transformed signal is real, then the coef-
ficients corresponding to these pairs will be each other's 
conjugates. This can be used in a practical implementa-
tion, only half of the coefficients must be computed, and 
the other half can be inferred using this fact.

4 Common structure for recursive discrete transforms
Section 4 introduces the Luenberger observer [3, 4] and 
a linear model whose state is estimated by the former. 
The presentation of the theory is based on [11]. As a nov-
elty, it is proved that the observer implementing a frame-in-
duced transform is capable of the error-free reconstruction 
of the observed signal in finite steps. In the case when the 
signal is periodic, then the dead-beat property is derived 
for the state variables as well, and they will be an optimal 
approximation of the true set of weighting coefficients in 
a quadratic sense.

4.1 Conceptual signal model
The conceptual signal model [4] is a linear system whose 
y[n] output is acquired by the summation of the φl[n] atoms 
weighted by the xl[n] state variables. The total number of 
atoms is L. They are periodic by definition with period N 
and their values are given on the n = 0, …, N − 1 timesteps 
so for any n ∈  

� �l ln n N� � � � ��� ��mod , ,  (45)

and the values of the atoms at n collected into a vector is 

�� n n n n nL
H� � � � � � � � � � � �� ����e � � �

0 1 1
 ,  (46)

where e[n] is the nth standard basis vector. Both of the 
above are assumed for all signals introduced later, with 
the notable exception of y[n], which might be nonperiodic.

The output of the signal model can be calculated as 

y n n nH� � � � � � ��� x .  (47)

For the periodic case, the values of the state variables 
are constant, but in the case they are not, then every pos-
sible y[n] discrete signal is constructable [11] by choosing 

x n n y n� � � � � � ���  (48)

because by assuming that the atoms form a frame, then 

y n n n n n y n y nH H H� � � � � � � � � � � � � � � � ��� x e e�� ��  (49)

which is a consequence of Eq. (6).

4.2 Observer
The state variables of the described signal model can be 
estimated by a properly designed observer which was 
introduced and analyzed in [4]. This can be seen in Fig. 5. 
It tries to reconstruct the y[n] input signal by refining the 
x̂  [n] estimated state variables based on the ε[n] estimation 
error with the help of the φ̃ l[n] dual atoms. The time course 
of the estimated state variables can be given by

x x x x

I x

n n n n n n

n n n n

H

H

�� � � � �� � � � � � �� � �� �
� � � � � �� � � �� � �

1 

 

�� ��

�� �� �� yy n� �.
̂ ̂

̂

̂
 (50)

It was proven in [4] that x̂  [n] = x[0] after N time steps 
(or less) if φ̃[n] and φ[n] form a biorthogonal basis and the 
state variables of the conceptual signal model are con-
stant. We can generalize this result by showing that the 
statement remains valid if φ̃[n] and φ[n] form a frame.

The repeated application of the state equation results in 

x I x
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n i i n

i i
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̂ ̂
 (51)

In extreme cases, when the upper index in a sum or 
product is less than the lower, then the result is 0 or 1. 
Note that the periodic extension of the signals (Eq. (45)) 
will be used throughout the proof. First, we will prove that 
after N timesteps, the initial condition of the estimated 
state variable won't affect the estimation. This enables the 
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Fig. 5 An observer for recursive transformations
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simplification of Eq. (51), which can be used to conclude 
that the estimation error is zero.

The initial condition affects the estimation at N through 

I I

I e e

� � � � �� � � � � � � �

� � � � � �

�

�

�

�

�

� � 
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i i

H

i

N
H
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N

H
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1

0

1

0

��
NN

H H
�

��
�
�

�

�
� � �

1

�� ����I  .

 (52)

In the second equality only definitions, while in the 
third the dyadic decomposition of the identity matrix is 
used. The first equality holds because during the expan-
sion of the product when i ≠ j the resulting term is 

  

�� �� �� �� �� ��i i j j i i j jH H H H H� � � � � � � � � � � � � � � � � �e e�� �� 0  (53)

because of Eq. (6) and because the scalar product of different 
standard basis vectors is zero. But the result of Eq. (52) is an 
orthogonal complementary projection of the one in Eq. (10) 

I �� � � � �   ���� ���� ���� ����H H H H 0.  (54)

So, for all n ≥ N the estimation is independent from 
the initial value, assuming that it is in the subspace of the 
Φ̃  ΦH projection because the orthogonal projection will 
map these elements to zero. Zero is suitable to be the ini-
tial condition because it is an element of all subspaces.

Based on the previous idea, it can be shown that the 
estimation will be independent of y[ j] if j < n − N, in other 
words, only the last N values of the input affect the estima-
tion. Using these Eq. (50) can be simplified 

x I xn i i j j j
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1 1

 .

̂
 (55)

To assert the validity of the second equality, some con-
sideration is needed. By multiplying with φ̃[j]φH[j] from the 
right Eq. (53) is always applicable due to the definition of i.

From the estimated state the estimated output is 

y n n i y i y n NH H

i n N

n

� � � � � � � � � � �� �
� �

�

� e e�� ��
1

,̂  (56)

where the first equality is the direct consequence of the 
previous result while the second is true due to Eq. (6) and 
because eH[n]e[i] = 1 only if i = n − N. This proves that the 
observer can reconstruct an arbitrary y[n] signal without 
errors. Finally, the estimation error is 

̂� n y n y n n n i i iH H

i n N

n

� � � � �� � � � � � � �� � � � � � ��

�
�

�

�
�

� �

�

��� �� ��x x

1

.  

(57)

This means ε[n] will exactly be zero without delay only 
when y[n] is periodic with period N, which is ensured if 
x[n] is constant. In that case, it can be factored out from the 
right, so we are left with Eq. (52). If x[0] was in the sub-
space of the projection, then x̂  [n] = x[0]. Otherwise, there 
will be a constant error. This result concludes the proof.

4.3 Example
The main example presented in Section 3.6 can be imple-
mented by the observer, so the atoms are the ones depicted 
in Fig. 3. Consequently, the values of the x̂  l[n] state vari-
ables correspond to the α[m,k] coefficients, the connec-
tion between the indices is given by Eq. (30). This can be 
used to interpret the state variables as a sampling of the 
time-frequency plane like in Fig. 4. Because of Eq. (55) 
only the last N samples of y[n] is taken into account in 
the estimation, x̂  [n] contains the transform of the periodic 
extension of these N values, resulting in a so-called sliding 
window method.

Stepping the time by one moves all of the sampling 
points of the time-frequency plane by one as well. If the 
observer implements a discrete Fourier transform, then the 
state variables take on the values of the short-time Fourier 
transform of the signal. But this is not the case in general. 
On every Nth timestep the sampling points will align as on 
Fig. 4. To interpret x̂  [n] as a sampling of the time-frequency 
plane, we need to consider it only every Nth timestep.

In Fig. 6, the output of the observer can be seen for 
a noncoherently sampled sawtooth wave. The input 
is delayed by N, so it can be verified that the output is 
indeed equal to it. The difference of the two is plotted in 
Fig. 7. The error drops to virtually zero after N timesteps, 
the remaining error is due to the machine precision of 
64-bit floating point operations. This validates the theory, 
Eq. (56) in particular.

5 Computational and numerical properties
The added complexity of the observer-based implementa-
tion results in several advantageous properties. Section 5 
details some of these while comparing them to the naive 
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Fig. 6 The delayed input and the output of the observer
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FIR filter based implementation of the discrete Gabor 
transform. The latter can be obtained by inspecting Eq. (9) 
and realizing that the scalar product can be evaluated as a 
convolution. If the components of the signal to be trans-
formed are stored in a delay line of a FIR filter then the out-
put of the filter will coincide with a transform coefficient 
corresponding to one of the atoms. Fig. 8 illustrates how to 
implement the transform based on this approach. The φ(z) 
and φ̃(z) transfer functions are polynomials of z having the 
corresponding (dual) atoms' components as coefficients.

5.1 Computational complexity
In the case where the transform of the input signal is to be 
processed in a sliding window manner, then the observer 
can operate with significantly less resources. In order to 
keep the notation consistent with Sections 2–4, we denote 
the length of the impulse responses of the FIR filters by N 
and the number of filters by L. Based on Fig. 5 and Fig. 8, 
we can determine the necessary computational resources 
and give a quantitative comparison between the imple-
mentation methods [6]. This is summarized by Table 1 
and it clearly shows that the necessary amount of working 

memory and the number of multiplications can be reduced. 
This is due to the continuous operation of the observer, 
which distributes the operational load between the samples 
by the means of the feedback.

It's important to note that the number representation is 
assumed to be complex. This means that the values con-
tained in Table 1 cannot be directly interpreted as the neces-
sary number of hardware resources, it is only indicative of it.

5.2 Numerical stability
To assess the issue of stability, we can examine how the 
norm of the state variable vector changes over time in rela-
tion to the inputs and outputs. The proof of asymptotic stabil-
ity [12] starts by sorting Eq. (50) and Eq. (47) into a vector, 
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 (58)

Then we can compute the scalar product of each side 
of the equation with itself to get the square of the norms 
we seek, 
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 (59)

The only part of the equation that can be simplified is 
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 (60)

If Eq. (39) holds, then φ[̃n] = φ[n] so THT = I, which 
proves the orthogonality of the structure and results in 

x̂ x2

0

1
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2 2

1n n u n y n
k
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k

K
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�

�

�

�

� � .̂  (61)

When u[n] = 0, then the norm of the state vector will 
always decrease, which leads to asymptotic stability by defi-
nition. Furthermore, the absence of limit cycles is guaran-
teed if we choose magnitude truncation during quantization.

6 Conclusion
The paper first established the theory of frames and some 
of the important results. This was followed by a detailed 
description of the Gabor transform and its generalization, 
which has adaptivity in the frequency domain. The invert-
ibility for this generalized case was proved, and then the 
design of such transforms was presented as examples.

Table 1 Complexity comparison of FIR and observer-based 
implementations

Memory Mult. Adders

Type ROM RAM 2-input N-input

FIR 2NL (L + 1)(N − 1) 2NL 0 2L + 1

Obs. 2NL L 2N L + 1 1
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Fig. 7 The error of the reconstruction for the example
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Fig. 8 FIR-based implementation of discrete Gabor transforms
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Next, the preliminaries for the implementation were 
discussed by introducing the conceptual signal model and 
the corresponding observer. As a novelty, it was proved 
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forms defined in the first half of the article. In particular, 
this meant that the reconstruction and estimation errors 
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Lastly, the stability of the observer-based implemen-
tation was proved along with the absence of limit cycles 

and an analysis was given on its computational complex-
ity compared to a naive FIR filter based implementation.
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