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Abstract

Fuzzy logic helps manage human-like reasoning in system control, mainly when traditional analysis does not work due to complex 

control processes. Despite its usefulness, fuzzy logic faces challenges in decision-making, especially in complex business situations 

and when combined with expert systems. It struggles with uncertainty and relies on various beliefs and assumptions, which is limiting 

compared to other methods for handling uncertainty. However, fuzzy logic can improve traditional control systems by adding a layer 

of intelligence. This study adapts mathematical functions like the straight-line point-slope equation, the absolute value function, and 

the Gaussian equation to develop accurate and flexible membership functions for fuzzy logic systems. By analyzing 10000 tasks 

of different sizes, we found our methods significantly more precise than traditional approaches, especially in determining degrees 

of membership for uncertain and complex environments. Our MATLAB research shows the potential of using varied membership 

functions to enhance fuzzy logic systems' accuracy and flexibility.
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1 Introduction
Fuzzy logic has become a cornerstone of intelligent control 
systems, seamlessly integrating with advanced methodol-
ogies such as neural networks and genetic algorithms. It is 
widely applied to interpret, analyze, and resolve the inher-
ent ambiguities associated with complex human-centric 
needs and challenges. Its unique ability to handle impre-
cise and uncertain data through fuzzy sets and rules posi-
tions it as a powerful tool for decision-making in dynamic 
and intricate systems. The core processes of fuzzy logic—
fuzzification, inference (driven by IF-THEN rules and an 
extensive knowledge base), and defuzzification—facilitate 
the conversion of vague inputs into precise, actionable out-
puts, ensuring effective and reliable system performance.

This capability supports the suitability of robust con-
trol and decision-making across various applications. 
Integrating fuzzy logic with adaptive systems enhances 
its flexibility and optimization capabilities, making it 
indispensable in robotics, industrial automation, and arti-
ficial intelligence (AI) domains. These fields frequently 
encounter inaccuracies from sensor data or other unpre-
dictable inputs, whereas fuzzy logic systems demonstrate 

exceptional efficiency and reliability. The Mamdani fuzzy 
inference system (FLS) is widely favored among the many 
fuzzy logic approaches for its straightforward structure 
and interpretability. In electric drive systems, fuzzy logic 
has been employed to develop an adaptive proportional-in-
tegral (PI) speed controller for vector control of induction 
motors (IM) [1]. This controller uses an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to optimize control 
gains, ensuring resilience against parametric variations. 
Validation through MATLAB-Simulink simulations 
demonstrated its robust performance and suitability for 
enhancing electric drive reliability. In agriculture, fuzzy 
logic has addressed environmental uncertainty. 

For instance, a wheeled robot with a microcontroller 
was developed for autonomous pesticide spraying, achiev-
ing high decision-making accuracy in weed identification 
despite challenging environmental conditions [2]. Hydraulic 
systems have also benefited from fuzzy logic. Researchers 
proposed a discrete-time switching controller strategy for 
pumping stations, integrating fuzzy-PD or fuzzy-PID con-
trollers with PI controllers. A fuzzy supervisor facilitates 
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controller switching, ensuring robustness, stability, and 
asymptotic error correction [3]. In high-performance elec-
tric motor applications, integrating Model Reference 
Adaptive Systems (MRAS) with fuzzy logic has signifi-
cantly improved rotor speed and resistance estimation in 
induction motors. The study "High-Performance Control 
of IM using MRAS-Fuzzy Logic Observer" highlights 
this advanced control strategy's effectiveness in high-de-
mand environments [4]. Further advancements include a 
method for simultaneously estimating rotor resistance and 
speed using two independent adaptive observers alongside 
a streamlined algorithm for optimal controller gains [5].

The adaptability of fuzzy logic extends to managing 
ambiguity and vagueness, which occur when bound-
aries and alternatives are unclear. By employing fuzzy 
numbers and membership functions, fuzzy logic offers 
a structured approach to handling uncertainty, surpass-
ing traditional Boolean logic [6, 7]. This flexibility allows 
fuzzy logic systems to adapt to tasks such as naviga-
tion, object handling, and decision-making in uncertain 
environments, enabling human-like control in artificial 
intelligence (AI) systems [8, 9].

Classical information theory reduces uncertainty by 
increasing information; however, fuzzy logic uses mem-
bership functions to quantify degrees of association 
between inputs and sets within a universal discourse. These 
functions form the backbone of fuzzy logic systems, link-
ing input values to degrees of membership and enabling 
approximate reasoning in complex scenarios [10–12]. 
Optimization algorithms enhance fuzzy logic by refining 
membership functions and improving actuator precision 
and control, especially in autonomous systems [13].

The development of fuzzy logic systems hinges on con-
structing fuzzy partitions and defining the shape and num-
ber of membership functions (MFs). These MFs are essential 
as they quantify the degree to which a specific input belongs 
to a fuzzy set. Expert knowledge is pivotal in this process, 
guiding the selection and parameterization of appropriate 
MFs. Optimizing these systems minimizes reliance on sub-
jective trial-and-error approaches, thereby enhancing the 
accuracy of input/output mappings [14]. Membership func-
tions are fundamental to representing the degree of member-
ship for each variable, serving as critical inputs for the infer-
ence rules that drive system functionality [15].

This study introduces a mathematical model to cate-
gorize crisp inputs, representing a universe of discourse, 
into groups corresponding to fuzzy logic membership 
function sets. The model determines the membership 

degree for each input, quantifying its association across 
relevant membership functions. Optimization algorithms 
are incorporated to refine membership degrees for trian-
gular, trapezoidal, and Gaussian membership functions to 
improve classification accuracy and precision. The model 
was implemented using MATLAB and tested on a dataset 
categorizing user tasks in a cloud computing environment. 
Comparative analysis with the Mamdani FLS revealed 
higher accuracy and precision in determining member-
ship degrees, particularly in scenarios characterized by 
ambiguity and uncertainty. This advancement demon-
strates significant potential for improved decision-making 
in complex systems like cloud computing.

This work contributes a mathematical model that 
enhances fuzzy logic systems by refining membership 
functions through optimization techniques. The proposed 
model surpasses conventional adaptability and deci-
sion-making precision systems, addressing gaps in cur-
rent methodologies, particularly for task categorization in 
cloud computing environments.

The remainder of this paper is structured as follows:
• Section 1 introduces the integration of fuzzy logic 

and its value in various fields.
• Section 2 provides a literature review on fuzzy 

set theory and its applications in uncertainty 
management.

• Section 3 explores the background and fundamentals 
of fuzzy logic, focusing on the Mamdani system and 
membership function criteria.

• Section 4 outlines the methodology and application 
of the proposed mathematical model.

• Section 5 presents experimental results from 
10000 user tasks, accompanied by figures and com-
parative tables illustrating the model's effectiveness.

• Section 6 concludes the study, summarizing insights 
and contributions that enhance its impact.

2 Literature review
Fuzzy logic systems have become influential in decision-mak-
ing, particularly in uncertain contexts. They offer flexibility 
and approximate reasoning; however, the literature points to 
challenges such as the complexity of fuzzy rule formulations 
and computational inefficiencies. These challenges under-
score the need for further optimization to enhance the appli-
cability and effectiveness of fuzzy logic across various fields.

In his seminal work on fuzzy sets, Zadeh defined a fuzzy 
set as "a class of objects with a continuum of grades of mem-
bership", where a membership function assigns each object 
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a grade ranging from zero to one. This work extends tra-
ditional notions such as inclusion, union, intersection, and 
complement to fuzzy sets, establishing various properties 
within this context. Notably, Zadeh also proved a separation 
theorem for convex fuzzy sets without requiring the sets 
to be disjoint [16]. Building on this foundation, research-
ers expanded fuzzy set theory by exploring its theoreti-
cal underpinnings and practical applications in managing 
uncertainty and imprecision across various domains [17].

However, these approaches often overlook the compu-
tational inefficiencies that arise when applying fuzzy logic 
in real-world decision-making scenarios. Recent advance-
ments have attempted to address these inefficiencies. 
For instance, researchers have proposed a novel approach 
to healthcare decision-making that integrates fuzzy logic 
with machine learning [18]. This hybrid model aims to 
improve diagnostic accuracy and resource utilization, 
particularly when dealing with incomplete and uncertain 
data, thus addressing traditional inefficiencies. 

However, it has faced criticism for relying on subjec-
tive inputs, which can introduce biases and affect the con-
sistency of outcomes [19]. Moreover, researchers have 
highlighted limitations in the fuzzy linguistic approach, 
particularly regarding information loss during fusion pro-
cesses. They propose a 2-tuple model to enhance preci-
sion and extend aggregation operators [20], although its 
complexity continues to pose challenges for practitioners, 
making implementation cumbersome [21].

Further research has discussed adaptive fuzzy sys-
tems, which show promise but frequently experience sta-
bility issues [22], leading to inconsistent decision-mak-
ing in dynamic environments [23]. The Mamdani fuzzy 
inference model, while foundational, is often critiqued 
for its limited robustness under varying conditions [24]. 
Although recent studies have sought to enhance this 
model's applicability, challenges persist in managing 
time-sensitive decisions effectively [25].

Additionally, the researchers provided extensive 
insights into fuzzy systems but focused primarily on the-
oretical aspects [26], which hinders practical application 
and adoption by industry practitioners [27]. Doong et al. 
explored fuzzy risk assessment in engineering [28], yet 
their approach does not adequately address the interactions 
among risk factors, potentially oversimplifying complex 
decision-making contexts [29]. In the context of business 
applications, researchers reviewed fuzzy decision-mak-
ing [30], underscoring the pressing need for improved meth-
odologies to handle severe uncertainties, particularly when 

data is sparse or incomplete [31]. Lastly, the integration of 
fuzzy logic with genetic algorithms has been explored [32]. 
However, this approach often struggles with computational 
efficiency and convergence issues, complicating its practi-
cal use in real-time decision-making scenarios [33].

In summary, the literature underscores significant gaps 
in the application of fuzzy logic systems within uncertain 
domains, highlighting the need for optimized methodologies 
to enhance robustness, efficiency, and applicability in deci-
sion-making processes. This study aims to address these crit-
ical gaps by focusing on accurately determining the degree 
of membership of input elements and their association with 
the most appropriate membership functions. The proposed 
mathematical model seeks to improve fuzzy logic systems' 
capacity to handle uncertainty and make accurate decisions 
by refining the process of selecting the best membership 
function and aligning it with closely related decisions.

3 Background and conceptions
3.1 Fuzzy logic system
Fuzzy logic is a form of many-valued logic that deals with 
approximate rather than fixed and exact reasoning. Unlike 
traditional binary logic, which operates with true or false val-
ues, fuzzy logic allows for a range of values between 0 and 1, 
which makes it particularly useful for handling the concept 
of partial truth. This approach is often referred to as "com-
puting with words" because it can model the way humans 
think and reason with imprecise information [34, 35]. Fig. 1 
depicts the architecture of a fuzzy logic system.

Fig. 1 Architecture of a fuzzy logic system
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3.1.1 Key components of fuzzy logic systems
Crisp input
In fuzzy logic, a crisp set refers to a set in which each ele-
ment has a membership value that is strictly either 0 or 1, 
signifying complete exclusion or inclusion. This differs 
from fuzzy sets, where membership values can vary con-
tinuously between 0 and 1, enabling partial membership.

In a crisp set, individuals are categorized into two dis-
tinct groups: members, who belong unequivocally to the 
set, and non-members, who are definitively excluded. 
Crisp sets adhere to classical binary logic, emphasizing a 
clear and absolute boundary for set membership. The indi-
cator function for a crisp set, A, where elements in the 
set are assigned a value of 1 and those outside the set are 
assigned a value of 0, can be expressed as:

�A x
x A
x A

� � �
�
�

�
�
�

1

0

,

,
 (1)

Fuzzification inference
Fuzzification inference is a process that converts input 
data into fuzzy sets, which are subsequently used to gen-
erate outputs based on a predefined set of rules, typically 
expressed in the "IF…THEN" format. This process plays 
a vital role in fuzzy inference systems, facilitating the 
transformation of uncertain or imprecise information into 
structured, actionable outcomes for decision-making [36]. 

Inference engine
An inference engine is a critical component of an expert 
system, employing logical rules to derive information or 
make decisions based on a knowledge base. It maps fuzzi-
fied inputs (obtained through the fuzzification process) to 
the rule base, generating fuzzified outputs for the appli-
cable rules. The fuzzy inference engine follows a struc-
tured process comprising several key steps. Initially, it 
performs rule matching by identifying relevant rules from 
the knowledge base and comparing the input data to the 
conditions specified in each rule. Once the relevant rules 
are identified, the engine evaluates the degree of truth for 
each rule, determining the extent to which the input satis-
fies the conditions. Subsequently, it aggregates the conclu-
sions derived from the matched rules by combining their 
outputs to generate a coherent decision or conclusion. 
This process is iterative, with the engine continuously 
applying rules and updating the knowledge base until a 
solution is achieved or no further rules apply. This system-
atic approach enables the fuzzy inference engine to handle 

complex and dynamic scenarios effectively. Inference 
engines are widely used in artificial intelligence applica-
tions, including diagnostic systems, recommendation sys-
tems, and other decision-making tasks [37].

Fuzzy rule base
A fuzzy rule base is a set of fuzzy rules that describe 
the relationship between input variables and output 
results in a fuzzy logic system. These rules, often derived 
from linguistic expressions, characterize the dynamic 
behaviour of the system. Each rule consists of an anteced-
ent (the "IF" part) and a consequent (the "THEN" part) 
based on the knowledge and expertise of a domain expert. 
Fuzzy rules generally follow the format: 

if antecedent then consequent� � � � �s s  

Enabling the system to infer outputs under various 
input conditions. These rules are crucial for managing 
uncertainty and imprecision in control algorithms within 
systems [38, 39].

Defuzzification
Defuzzification is the final step in a fuzzy system and 
is responsible for converting the fuzzy output generated 
by the inference engine into a precise numerical value. 
This process translates the fuzzy set produced during 
inference into a specific, actionable numerical value 
suitable for decision-making or control applications. 
Standard defuzzification techniques, such as the Centre of 
Gravity (COG) method illustrated in Eq. (2), derive a crisp 
result by calculating a representative value from the com-
bined fuzzy sets generated by multiple rules. This step 
ensures the system's outputs are interpretable and practi-
cal for real-world implementation [40]. 

Z
i

n

i i
i

n

i�
� �
� �
1 1

( ) /� � � , (2)

where:
• Z is the crisp output (defuzzified value).
• μi is the membership degree of the fuzzy set for the 

i-th rule.
• βi is the representative value (often the centroid) of 

the output fuzzy set for the i-th rule.
• n is the total number of rules in the system.

3.2 Membership functions and their criteria
The membership function is a core concept in fuzzy logic. It 
quantifies the degree of belonging of a given input to a fuzzy 
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set. Mapping inputs to values from 0 to 1 provides a nuanced 
representation of uncertainty and partial truth, enabling 
more flexible and accurate modelling than traditional binary 
logic. The function adheres to specific constraints and has a 
range of [0, 1]. For every x X∈ , μ _A(x) must be unique [41]. 
In this study, we have selected three widely used member-
ship functions recognized as essential in fuzzy logic sys-
tems: triangular, trapezoidal, and Gaussian.

3.2.1 Fuzzy triangular membership function
Triangular membership function can be represented by the 
parameters {a, b, c} as in Eq. (3).

�F x a b c
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3.2.2 Fuzzy trapezoidal membership function
Fuzzy trapezoidal MF is defined by the parameters 
{a, b, c, d} as in Eq. (4).
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3.2.3 Fuzzy Gaussian membership function
A fuzzy Gaussian membership function uses the 
Gaussian distribution to measure membership levels 
within a fuzzy set. It creates bell-shaped curves that man-
age uncertainty and vagueness. The function provides a 
continuous range of membership values between 0 and 1.

The general formula for a fuzzy Gaussian membership 
function is:

� �A x e
x c
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�

��
�
�

�
�
�

2

 (5)

4 Methodology
The max-min compositional Mamdani fuzzy logic inference 
method employs a classification approach that integrates 

IF-THEN conditions with AND (fuzzy t-norm) and OR 
(fuzzy s-norm) operators to categorize and filter input values 
based on their compatibility with specific functions. In the 
max-min compositional Mamdani method the t-norm selects 
the minimum degree of membership among comparable val-
ues, while the s-norm selects the maximum degree of mem-
bership. In this framework, every value within the universe 
of discourse is associated with a distinct degree of member-
ship function, irrespective of its membership in other func-
tions. This attribute empowers our proposed method to gauge 
the membership level of a value across all relevant member-
ship functions within the problem-solving model. 

Our method provides adaptability and utility, render-
ing it a valuable tool for scientists and researchers when 
confronted with decision-making in ambiguous situations, 
necessitating precise and comprehensive insights. It facil-
itates the assessment of a value's impact on the environ-
ment in connection with the decision-making process. 
We have drawn upon mathematical principles embodied 
by the following equations and principles.

4.1 Mathematical formulation of proposed triangular 
and trapezoidal membership functions
The general equation for a straight line is expressed as 
in Eq. (6).

y mx c� �  (6)

Here, 'm' represents the slope of the line, and 'c' stands 
for the y-intercept. This is the most used equation form 
for a straight line in geometry. However, the straight-line 
equation can be presented in various forms, including 
point-slope. The equation of a straight line with a slope 'm' 
that passes through a specific point (x1, y1) is derived using 
the point-slope form, which is expressed as in Eq. (7).

y y m x x� � �� �1 1 , (7)

where (x, y) denotes an arbitrary point on the line.
The absolute value parent function is represented as:

f x x� � �  (8)

It is defined as:
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The stretching or compressing of the absolute value 
function y = |x| is defined by the function y = α|x| where 
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α is a constant. The graph opens if α > 0 and opens down 
when α < 0. In a more general context, the equation for an 
absolute value function takes the form:

y x h k� � �� , (10)

� �
�
�

y y
x x
2 1

2 1
, (11)

here, h signifies the horizontal translation, and k represents 
the vertical translation [33].

4.2 Mathematical formulation of proposed Gaussian 
membership function 
The Gaussian random variable is the most utilized and highly 
significant when investigating random variables. A Gaussian 
random variable is characterized by a probability density 
function (PDF) that can be expressed in a general form.

fX x mx� � � �
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The PDF of the Gaussian random variable has two 
parameters, m and σ, which have the interpretation of the 
mean and standard deviation (σ), respectively. The param-
eter σ2 is referred to as the variance [42, 43].

4.3 Partitioning the inputs and determining 
membership degrees within uncertain domains 
The proposed method provides a systematic approach for 
partitioning inputs into uncertain domains, enabling more 
precise and efficient determination of membership levels 
for various functions. This approach incorporates three 
distinct algorithms derived from the mathematical formu-
lations used in this study. Algorithm 1 enhances the con-
struction of accurate triangular membership functions, 
Algorithm 2 refines the formation of trapezoidal member-
ship functions, and Algorithm 3 optimizes the generation 
of Gaussian membership functions. 

This method's core is a robust mathematical model that 
simplifies the computation of membership degrees, result-
ing in significantly improved processing speed compared 
to traditional fuzzy inference systems. Conventional 
systems often rely on extensive rule bases and complex 
interdependencies, which can lead to considerable com-
putational overhead. In contrast, the proposed algorithms 

directly calculate membership values, reducing complex-
ity and streamlining the process. One key advantage of 
this method is its systematic categorization of input val-
ues according to specific membership functions. By 
effectively addressing issues related to ambiguity and 
uncertainty, this approach ensures a more accurate deter-
mination of membership degrees and supports enhanced 
decision-making outcomes. 

4.3.1 A detailed application overview of Algorithm 1
In fuzzy logic-based systems, membership functions play 
a crucial role in determining the degree to which an input

Algorithm 1 Input partitioning and membership classification as 
similar work as triangular MF

Input:
V: Set of input values representing the universal discourse variables.
n: Total number of parameter values (PV) for which the degree of 
membership is to be calculated.
Output:
A collection of triangular Membership Functions (MF) and their 
corresponding degrees for each input value V.
Procedure:
1. Initialization:
Max(Vi ) ← max(Vi )
// Calculate the maximum value of sets V in the universe discourse.
2. Parameter value calculation:
PV1 ← (Max(Vi )/n)
// Determine the first parameter value.
PVn ← n × PV1
// Compute the last parameter value.
3. Iterate over each input value Vi in the set of parameter values:
for each Vi V∈ :
Case 1: if Vi ≥ 0 and Vi ≤ PV1
MF1 ← (−Vi / PV2 ) + 1
Output ← (MF1, Degree (Vi ))
// Compute Membership Function 1.
Output ← (MF2, MF3, …, MFm−1, Degree (Vi ))
// Determining the degree of element in the remaining membership 
functions domain.
Case 2: if Vi ≥ PV1 and Vi ≤ PV2
MF1 ← (−Vi / PV2 ) + 1
Output ← (MF1, Degree (Vi ))
// Compute the degree of element affiliated with both domains MF1 
and subsequent it, as MF2.
α ← (Vi − PV2)
// Define the alpha variable.
MF2 ← (−1 / (PV2 − PV1 )) × (|α| + 1)
// Compute the degree of element affiliated with both domains MF2 
and previous it, as MF1.
Output ← (MF3, MF4, …, MFm−1, Degree (Vi ))
//Determining the element's degree of membership across the 
remaining membership functions.
Case 3: if Vi ≥ PVn−1 and Vi ≤ PVn
MFm ← (1/(PVn − PVn−1)) × (Vi − PVn−1)
Output ← (MFm, Degree (Vi ))
// Calculate Membership Function m.
Output ← (MF1, MF2, …, MFm−1, Degree (Vi ))
// Determining the element's degree of membership across the 
remaining membership functions.
4. End of Algorithm 1
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Value belongs to a particular fuzzy set. Algorithm 1 pro-
vides a structured approach to partitioning input values and 
classifying them into triangular membership functions (MFs), 
ensuring an efficient representation of fuzzy variables.

Algorithm 1 takes a set of input values, representing 
the universal discourse variables, and determines the cor-
responding membership functions based on the total num-
ber of parameter values (PV). It systematically computes 
the maximum input value, derives the required parameter 
values, and iterates through each input to classify them 
accordingly. This process enables accurate membership 

function allocation, facilitating enhanced decision-mak-
ing within fuzzy systems. The overview of Algorithm 1 is 
shown in the following listing:

• Maximum value: 67170
• Point1 = Maximum value/4
• Point2 = 2 × Point1
• Point3 = 3 × Point1
• Point4 = 4 × Point1
• μsmall: [0 0 point2]
• μmedium: [point1 point2 point3]
• μbig: [point2 point4 point4].
• When 0 ≤ value ≤ point1
Consider input value is 165.
Calculate small membership function:
• μsmall (165) = (−value/point2) + 1

Algorithm 2 Input partitioning and membership classification as 
similar work as trapezoidal MF

Input:
V: Set of input values representing the universal discourse variables.
n: Total number of parameter values (PV) for which the degree of 
membership is to be calculated.
Output:
A collection of trapezoidal Membership Functions (MF) and their 
corresponding degrees for each input value V.
Procedure:
1. Initialization:
Max(Vi ) ← max(Vi )
// Calculate the maximum value from the sets V.
2. Parameter value calculation:
PV1 ← (Max(Vi )/n)
// Determine the first parameter value.
PVn ← n × PV1
// Compute the last parameter value.
3. Iterate over each input value Vi in the set of parameter values:
for each Vi V∈ :
Case 1: if Vi ≥ 0 and Vi ≤ PV1
Degree (Vi ) ← 1
Output ← (MF1, Degree (Vi ))
// Compute Membership Function 1.
Output ← (MF2, MF3, …, MFm−1, Degree (Vi ))
// Determining the element's degree of membership across the 
remaining membership functions.
Case 2: if Vi ≥ PV1 and Vi ≤ PV2
MF1 ← ((−Vi / PV2 ) – PV1) + 1
Output ← (MF1, Degree (Vi ))
// Compute the degree of element affiliated with both domains MF1 
and subsequent it, as MF2.
α ← (Vi − PV2)
// Define the alpha variable.
MF2 ← ((−1/(PV2 − PV1)) × (abs(α))) + 1
Output ← (MF2, Degree (Vi ))
// Compute the degree of element affiliated with both domains MF2 
and previous it, as MF1.
Output ← (MF3, MF4, …, MFm−1, Degree (Vi ))
// Determining the element's degree of membership across the 
remaining membership functions.
Case 3: if Vi ≥ PVn−1 and Vi ≤ PVn
Degree (Vi ) ← 1
Output ← (MFm, Degree (Vi ))
// Calculate Membership Function m.
Output ← (MF1, MF2, …, MFm−1, Degree (Vi ))
// Determining the element's degree of membership across the 
remaining membership functions.
4. End of Algorithm 2

Algorithm 3 Input partitioning and membership classification as 
similar work as Gaussian MF

Input:
V: Set of input values representing the universal discourse variables.
n: Total number of parameter values (PV) for which the degree of 
membership is to be calculated.
Output:
A collection of Gaussian Membership Functions (MF) and their 
corresponding degrees for each input value V.
Procedure:
1. Initialization:
Max (Vi ) ← max(Vi )
// Calculate the maximum value from the sets V.
σ ← 16339 
//Define standard deviation of the Gaussian MF.
2. Parameter value calculation:
PV1 ← 0
PV2 ← MAX (Vi )/2
PVn ← MAX (Vi )
MF1 center ← PV1
MF2 center ← PV2
MFm center ← PVn
3. Iterate over each input value Vi in the set of parameter values:
for each Vi V :∈
Case 1: if Vi ≥ 0 and Vi ≤ PVn
MF1 ← EXP (−((Vi − PV1)2)/(2 × σ2))
Output ← (MF1, Degree (Vi ))
// Compute Membership Function 1.
Output ← (MF2, MF3, …, MFm−1, Degree (Vi ))
// Determining the element’s degree of membership across the 
remaining membership functions.
Case 2: MF2 ← EXP (−((Vi − PV2)2)/(2 × σ2))
Output ← (MF2, Degree (Vi ))
// Compute Membership Function 2.
Output ← (MF3, MF4, …, MFm−1, Degree (Vi ))
// Determining the element’s degree of membership across the 
remaining membership functions.
Case 3: MFm ← EXP (−((Vi − PVm)2)/(2 × σ2))
Output ← (MFm, Degree (Vi ))
// Compute Membership Function m.
Output ← (MF1, MF2, MF3, …, MFm−1, Degree (Vi ))
// Determining the element’s degree of membership across the 
remaining membership functions.
4.End of Algorithm 3
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• μsmall (165) = (−165/33585) + 1
• μsmall (165) = −0.00491 + 1
• μsmall (165) = 0.995087092.
The "μmedium (165)" remains 0 since the input value falls 

within the 0 to Point1 range.
The "μbig (165)" remains 0 since the input value falls 

within the 0 to Point1 range.

When point1 ≤ value ≤ point2 then:
Consider input value is 20892. 
Calculate small membership function:
• μsmall (20892) = (−value/point2) + 1
• μsmall (20892) = −0.6218 + 1
• μsmall (20892) = 0.377936579.

Calculate α:
• α = value − point2
• α = 20892 − 33585
• α = −12693.

Calculate medium membership function:
• μmedium (20892) = (−1/point2 − point1) × |α| + 1
• μmedium (20892) = (−1/33585 − 16792.5) × |12693| + 1
• μmedium (20892) = (−1/16792.5) × 12693 + 1
• μmedium (20892) = −0.7560 + 1
• μmedium (20892) = 0.244126842.

The "μbig (20892)" remains 0 since the input value falls 
within the Point1 to Point2 range.

4.3.2 A detailed application overview of Algorithm 2
In fuzzy logic systems, accurately determining the degree 
of membership of input values is crucial for effective 
decision-making. The trapezoidal Membership Function 
(MF) is widely used due to its ability to represent uncer-
tainty and gradual transitions between membership cat-
egories. Algorithm 2 provides a structured approach 
similar to work trapezoidal for partitioning input values 
and classifying their membership using a mathematical 
approach. By leveraging its affiliated condition criterion, 
Algorithm 2 ensures smooth transitions and flexible repre-
sentation of fuzzy sets, making it highly suitable for appli-
cations requiring precise input classification. The over-
view of Algorithm 2 is shown in the following listing:

• Maximum value: 67170
• Point1 = Maximum value / 5
• Point2 = 2 × Point1
• Point3 = 3 × Point1

• Point4 = 4 × Point1
• Point5 =5 × point1
• μsmall: [0  0  point1  point2]
• μmedium: [point1  point2  point3  point4]
• μbig: [point3  point4 point4  point5]
• When 0 ≤ value ≤point1 then:
μsmall (value) = 1
"μmedium (value)" remains 0 since the input value falls 

within the 0 to Point1 range.
"μbig(value)" remains 0 since the input value falls within 

the 0 to Point1 range.

• When point1 ≤ value ≤point2
Consider input value is 17132. 

Calculate Small Membership function degree:
• μsmall (value) = (−value/point2) + 1
• μsmall (17132) = (−17132/33585) + 1
• μsmall (17132) = −0.6376 + 1
• μsmall (17132) = 0.362364151

Calculate α:
• α = value – point2
• α = 17132 – 26868
• α = −9736

Calculate medium Membership function degree:
• μmedium (17132) = (−1/point2 − point1) × |α|+1
• μmedium (17132)=(−1/26868 – 13434) × |−9736|+1
• μmedium (17132) = (−1/13434) × 9736 + 1
• μmedium (17132) = −0.7248 + 1
• μmedium (17132) =0.275271699
"μbig (17132)" remains 0 since the input value falls within 

the Point1 to Point2 range.

4.3.3 A detailed application overview of Algorithm 3
In fuzzy logic systems, accurately defining membership 
degrees is crucial for robust decision-making. The Gaussian 
Membership Function (MF) is widely used due to its 
smooth, continuous representation of uncertainty, offer-
ing gradual transitions and minimizing sharp classification 
boundaries. Algorithm 3 systematically partitions input val-
ues, assigns Gaussian membership degrees, and optimally 
distributes MF centers while defining the standard devi-
ation (σ). By ensuring precise classification, this approach 
enhances fuzzy systems' adaptability. It is particularly use-
ful for uncertainty modeling applications, including cloud 
resource optimization, SLA evaluation, and real-time 
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decision-making, where accurate and smooth membership 
transitions are essential for performance and reliability. The 
overview of Algorithm 3 is shown in the following listing:

• Maximum value: 67170
• Point1 = 0
• Point2 = Maximum value/2
• Point4 = Maximum value
• Standard Deviation σ = 16339
• Small center = csmall = point1
• μsmall: [σ point1]
• Medium center = cmedium = point2
• μmedium: [σ point2]
• Big center= cbig=point4
• μbig: [σ point4]
Consider input value is 11381.

• Calculate Small membership function degree
μsmall (11381) =Exp (−(11381 − 0)2/2 × (16339)2)
Calculate the squared difference:
(11381 − 0)2 = 129564361
Compute 2. σ2 = 2 × (16339)2 = 533906642
Divide and apply the exponent:
μsmall (11381) = Exp (−129564361/533906642)
μsmall (11381) = Exp (−0.2426)
μsmall (11381) = 0.784590058

• Calculate Medium membership function degree
μmedium (11381) = Exp (−(11381 − 33585)2/2 × (16339)2)
Calculate the squared difference:
(11381 − 33585)2 = 494383296
Divide and apply the exponent:
μmedium (11381) = Exp (−494383296/533906642)
μmedium = Exp (−0.9263) 
μmedium = 0.397173449

• Calculate Big membership function degree
μbig (11381) = Exp (−(11381 − 67170)2/2 × (16339)2)
Calculate the squared difference:
(11381 − 67170)2 = 3104115681
Divide and apply the exponent:
μbig (11381) = Exp (−3104115681/533906642)
μbig (11381) = Exp (−5.8146)
μbig (11381) = 0.002940142

5 Experimental and results
Our proposed method has been applied to a dataset com-
prising over 10000 user tasks of varying sizes, which 
was extracted from the Parallel Workloads Archive. 

This archive is a comprehensive repository that contains 
detailed logs of job-level usage data from large-scale par-
allel supercomputers, clusters, and grids. 

The logs encompass crucial information about the 
size of user tasks, which can vary significantly depend-
ing on the specific workload and system specifications. 
Given that each user base requests the cloud environ-
ment to perform its tasks, the data size is measured per 
request. The data are available through the raw work-
load logs and models provided on the Parallel Workloads 
Archive website for further details regarding user task 
sizes. In our study, these task sizes are generally random 
and unstructured, encompassing "small", "medium", and 
"big". The recorded data consists of task sizes measured 
in bytes, ranging from a minimum of 0 to a maximum of 
67170 bytes. This wide range reflects the diverse nature 
of user activities. The data were obtained directly from 
the database in their original form without preprocessing. 
Fig. 2 depicts the database titles selected for the work.

The task column data, specifically identified and prepared 
for analytical purposes, was systematically extracted from 
the database to serve as the foundation for the subsequent 
experimentation; Fig. 3 explains the tasks before classifying.

The extracted data underwent processing and search 
operations using the MATLAB® (R2018b) software [44]. 
This program was selected due to its robust computa-
tional capabilities, enabling precise mathematical analy-
sis, data manipulation, and visualization. The processing 
steps included data filtering and targeted analysis to derive 
meaningful insights and ensure the integrity of the results.

Fig. 2 Database Addresses

Fig. 3 User task before classify
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5.1 Determine the degree of membership as the 
triangular membership function
In this context, tasks are classified by size using the pro-
posed method, as outlined in Section 4. To demonstrate this, 
we determine the degree of membership through the trian-
gular membership function by applying the first algorithm to 
values within the universal discourse. The implementation 
results are systematically illustrated to demonstrate the clas-
sification processes based on fuzzy logic principles. 

Fig. 4 presents a classified single triangular member-
ship function, showcasing the initial classification struc-
ture with a single membership function type for clarity and 
precision. Fig. 5 extends this analysis by depicting the clas-
sification of all nested membership functions, emphasiz-
ing the hierarchical arrangement and interactions between 
multiple membership functions within the system. 

In contrast, Fig. 6 demonstrates the classification of the 
membership function achieved through the application of 
the Mamdani fuzzy logic system, which integrates fuzzy 

rules and inference mechanisms to produce comprehen-
sive and interpretable classification results. These figures 
collectively highlight the progressive refinement of mem-
bership function classification, illustrating the effective-
ness of fuzzy logic systems in managing uncertainty and 
delivering accurate outcomes.

5.2 Determine the degree of membership as the 
trapezoidal membership function
In this context, tasks are classified based on their size using 
the proposed method, as detailed in Section 4. To achieve 
this classification, we determine the degree of membership 
by utilizing a trapezoidal membership function, which 
is applied by implementing the second algorithm to val-
ues within the defined universal discourse. This approach 
ensures a systematic and accurate classification of tasks 
according to their size. Figs. 7, 8, and 9 illustrate the results 
of this implementation. Specifically, Figs. 7 and 8 pres-
ent the outcomes of the task classification using the pro-
posed algorithm, highlighting its ability to assign mem-
bership values effectively. In contrast, Fig. 9 depicts the 
corresponding Mamdani system membership functions, 
showcasing the fuzzy inference process and its integration Fig. 4 Classify single Triangular MF

Fig. 5 Classify all Triangular MF

Fig. 6 Mamdani Triangular MF

Fig. 7 Classify single Trapezoidal MF
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into the classification framework. This detailed presenta-
tion highlights the proposed method and algorithms' role in 
accurately determining membership degrees, enabling pre-
cise and meaningful task classification within the system.

5.3 Determine the degree of membership as the 
Gaussian membership function
In this context, tasks are classified based on their size using 
the proposed method, as outlined in Section 4. To demon-
strate the effectiveness of this approach, the degree of 
membership is determined using the Gaussian member-
ship function by implementing the third algorithm on val-
ues within the defined universal discourse. 

The Gaussian membership function, chosen for its smooth 
and continuous nature, ensures precise membership value 
assignment, facilitating accurate classification of task sizes. 
The results of this implementation are presented as follows: 
Fig. 10 illustrates the classification using a single Gaussian 
membership function, providing a clear and focused repre-
sentation of membership values for task sizes.

Fig. 11 expands on this by presenting the classification of 
all Gaussian membership functions simultaneously, showcas-
ing the system's ability to handle multiple overlapping mem-
bership functions effectively. In contrast, Fig. 12 depicts the 
classification results using the Mamdani fuzzy system mem-
bership functions, highlighting the integration of fuzzy infer-
ence rules with membership functions to produce compre-
hensive, interpretable, and consistent outcomes. These results 
collectively validate the robustness and flexibility of the 

Fig. 8 Classify all Trapezoidal MF

Fig. 9 Mamdani Trapezoidal MF

Fig. 10 Classify single Gaussian MF

Fig. 11 Classify all Gaussian MF

Fig. 12 Mamdani Gaussian MF
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proposed method, demonstrating the precision of Gaussian 
membership functions and the effectiveness in managing 
uncertainty and enhancing task size classification.

5.4 Analysis and selection of sample data for results
To evaluate the performance of the proposed method in com-
parison to the classical approach, we conducted a detailed 
analysis using ten representative input samples aligned with 
key points within the universe of discourse. This approach 
assessed the algorithm's ability to determine the membership 
degree for each input, whether it falls within a single mem-
bership function or between nested functions. Membership 
degrees were calculated for all applicable functions, while 
functions outside the input's range in the universe of dis-
course were assigned a degree of zero. The results were 
compared to those obtained using the classical Mamdani 
fuzzy logic system, which served as a benchmark. 

Table 1 presents the outcomes of the proposed 
method, while Table 2 summarizes the results from the 
Traditional Method, providing a direct comparison of their 
performance. To further validate the proposed method, a 
large-scale analysis was conducted on 10000 inputs repre-
senting diverse task sizes. The results of this evaluation are 
depicted in a series of figures, illustrating the application 
of various membership functions and their integration with 
Mamdani's fuzzy logic system. Fig. 13 demonstrates the 
application of the first algorithm with the triangular mem-
bership function, showcasing its precision and effectiveness 
in task size classification. Fig. 14 extends this by integrating 
the triangular membership function with Mamdani's fuzzy 
logic system, highlighting the enhanced classification 
results achieved through fuzzy inference rules. Similarly, 
Fig. 15 illustrates the application of the second algorithm 
with the trapezoidal membership function, emphasizing 
its ability to manage overlapping task ranges effectively. 
Fig. 16 complements this by applying Mamdani's fuzzy 
logic system to the trapezoidal membership function, pro-
ducing refined and interpretable outcomes.

Moving to the third algorithm, Fig. 17 depicts the 
implementation of the Gaussian membership function, 
highlighting its smooth and continuous classification 
capabilities. Finally, Fig. 18 presents the results of inte-
grating Mamdani's fuzzy logic system with the Gaussian 
membership function, illustrating its effectiveness in com-
bining fuzzy inference with the Gaussian approach for 
comprehensive and accurate classification. These results 
collectively demonstrate the robustness and versatility of 

the proposed method compared to the classical Mamdani 
approach. The proposed method showcases superior accu-
racy and adaptability, particularly in managing uncer-
tainty and achieving precise task size classification across 
triangular, trapezoidal, and Gaussian membership func-
tions. This comprehensive evaluation highlights the sig-
nificant advancements introduced by the proposed method 
in fuzzy logic-based classification systems.

Table 1 Results of the proposed method applied to selected samples

Samples of Degree of Triangular Membership Function

value small medium big

0 1 0 0

16823 0.499091856 0.001816287 0

17129 0.489980646 0.020038708 0

17361 0.4830728 0.033854399 0

17579 0.476581807 0.046836385 0

25978 0.226499926 0.547000149 0

26931 0.198124163 0.603751675 0

28842 0.141223761 0.717552479 0

31475 0.062825666 0.874348668 0

33565 0.000595504 0.998808992 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182 0.500818818 0

21582 0.393479232 0.606520768 0

23875 0.222792914 0.777207086 0

25331 0.114411195 0.885588805 0

26846 0.001637636 0.998362364 0

46120 0 0.566919756 0.433080244

45451 0 0.616718773 0.383281227

44329 0 0.700238202 0.299761798

42852 0 0.810183117 0.189816883

40336 0 0.997469108 0.002530892

Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.120934543 0.000213895

1 0.999999998 0.120949757 0.000213949

10090 0.826402652 0.355634634 0.002238294

32026 0.146469985 0.995458374 0.098946015

49791 0.009627715 0.611475933 0.567984183

54045 0.004209592 0.456574063 0.724241188

61138 0.000911417 0.241274197 0.934125619

64852 0.000379417 0.160259114 0.989987311

65069 0.000359903 0.156223736 0.991766863

67170 0.000213895 0.120934543 1
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Table 2 Results of the Traditional Method Applied to Selected Samples

Samples of Degree of Triangular Membership Function

value small medium big

0 1 0 0

16823 0.499076941, 400667 0.001846117, 1986660315 0

17129 0.489965459, 74273464 0.020069080, 51453073 0

17361 0.483057408, 28966176 0.033885183, 420676514 0

17579 0.476566222, 01048116 0.046867555, 979037634 0

25978 0.226476893, 75893282 0.547046212, 4821344 0

26931 0.198100285, 8504 0.603799428, 2991901 0

28842 0.141198189, 61410197 0.717603620, 7717961 0

31475 0.062797760, 83849452 0.87440447, 83230109 0

33565 0.000565745, 5931395903 0.998868508, 8137208 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182, 07533124 0.500818817, 9246688 0

21582 0.393479231, 7999107 0.606520768, 2000894 0

23875 0.222792913, 50305197 0.777207086, 496948 0

25331 0.114411195, 47417002 0.885588804, 52583 0

26846 0.001637635, 849337502 0.998362364, 1506625 0

46120 0 0.783443757, 9096255 0.216556242, 09037444

45451 0 0.808345120, 2263083 0.19165487, 977369167

44329 0 0.850107943, 1251396 0.149892056, 87486043

42852 0 0.905084493, 4117472 0.094915506, 5882528

40336 0 0.998734459, 9121566 0.001265540, 0878433707

Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.122 0.0002

1 1 0.122 0.0002

10090 0.8418 0.7201 0.0053

32026 0.2931 0.996 0.1097

49791 0.0304 0.5364 0.7211

54045 0.0124 0.2917 0.8431

61138 0.0028 0.1097 0.9959

64852 0.0011 0.0566 0.9881

65069 0.0010 0.0532 0.9926

67170 0.0002 0.1218 1

Fig. 13 First algorithm result Fig. 14 Mamdani's performance versus the first algorithm
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6 Conclusions
This paper uses a coherent mathematical model to present a 
new speculative execution method for estimating member-
ship degrees within different membership functions defined 
in a universal context. This method generates triangular, 
trapezoidal, and Gaussian membership functions, each 
consisting of three membership levels: small, medium, and 
large. Our approach employs three algorithms to classify 
and organize ambiguous input data into structured catego-
ries, each associated with a specific membership function 
to address particular problem contexts. 

The performance of this model is about the same as the 
Mamdani fuzzy inference system when it comes to showing 
the membership degree of each element across different mem-
bership functions. In decision-making contexts, we apply the 
linear point-slope equation and the absolute value function 
to determine the membership degree of a given value within 
either a single membership function or two nested member-
ship functions, depending on their shared universal context. 

The Gaussian membership function is also used with 
the Gaussian random variable equation to sort and orga-
nize the membership degrees for each input value in the 
universal discourse. To evaluate the effectiveness of our 
approach, we conducted experiments using a variety of 
task sizes from the Parallel Workloads Archive, a com-
prehensive repository of job-level data. The experiments 
focused on two primary objectives:

1. Designing membership functions with symmetric 
shapes but using asymmetric techniques, compared 
to the Mamdani fuzzy inference system, across the 
three predominant types of membership functions: 
triangular, trapezoidal, and Gaussian. 

2. Enhancing precision in organizing and classifying 
membership degrees for each input value.

Our experiments yielded the following insights:
1. Our method made it much more accurate to get mem-

bership degrees in the universal context. It gave results 
between 0 and 1 for both unique and nested member-
ship functions that were linked to a given input value.

2. Mathematical models employing flexible equations 
demonstrated substantial potential for improving 
membership degree accuracy. Compared to previ-
ous constrained approaches, the fuzzy logic deci-
sion-making system exhibited higher precision in 
determining membership degrees. These findings 
highlight the importance of precise membership 

Fig. 15 Second algorithm result

Fig. 16 Mamdani's performance versus the second algorithm

Fig. 17 Third algorithm result

Fig. 18 Mamdani's performance versus the third algorithm
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degree proportions, validating the proposed 
approach. Future studies may explore scalability, 
real-time applications, advanced optimization algo-
rithms, dynamic membership function models (e.g., 

sigmoid, polynomial), and the Fuzzy Logic Toolbox's 
membership functions, extending the methodology 
to domains like healthcare, finance, and smart cities.
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