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Abstract

To make the process of evaluating complicated hierarchical systems more tractable, it is beneficial to represent them through models 

derived from a unified class of frameworks that are conducive to subsequent analytical endeavors. This method of interchanging 

the original model with ones from predetermined categories possessing desirable characteristics is referred to as Mathematical 

Remodeling. Among remodeling classes there can be mentioned Neural Networks as structures being universal approximators and 

which are acceptable to be analyzed. The question related to the importance of model inputs (Sensitivity Analysis) has a great practical 

meaning, for example, this information can be used for model reduction, control of the system, etc. There are a wide variety of 

methods of Sensitivity Analysis, which can be classified both by the mathematical approaches used and by the types of models to 

which they are relevant. However, there are almost no unified approaches to assessing sensitivity in the case of hierarchical systems. 

The paper introduces the approach to estimate sensitivity measures for hierarchical system obtained by applying remodeling concept. 

The proposed method is based on Analysis of Finite Fluctuations built on the Lagrange mean value theorem. The proposed approach 

provides both end-to-end analysis (investigation of the influence of inputs of sub-systems on the output of the main system) and 

analysis of the components of the hierarchical system. The paper also contains a numerical example which demonstrates the ability 

of the proposed approach to deliver sensitivity measures of hierarchical system. 
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1 Introduction
Complicated systems can be described by various types 
of subsystems having sometimes different representa-
tions. For example, the system on its highest level can 
be presented as a kind of indicator with predefined well-
known structure, but for elements forming factors of such 
indicator may be used distinct approaches and models 
to construct them. To unify the analysis of these mod-
els it is possible based on the original model to create a 
more suitable for further usage model from another class.  
The approach to constructing a model based on an exist-
ing one is called Mathematical Remodeling [1]. One of 
the ways to carry out the remodeling procedure is the 
following: based on the original model, an array of data 
on the input and output values is formed a model on the 

resulting array of approximation algorithms. Technically 
remodeling is the process of formation a new model 
from the predefined class based on an existing model [2].  
The method provides the option of using common 
approaches to analysis, optimization and control of the 
object. With the obvious advantages of the proposed 
approach, it also has some disadvantages, among them 
are the following: ignoring the physical basis of the stud-
ied process or system; additional loss of accuracy during 
the transition from one model to another; difficulties 
caused by developing and implementing additional algo-
rithms for model transformation.

The idea of remodeling in accordance with defined rea-
sons and criteria was stated in connection with the applied 
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problems of the metallurgical production (cf. [3]) and is 
actively developing, including the same applications and 
new applied problems.

Close to remodeling scheme (remodeling, cf. [4]) are sur-
rogate modeling (cf. [5]), metamodeling (cf. [6]), co-simu-
lation (cf. [7]) and some others similar approaches (re-run, 
repeat, reproduce, reuse, replicate, cf. [8]). And it should 
be noted that many classical and modern approaches and 
methods of fundamental and applied mathematics can also 
be interpreted as Mathematical Remodeling. 

Traditionally remodeling is used to approximate static 
models using classical numerical methods of function 
approximation; in this case remodeling classes are Taylor 
polynomials, Fourier polynomials, etc. The other traditional 
approach is an equivalent remodeling, in which, in contrast 
to the approximation, the model is not approximated, but 
substituted by the equivalent one. The equivalent remod-
eling is also associated with the transformation of dynamic 
systems into equivalent "input-state-output" models, i.e. the 
solution of the direct problem for these systems.

As it was mentioned above one of the advantages of 
remodeling is the simplification of the further analysis 
of the model. In this regard neural network models can 
be indicated as one of the most unified approximators. 
Following the concept of multiple models describing dif-
ferent submodels of the system it is possible to use classi-
cal artificial neural networks to unify the representation 
of different components of the system, which can pres-
ent by itself the hierarchical system. And the prominent 
problem in this field is to estimate the sensitivity measures 
of submodels inputs, and sensitivity measures of system 
units (outputs of submodels and inputs of the submodel of 
the higher level at the same time). This point leads to the 
Hierarchical Sensitivity Analysis (HSA). 

The authors have previously proposed a Sensitivity 
Analysis (SA) approach described in a series of papers and 
verified on different types of models. The presented study 
extends the developed method to the case of hierarchical 
systems. The proposed original method enables both end-to-
end SA (the influence of inputs of different subsystems on 
the output of the upper-level system) and SA of individual 
subsystems and groups of subsystems. Also, it is used Neural 
Network model as a unified remodeling class of models. 

The paper is organized as follows. Section 2 presents 
a review on existing methods of Sensitivity Analysis 
(SA), special attention is given to hierarchical SA, 
Section 3 describes SA based on applying Analysis of 
Finite Fluctuations (AFF), Section 4 introduces the new 

approach to hierarchical SA, in Section 5 are given numer-
ical examples and Section 6 concludes the paper.

2 State-of-art in sensitivity analysis
The study of how input uncertainty affects output uncer-
tainty is known as Sensitivity Analysis [9]. A task such 
as that could be useful in solving the following issues, 
depending on the goal: 

1. determining the robustness of a system's or model's 
results; 

2. comprehending the relationships between inputs and 
outputs; 

3. minimizing uncertainty by selecting the most 
important inputs; 

4. identifying errors in a system or model by defin-
ing unexpected relationships between inputs and 
outputs; 

5. streamlining a model by eliminating inputs that have 
little bearing on outputs; 

6. making a model more interpretative by determining 
an understandable explanation of inputs; and so on.

Numerous approaches to test the sensitivity of math-
ematical models might be suggested, depending on the 
instruments being utilized. Certain features are applicable 
to all models, while others are restricted to those with a 
predetermined structure. 

The SA taxonomy proposed in the study [10] splits 
all methods into two categories: local and global SA. 
The scalar function (indicator, output) y is influenced by 
the vector variable (factors, inputs) X = (x1, …, xn) through 
a black-box relation:

y f x x f Xn� �� � � � �1
, , . (1)

The first category of methods (local SA) relies on gath-
ering data on the degree of uncertainty in the resultant 
value concerning variations in one of its inputs (that is, 
i.e., the function's partial derivative). Such an understand-
ing of sensitivity has two obvious weaknesses: first, the 
obtained result of the sensitivity assessment depends on 
the range of selected xi values in the case of a non-lin-
ear nature of Eq. (1); second, in the event that interactions 
between factors exist, the change to the partial derivative 
depends on factors other than the selected xi values. This 
indicates that methods for the local SA produce sufficient 
and precise outcomes in situations where the structure of 
Eq. (1) is somewhat constrained, which restricts the use of 
this group of methods. 



190|Sysoev and Saraev
Period. Polytech. Elec. Eng. Comp. Sci., 69(2), pp. 188–197, 2025

Methods of the second group (global SA) propose pro-
ducing findings accounting modifications to all parame-
ters, not just one, in order to take potential interactions 
between them into consideration. The first-order sensi-
tivity index proposed by Sobol is the most well-known 
example of a global sensitivity measure (cf. [11]). Other 
techniques for global SA include the elementary effects 
approach (cf. [12]), global derivative-based measures 
(cf. [13]), moment-independent methods (cf. [14]), vario-
gram-based approaches (cf. [15]), etc.

2.1 Local SA approaches
In local SA we have to estimate 

A y
x
x xi n�

�
�

�� �� � � �
1

0 0
, ,  (2)

characterizing how the change of xi affects the output y 
near the value of X(0) (cf. [16]).

The "one at a time" (OAT) method is frequently used to 
evaluate the estimation of Eq. (2) based on the first partial 
derivatives. This method keeps all factors fixed except the 
one that is under perturbation [17]. The contrast approach 
of global SA taking into account all factors and is called 
"all in one" (AIO) strategy.

Another popular local SA approach is the Morris 
method [18]. According to this approach, measures that 
can be used to assess sensitivity are means and standard 
deviations of the absolute value of elementary effects. 
The following interpretations of the obtained results can 
be used: mean is a measure of the influence of an input 
on the output (a larger value indicates greater influence); 
standard deviation is a measure of non-linear and/or inter-
action effects of an input (a variable with a large measure 
is considered to have non-linear effects or is implied to 
have interaction with at least one other variable).

2.2 Global SA approaches
Methods based on the study of linear models make up the 
first category of techniques. Assume that inputs and out-
puts of the studied model are readily available and that 
a linear fit to the current relationship, Eq. (1) is achiev-
able. A fitted linear model is intended to be used in cer-
tain methods for evaluating the sensitivity measures. 
The often used indices in this instance are: Pearson cor-
relation coefficient (if it is equal to −1 or 1, the system out-
put is dependent on the tested input value and the output is 
connected in a linear manner; if every set of an input and 
output have no connections, the correlation coefficient is 
equal to 0), standard regression coefficients (the square of 

this coefficient describes the portion of the output variance 
that is explained by an input), partial correlation coefficient 
(is the degree to which the output is affected by an input 
when the effects of the other inputs have been nullified).

When it is not possible to use a linear model to identify 
Eq. (1) or this structure is non-monotonic, the decompo-
sition of the output variance can be used to assess sen-
sitivity. In the case when Eq. (1) is a square-integrable 
function, defined on the unit hypercube [0,1]n, it can be 
represented as a sum of elementary functions [19]:

f X f f x f x x f Xi i
i

n

ij i j n
i j

n

� � � � � � � � � ��� � �
�

�
�

� �0

1

12
, .     (3)

According to the study [20] 
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the expansion, Eq. (3) is unique.
When the random vector X ∈ Rn with mutually inde-

pendent components is connected with the output y, 
according to [20], a functional decomposition of the vari-
ance is available:

Var y D y D y D yi
i

n

ij n
i j

n
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�

�
�

� �
1

12
,  (4)

where 

D y Var y E y x

D y Var y E y x x D y D

i i

ij i j i j
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,
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and so on for higher-order interactions. The sensitivity 
measures (also known as Sobol's indices [21]) are obtained 
from Eq. (4) as:

S
D y
Var y

S
D y
Var yi

i
ij

ij�
� �
� �

�
� �
� �

�, , . 

According to [22], the total indices can be defined as 

S S S S ST i ij
i j

ijk
i j k i i k

l
l i

i
� � � ���

� � � � �
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, , #

,  

where #i are all the subsets of {1, …, n} including i. 
The described above techniques are most-frequently 

used, but not the only existing. The other classifications 
can be found in reviews, for example in the case study [23] 
there is presented the classification taking into account the 
structure of studied model, number of inputs, available 
computational resources (cf. Fig. 1). 
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2.3 Hierarchical SA approaches
Hierarchical models are becoming a common strategy for 
studying complex problems. The growing need for hier-
archical design approaches is also evident in the develop-
ment of multilevel optimization methodology, to support 
decision making.

Among the studies on HSA there are cases proposing 
the top-down strategy of conducting SA [24]. This strat-
egy contains three features: instead of performing SA to 
a complex AIO model, SA is applied separately, step by 
step, to submodels at each level of hierarchy, which allows 
independent or parallel executions of SA on submodels; 
SA is applied first to the top-level model with the final out-
put of interest following the top-down sequence; to save 
cost, SA is applied only to critical lower-level submod-
els whose performances have a significant impact on the 
upper-level models. These mentioned above studies also 

propose an aggregation approach to evaluating the global 
statistical sensitivity index.

The hierarchical model is shown in Fig. 2. Following 
the existing strategy, SA is applied first to the top-level 
model (Model A), whose input variables are the perfor-
mance responses passed from Submodels B and C at the 
second level. If the performance of Submodel C is found 
to be more significant than the one from Submodel B, then 
SA is applied only to Submodel C. Similarly, the local SA 
results from Submodel C will indicate whether further SA 
are needed for Submodels E or F.

3 Sensitivity analysis based on analysis of finite 
fluctuations
3.1 Background of the approach
Analysis of Finite Fluctuations was developed based on 
Economic Factor Analysis [25] and consists of constructing 

Fig. 1 Brief classification of sensitivity analysis techniques

Fig. 2 Example of hierarchical model
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models linking finite fluctuations of inputs (factors) and 
finite fluctuation of output. There are many types to mea-
sure the finite fluctuation of the variable (index, relative 
index, etc.), but the most frequently used is the finite incre-
ment defined as the simple difference between the current 
value of variable and the value at the previous moment of 
time (∆x = x − x(0)). In case when fluctuations are small 
in classical Mathematical Analysis there is the model set-
ting such connection. If the function y = f(x) describing the 
model is defined to be continuous and differentiable in a 
closed domain, the approximate relationship between the 
response and the small fluctuations of its arguments is 

� �

� �

y f X X f X

f x x x x
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But for some practical issues, fluctuations might be 
regarded as finite values rather than tiny ones; and Eq. (5) 
cannot be applied.

When increments are used as finite fluctuations, there 
exists a model that is structurally exactly in the form con-
necting the finite fluctuation of the output and the inputs' 
(factors) finite fluctuations. This is the Lagrange mean value 
theorem for functions, which is defined and continuous in a 
closed domain and has continuous partial derivatives inside 
this domain. It is formulated in the following manner:
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Here, the mean (or intermediate) values of arguments 
(factors, inputs) xi

(m) are defined by the value of α. 

3.2 Sensitivity indices based on AFF
Let's have the current moment of time. The ini-
tial state of the inputs vector is presented in the form 
X(0) = (x1

(0), …, xn
(0)), and, according to the connection to 

Eq. (1) the output can be presented as y(0) = f(X(0)). After 
a while, at the next moment of fixation, the inputs change 
and now they are X(1) = (x1

(1), …, xn
(1)), and the output of the 

system is consequently y(1) = f(X(1)). Thus, the increment 
of the output can be defined, on the one hand, as the dif-
ference in the new and previous values of the outputs and, 

on the other hand, by the Lagrange theorem, Eq. (6), i.e., 
the following equation can be composed and solved with 
respect to the parameter α: 

y y y
x

x x x
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which allows estimating the so-called factor loadings to 
obtain a model of the form 
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The procedure above is repeated m times (where m 
is the number of available observations); the numerical 
results of the analysis have to be averaged to construct 
the sensitivity measure [26]. It should be noted, that in the 
study [26] it is proposed the algorithm to build the point 
and the interval estimate for obtained factor loadings to 
construct sensitivity measures. The proposed approach is 
based on applying Tukey's weighted average.

4 Hierarchical sensitivity analysis based on analysis of 
finite fluctuations
Complex systems are mainly described by the system 
of indicators. Such system can be constructed with a set 
of functions, each of which is dependent on the certain 
collection of factors (inputs). The proposed approach 
assumes that each of the bottom level functions has its 
own individual set of inputs.

Let there exist m × n factors, define them by xij, 
i = 1, …, m, j = 1, …, n; functions fj, j = 1, …, n are depen-
dent on these factors, i.e. there is defined vector-func-
tion dependent of vector-argument, but each element of 
the function has its own unique set of inputs: f = f(X), 
X ∈ Rm×n, f ∈ Rn, where each function fj is a scalar function 
dependent on vector argument.

Let the inputs change, and their changes are described 
by finite increments ∆xji, the vector of outputs also has 
the corresponding finite increment, which is defined by 
� �f f x x f x� �� � � � � , where f x x f x f�� � � � � �� � .  
Each output has its own finite increment 

� �f f x x f x j nj j j j j j� �� � � � � � �, , , .1  

We suppose that functions are differentiable, and the 
Lagrange mean value theorem can be applied: 

� � � �f f
f
x

X X xj j L

j

ji
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j
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�
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,  (7)

where α ∈ (0,1).
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Let p is the variable aggregating outputs fj as a sca-
lar function dependent on vector argument in the 
form p = p( f ) = p(…, fj, …). Its finite increment is 
∆p = p( f + ∆f ) − p( f ) can also be presents using the 
Lagrange mean value theorem as 

� � � �p p p
f
f f fL

j
j

j

n
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�
�
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�
��

�
1

,  (8)

where β ∈ (0,1).
Each output has its own finite increment, and the 

expression, Eq. (7) can be re-written as 
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Let's use Eq. (7) into Eq. (9) 
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and аfter changing the summing order we receive 
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Let p̂ (x) = p( f(x)), then 
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where γ ∈ (0,1) can be calculated for each function.
Applying the form invariance property of the differ-

ential of a complex function to the function p̂ (x) = p( f(x)) 
leads to the following representation of its derivatives: 
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Then finite increment of the final output presented by 
the Lagrange mean value theorem is 

� � �

� � �

p p p

p
f
f x x

f
x

x x x

L

j

j

ji
ji

j

n

� � � �� �

�
�
�

�� �� �� �
�

�� � �
�

�
�

�
�

�

� �
1��

�

�
�
��

� .
i

m

1

̂̂

 (11)

By equating Eqs. (10) and (11), we find αj, j = 1, …, n, 
β, γ ∈ (0,1): 
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The received model links parameters αj, β, γ ∈ (0,1). 
If suppose that p(x) describes the whole complex system 
with its inputs xij and at the same time with its nodes (sub-
systems) fj, and fj describes the dependence of each sub-
system on its inputs, then the received expression can link 
the finite fluctuations of the whole system with the finite 
fluctuations of inputs of its subsystems.

5 Numerical example
5.1 Structure of hierarchical model
The structure of the hierarchical system under consider-
ation is presented in Fig. 3.

On the top level as well as on bottom level are applied 
neural networks models from the unified remodeling class.  
All three models are fully connected neural networks with 
the following meta parameters:

• Submodel Y1: 1 hidden layer consisting of 2 neurons, 
• Submodel Y2: 1 hidden layer consisting of 1 neurons,
• Model Z: 1 hidden layer consisting of 2 neurons,

activation functions are the same for all neurons and 

described as � net
net

� � �
� �� �

1

1 exp
.

Fig. 3 Structure of numerical example system
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The general structure of remodeling class is 
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where xj are inputs ( j = 1, …, k, j is the number of inputs), 
wij, wi are weights on hidden and output layers respec-
tively (i = 1, …, t, t is the number of neurons on the hid-
den layer), βi and β0 are biases on hidden and output 
layers respectively.

5.2 Scope of experiment
To assess the adequacy of the results obtained using the pro-
posed approach, a series of computational experiments were 
conducted. The neuraldat data set from the NeuralNetTools 
package [27] of the R data processing environment was used 
as data. The data set consists of 2 non-correlated outputs and 
3 non-correlated inputs; 2000 realizations, which allows us 
to obtain 1999 finite response increments and their corre-
sponding arguments. The number of inputs was extended 
to 5, there was used non-linear connection between the out-
puts to simulate the structure of the system which is under 
consideration (there was supposed that Model Z has the fol-
lowing form Z = exp(Y1) ∙ Y2). The remodeling approxima-
tion error is 3.78%.

5.3 Results of HSA
Following the mentioned above top-down strategy, firstly 
it was estimated the sensitivity measures of outputs of 
Submodels Y1 and Y2 as inputs of Model Z. The results are 
presented on Fig. 4. Here and further all obtained results are 
compared with sensitivity indices calculated by Garson's 
approach. This method is based on the study of weights 
constructed neural network model. It is believed that the 
variation of the studied coefficients can explain the char-
acteristics of the "black box" neural network. According to 
the study [28], for three-layer neural network with a classi-
cal structure, factor sensitivity coefficients can be found as 
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,  

where i, j and k are indices for weights of input, hidden, 
and output layer weights respectively. 

Based on comparison of Garson's algorithm and pro-
posed approach it is possible to conclude that applying 
analysis of final fluctuations gives consistent result. 

Similar situations can be seen for Submodels Y1 and Y2 
(cf. Figs. 5 and 6 respectively). It should be noted that for 
Submodel Y2 both approaches give the same outputs.

The proposed approach has an undeniable advantage. 
In contrast to Sobol indices described above it does not use 
an approximation procedure to model statistical parame-
ters of the studied structure and in contrast to Garson's 
strategy, our approach operates with both parameters and 
factors of the model. Thus, the proposed approach does 
not include the source of uncertainty. And this fact allows 
us to construct global sensitivity measures showing the 
sensitivity of model output (in the presented example 
Model Z output) depending on the inputs of lower-level 
models (Submodels Y1 (x1, x2, x3) and Y2 (x4, x5)).

Fig. 4 Results of HSA for Model Z

Fig. 5 Results of HSA for Submodel Y1

Fig. 6 Results of HSA for Submodel Y2
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5.4 Constructing global sensitivity indices
We propose the following model for estimating the global 
indices for sensitivity measures in case on hierarchical 
sensitivity analysis: 

A A x Af x f
j

n

xi j i� �
�

�

� � �
�

�
�

�

�
� ��

1

1

,  (13)

where A xf j � �  are sensitivity measures of nods ele-
ments (submodels), n is the number of hierarchy levels of 
the system.

In our example global sensitivity measure for the input 
x1 is equal to (according to Eq. (12)): 

A A AZ x y x x
1 1 1� � � �� � .  

Indices AZ x2� � , AZ x3� � , AZ x4� �  and AZ x5� �  can be esti-
mated similarly. The histogram of sensitivity measures for 
the top-level model based on the inputs of the bottom-level 
models is presented in Fig. 7.

Based on the results presented in Fig. 7 we can conclude 
that inputs on the bottom-level are arranged in the follow-
ing order (affecting the top-level output): x5, x2, x1, x4, x3.

5.5 Discussing results
Calculations presented in the study give an exact sensi-
tivity measures estimate. But it should be mentioned that 
these measures are easy to be found for submodels (in case 
when each element is under consideration separately from 
the whole hierarchical structure). The presented approach 
allows estimating sensitivity measures for the whole sys-
tem taking into account its hierarchy, starting from sen-
sitivity of the highest level output (indicator) based on its 
inputs (outputs of models which are one level lower), to sen-
sitivity of highest level output based on inputs of models on 
the lowest level (as it is presented in Section 3.2). But such 
procedures are more complicated and take more resources. 
To avoid these lacks, we have proposed an approach to the 
aggregation of sensitivity measures for constructing global 
indices (cf. Eq. (13)). Obtained results for the presented 

numerical example were compared with indices found by 
direct computations using the Lagrange mean value theo-
rem. Both sets of measures are similar, which proves that 
Eq. (13) can be used with this regard. 

6 Conclusion and outlook
The presented paper introduces an approach to hierarchi-
cal sensitivity analysis for remodeling concept. The strat-
egy is based on applying Analysis of Finite Fluctuations as 
a tool to measure importance of studied factors. Starting 
with an applied problem, how to choose the most import-
ant inputs for the neural network model, it was synthe-
sized the strategy how to measure sensitivity for factors 
affecting studied model taking into account its hierarchi-
cal structure. The following research will be devoted to 
the extension of studied models and using another type of 
models of remodeling classes and numerical estimation of 
partial derivatives of the models.
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